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Abstract: The plant A/B toxin ricin represents a heterodimeric glycoprotein belonging to the 

family of ribosome inactivating proteins, RIPs. Its toxicity towards eukaryotic cells results 

from the depurination of 28S rRNA due to the N-glycosidic activity of ricin toxin A chain, 

RTA. Since the extention of RTA by a mammalian-specific endoplasmic reticulum (ER) 

retention signal (KDEL) significantly increases RTA in vivo toxicity against mammalian 

cells, we here analyzed the phenotypic effect of RTA carrying the yeast-specific ER 

retention motif HDEL. Interestingly, such a toxin (RTA
HDEL

) showed a similar cytotoxic 

effect on yeast as a corresponding RTA
KDEL

 variant on HeLa cells. Furthermore, we 

established a powerful yeast bioassay for RTA in vivo uptake and trafficking which is 

based on the measurement of dissolved oxygen in toxin-treated spheroplast cultures of 

S. cerevisiae. We show that yeast spheroplasts are highly sensitive against external applied 

RTA and further demonstrate that its toxicity is greatly enhanced by replacing the  

C-terminal KDEL motif by HDEL. Based on the RTA resistant phenotype seen in yeast 

knock-out mutants defective in early steps of endocytosis (∆end3) and/or in RTA 

depurination activity on 28S rRNA (∆rpl12B) we feel that the yeast-based bioassay 

described in this study is a powerful tool to dissect intracellular A/B toxin transport from 

the plasma membrane through the endosomal compartment to the ER. 

Keywords: ricin toxin A chain; ER retention signal; yeast spheroplasts; toxin endocytosis 

and transport; oyxgen-sensor microtiter plate; H/KDEL 

OPEN ACCESS 



Toxins 2011, 3              

 

835 

Abbreviations: ER, endoplasmic reticulum; RTA, ricin toxin A chain; RTB, ricin toxin B 

chain; PI, propidiumiodide 

 

1. Introduction 

The development of effective protecting drugs and antidotes against various human diseases and 

biological toxins is still a major goal in ongoing biomedical research. The plant Ricinus communis 

produces a heterodimeric protein toxin (ricin) which represents one of the most powerful A/B toxins of 

biological heritage [1]. The mature holotoxin represents a glycosylated heterodimer consisting of two 

polypeptide chains which are covalently linked through a single disulfide bond [2,3]. Ricin toxin  

A-chain (RTA; 30 kDa) acts as N-glycosidase by cleaving a specific adenine residue at position 4324 

within the sarcin/ricin loop of 28S rRNA [4,5]. Loss of this adenine residue hesitates in vivo binding of 

elongation factor 2 (EF2) which is required to initiate protein translation on the eukaryotic 80S  

ribosome [6]. Thus, ricin treated cells are rapidly blocked in protein biosynthesis and subsequently 

committed to cell death [2]. In contrast to RTA, the 34 kDa B-chain RTB represents the cell surface 

binding component which mediates toxin uptake by the target cell [7]. After toxin binding to terminal 

galactose and/or N-acetylglucosamine residues on the surface of mammalian cells, the toxin is taken up 

by endocytosis and transported to early endosomes [7,8]. While this transport can occur both in a  

clathrin-dependent or clathrin-independent manner [9–11], only 5% of the toxin molecules finally reach 

the TGN network [12]. Synthaxin 5 plays an important role in this toxin transport step [13]. In contrast 

to other A/B toxin family members such as Cholera toxin or the E. coli heat labile toxin HLT [14], ricin 

itself does not contain an ER retention signal which could potentially mediate its retrograde transport 

into the ER through binding to KDEL receptors of the mammalian target cell [15]. Therefore, it has 

been proposed that RTB binds to resident luminal ER proteins and is then transported piggyback into 

the ER [2]. After recognition by Edem1, ricin is presumably retrotranslocated into the cytosol, most 

likely by using the Sec61 translocon of the ER membrane [16–18]. After ER exit, a limited number of 

RTA molecules are somehow capable of escaping proteasomal degradation reaching their final target 

and causing cell death [16,19]. 

Despite our detailed knowledge on RTA in vivo toxicity, comparatively little is known about the 

intracellular toxin transport and the cellular components involved in this process. A deeper mechanistic 

understanding of toxin trafficking could not only help to design more effective antidotes and 

immunotoxins, it would also foster development of novel therapeutic strategies for the treatment of 

various human diseases including cancer [20–22].  

The focus of our present study was to develop a yeast-based bioassay which would allow in vivo 

analyses of toxin uptake and transport in more detail. Previous studies already demonstrated that yeast 

ribosomes are highly sensitive to, and depurinated by, RTA [23]; however, so far all these studies have 

been performed by artificial RTA expression in the ER lumen. Therefore, analysis of intracellular 

toxin transport has largely been restricted to the analysis of toxin retrotranslocation from the ER into 

the cytosol [24]. Based on the observation that the addition of the mammalian-specific ER retention 

signal KDEL increases in vivo toxicity of ricin up to 250 fold [25,26], we asked if the addition of a 

yeast-specific ER retention signal (HDEL) to RTA likewise exhibits in vivo toxicity against HeLa 
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cells. As we observed similar cytotoxicity for both toxin variants, RTA
HDEL

 and RTA
KDEl

, we built-up 

a yeast-based bioassay for the analysis of RTA uptake and intracellular transport. Further studies with 

this novel test system should shed more light on ricin trafficking in vivo, thereby helping to identify host 

cell proteins that are mechanistically involved in the intoxification by microbial and plant A/B toxins. 

2. Materials and Methods 

2.1. Escherichia Coli Strains, Plasmids, Culture Media and Genetic Techniques 

Standard molecular manipulations were performed as described by [27]. E. coli TOP10 (F’mcrA Δ 

(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ (ara-leu) 7697 galU galK rpsL (StrR) 

endA1 nupG) was used for cloning. Using pRS316-RTA as template, RTA(His)6, RTA(His)6HDEL and 

RTA(His)6KDEL were PCR amplified in the presence of HiFi polymerase (Roche) and the following 

primer pairs: 5'-RTA (5'-GGATCCATGATAATTCCCAAACAATACCCAATTATAAACTTTAC) and 

3'-RTA(His)6 (3'-AAGCTTGTCGACTTAATGATGATGATGATGATGAAACTGTGACGATGGTGGA 

GGTGC) for RTA(His)6, 5'-RTA and 3'-RTA(His)6HDEL (3'-AAGCTTGTCGACTTACAGTTCA 

TCATGATGATGATGATGATGATGAAACTGTGACGATGGTGGAGGTGC) for RTA(His)6HDEL, 

and 5'-RTA and 3-RTA(His)6KDEL (3'-AAGCTTGTCGACTTACAGTTCATCTTTATGATGAT 

GATGATGATGAAACTGTGACGATGGTGGAGGTGC) for RTA(His)6KDEL. Each primer introduced 

either a 5' BamHI or 3' HindIII/SalI cleavage site (underlined). After amplification, the corresponding 

DNA fragment was cloned into pSTBlue-1 (Novagen), sequenced and finally cloned as BamHI/HindIII 

fragment into pET24a
(+)

 (Novagen) to obtain the expression vectors pET-RTA, pET-RTAHDEL and 

pET-RTAKDEL, respectively. All constructs were subsequently transformed into E. coli BL21 (DE3) 

(F
−
 ompT gal dcm lon hsdSB (rB

−
 mB

−
) λ (DE3 [lacI lacUV5–T7 gene 1 ind1 sam7 nin5], Stratagene) and 

after cells had reached an optimal density (OD600 ≈ 0.8–1), expression of each RTA variant was induced 

in the presence of 1 mM IPTG for 2 h at 28 °C. Cells were harvested, washed twice with sterile water 

and resuspended in binding buffer (500 mM NaCl, 10 mM imidazol and 20 mM KH2PO4) for 

subsequent RTA purification. Cell debris was removed and the supernatant was collected for Ni
2+

-NTA 

affinity chromatography. Sonicated supernatants were immediately used for SDS–PAGE, western 

analysis and/or Coomassie blue staining. 

2.2. Yeast Strains and Culture Media 

The S. cerevisiae wild-type strain BY4742 (MATα his3Δ1, leu2Δ0, lys2Δ0, ura3Δ0) and its 

isogenic knock-out mutants YNL084C (∆end3) and YDR418W (∆rpl12B) were obtained from Open 

Biosystems. Yeast cells were grown in YEPD (2% glucose, 2% peptone and 1% yeast extract) at  

30 °C. For spheroplast preparation, each strain was grown in YEPD to late exponential phase  

(4–6 × 10
7
 cells per mL), harvested at 8000 rpm and washed twice with sterile water. Subsequently,  

1 × 10
9
 cells were resuspended in 100 mL heroplast buffer (0.8 M sorbitol, 10 mM Tris-HCl (pH 7.5), 

10 mM CaCl2, 2 mM DTT and 200 µg/mL zymolyase 20 T), incubated at 30 °C for 75 min, harvested 

at 4 °C and 2000 rpm and washed twice with incubation buffer (0.8 M sorbitol, 10 mM  

Tris-HCl (pH 4.7), 10 mM CaCl2, 10 mM glucose). 
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2.3. Affinity Purification of RTA 

Sonicated supernatants of E. coli clones expressing the (His)6-tagged RTA variants were applied 

onto a 5 mL HisTrap FF column (GE Healthcare) and eluted in a single step by the addition of 

imidazol (500 mM imidazol, 500 mM NaCl, 20 mM KH2PO4). Eluted protein fractions were desalted 

and equilibrated either in PBS (pH 7.4) for studies on mammalian cells or in incubation buffer for 

yeast experiments. Ni
2+

-NTA purified supernatants of E. coli expressing the empty vector pET24a
(+)

 

without RTA served as negative control. After concentration through 10 kDa cut-off spin columns 

(Sartorius, Viva Spin 20), purified proteins were stored at 4 °C. Coomassie staining was employed to 

analyze protein purity and the level of protein expression was verified by western blot analysis. Total 

protein content was determined by using a BCA protein assay kit (Pierce). 

2.4. Western Analysis and Protein Staining 

After RTA expression, E. coli supernatants and Ni
2+

-NTA purified fractions were analyzed by  

SDS-PAGE by separating protein samples in 15% Tris-tricine SDS polyacrylamide gels [28]. After 

electrotransfer to PVDF membranes, blots were incubated with a polyclonal antibody against the ricin 

A subunit (diluted 1/1000). Thereafter, blots were treated with monoclonal peroxidase-coupled  

anti-sheep antibody (Sigma, diluted 1/13,000) and developed with Western lightning Plus ECL 

(PerkinElmer). Signals were detected with ChemiDoc XRS (BioRad). For Coomassie blue staining, 

SDS gels were incubated in a staining solution (0.1% (w/v) Coomassie blue R, 30% (v/v) methanol 

and 10% (v/v) acetic acid) for 2 h and thereafter destained in a solution containing 30% (v/v) methanol 

and 10% (v/v) acetic acid [29]. 

2.5. Phase Contrast Microscopy 

HeLa S3 cells were seeded in 24 well plates at a density of 1 × 10
5 

cells per well in DMEM medium 

containing 10% FCS and 1% penicillin-streptomycin and incubated at 37 °C in the presence of 5% 

CO2 for 18 h. After an additional incubation in the presence of purified RTA and/or control samples 

for 24 or 48 h, phase contrast microscopy was performed using an Olympus IX70 microscope under 

standard settings. For trypan blue staining, DMEM medium was removed, cells were stained in 0.4% 

trypan blue (Sigma) for 5 min, washed with PBS and analyzed under the microscope and counted in an 

automated cell counter (Invitrogen). For counting, cells were harvested 24 or 48 h after RTA 

treatment. Sample supernatants were collected, adherent growing cells trypsinated and pooled. 

Subsequently, pooled supernatants were harvested at 2000 rpm, washed once with PBS, resuspended 

in 100 µL PBS, and 100 µL 0.4% Trypan Blue were added. Cells were counted after 3 min  

of incubation. 

2.6. Oyxgen-Sensor Microtiter Plate Bioassay 

Wild-type yeast cells and selected knock-out mutants were grown in YEPD to exponential phase and 

spheroplasted by treatment with zymolyase 20 T as described above. Yeast spheroplasts (1.5 × 10
7
 cells) 

were seeded into 96 well oyxgen-sensor microtiter plates (Presence, round bottoms). Various 

concentrations of RTA variants were adjusted to a final volume of 200 µL incubation buffer per well. 
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In each measurement, a two point calibration was conducted. The k100 value was measured with air 

saturated water and the k0 value with water containing 0.1% Na2SO3 solution. Oyxgen concentration 

was measured every 20 min over a time window of 16 h. Each sample measurement was performed in 

triplicate at 30 °C, 120 rpm and with a shaking diameter of 1 mm. Measurements were carried out in a 

fluorescence reader equipped with an integrated shaker (Fluoroskan Ascent, Labsystems, Vantaa, 

Finland) [30]. Oyxgen concentration and pO2 values were calculated according to the equations shown 

in (1) and (2). 
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2.7. Cytotoxicity Assay 

Yeast wild-type cells and knock-out mutants were cultivated and spheroplasted as described above. 

At a density of 1.5 × 10
7
 cells, intact cells and/or spheroplasts were incubated in black 96 well plates 

(Nunc) in the presence of each RTA variant in incubation buffer at 30 °C and low shaking (115 rpm) 

for 24 h. Measurements were performed using a PARADIGM (Beckham Coulther, Cartridge 

Multimode). Subsequently, cells were treated with 2.5 µL propidium iodide (PI, 1 mg/mL) for 3 min 

and fluorescence was measured at an extinction wavelength of 535 ± 25 nm and an emission 

wavelength of 635 ± 25 nm for 140 ms. Fluorescence was expressed as shown in (3). 

   blanklheatcontroblanksample AbsorptionAbsorptionAbsorptionAbsorptionceFluorescen  / (3)   blanklheatcontroblanksample AbsorptionAbsorptionAbsorptionAbsorptionceFluorescen  / (3)
 (3) 

All experiments and measurements were repeated five times (n = 5) and the corresponding standard 

deviations are indicated for each experiment. 

2.8. Cell Culture 

HeLa S3 cells were obtained from ATCC and maintained in DMEM medium supplemented with 10% 

FCS and 1% penicillin-streptomycin. For cell vitality assays (TOX2, XTT based, Sigma), HeLa cells 

were seeded in 24 well plates at a density of 1 × 10
5
 cells per well and incubated in DMEM medium at 

37 °C in the presence of 5% CO2 for 18 h. Thereafter, HeLa cells were incubated in the presence of 

increasing concentrations of purified RTA in DMEM medium for another 24 or 48 h. Subsequently, 

cells were washed twice with PBS, centrifuged between each step at 1600 rpm and finally resuspended 

in DMEM without phenol red and FCS. Thereafter, XTT was added in a ratio of 20% of DMEM 

medium and cells were incubated at 37 °C for another 3 h. Absorbance of the samples was measured 

with a spectrophotometer Ultrospec 2100 pro (Amershan Biosciences) at a wavelength of 450 nm. 

Cytotoxicity was expressed as shown in (4). 

(4)   blankcontrolblanksample ODODODODtyCytotoxici  / (4)   blankcontrolblanksample ODODODODtyCytotoxici  /
 (4)  
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Each experiment was performed in triplicate (n = 3) and standard deviation is displayed in each 

figure. Statistical significance of the values was calculated by using the t-test method.  

3. Results and Discussion 

3.1. RTA Expression and Purification 

For recombinant ricin expression in E. coli, each RTA variant was PCR-amplified from plasmid 

pRS316K2SP-RTA [31] by adding BamHI and HindIII cleavage sites to the 5'- and 3'-end, respectively. 

The resulting BamHI/HindIII fragments were ligated into pET24a
(+)

 to obtain the expression vectors 

pET-RTA, pET-RTAKDEL and pET-RTAKDEL (Figure 1A). As His-tagged RTA variants had 

already been successfully expressed in E. coli [25,32], we used similar expression conditions for our 

constructs. In sonicated supernatants of the corresponding E. coli transformants strong protein bands at 

approximately 31 kDa were detectable by Coomassie staining which nicely matched the calculated 

size of RTA (31.0 kDa), RTA
HDEL

 (31.5 kDa) and RTA
KDEL

 (31.5 kDa) (Figure 1B). As expected, no 

RTA signal was detectable in the vector control and in cells cultivated under non-inducing conditions 

(data not shown). To concentrate and purify the protein after Ni
2+

-NTA affinity chromatography, each 

column fraction was analyzed by SDS-PAGE and Coomassie staining or western analysis probed with 

anti-RTA. Based on total protein content, all RTA variants were judged to be 90–95% pure with an 

overall yield of 40–50 mg/L RTA (Figure 1B). 

Figure 1. (A) Schematic outline of ricin toxin A (RTA) variants used in this study. In each 

fusion protein, the type of endoplasmic reticulum (ER) retention signal fused to RTA 

(K/HDEL) and the total size (in bp) is indicated. Length of the (His)6-tag and the 

mammalian- or yeast-specific ER retention motifs are also shown. RTA fusions were 

cloned into pET24a
(+)

 and expressed in E. coli; (B) RTA purification by Ni
2+

-NTA 

chromatography. Purified samples (15-25 µg) were analyzed by SDS-PAGE and 

Coomassie staining. Lane 1: PAGE Ruler prestained (Fermentas); Lane 2: unmodified 

RTA; Lane 3: RTA
HDEL

; Lane 4: RTA
KDEL

. 

(A) (B) 
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3.2. RTA Containing a Mammalian or Yeast Specific ER Retention Signal is in vivo Toxic 

To confirm that RTA variants expressed in E. coli are biologically active against mammalian cells, 

XTT cell viability assays were performed in which mitochondrial dehydrogenase activity of HeLa S3 

cells was measured as an indirect means of cell viability. To ensure that the cells are not negatively 

affected by endogenous E. coli proteins, a negative control was included corresponding to NTA-purified 

proteins from E. coli clones expressing the empty vector. As shown in Figure 2A, no toxic effect was 

detectable in either untreated or negative control samples, whereas cell viability significantly declined 

24 h after treatment with either RTA
KDEL

 or RTA
HDEL 

(data not shown); after toxin treatment for 48 h, 

loss in cell viability further increased to 71.4% for RTA
KDEL

 and 68% for RTA
HDEL

 (Figure 2A), 

thereby confirming previous reports on RTA
KDEL

 toxicity against mammalian cell lines such as HeLa, 

MCF, Jurkart and Vero [26,32]. Unexpectedly however, we did not observe any significant decrease in 

cell viability after treatment with unmodified RTA at or below concentrations of 12 µg RTA  

(Figure 2A; data at lower toxin concentrations are not shown). The fact that unmodified RTA is  

non-toxic on mammalian cells confirms recent data of Wang and colleagues [33]. In contrast, in vitro 

protein inhibition studies of Wales et al. demonstrated that unmodified RTA is active at high toxin 

concentration, however its inhibitory potential against HeLa cells was up to 10-fold lower compared to 

RTA
KDEL

 [25]. Our present study confirms these data as we also observe significant in vivo toxicity of 

non-modified RTA at toxin concentrations >80 µg after 48 h (data not shown). We thus assume that 

cells treated with low doses of RTA are being inhibited in protein biosynthesis; however this inhibition 

is not sufficient to induce in vivo cell death. This might explain the observed lack in RTA toxicity 

under low toxin concentrations in XTT viability assays. To our knowledge, we showed here for the 

first time that the addition of a yeast specific ER retention signal (HDEL) to RTA results in a 

comparably strong cytotoxic effect to what can be observed for RTA
KDEL

 on HeLa cells. Dose 

response curves and p-value calculations of both constructs did not show any significant difference in 

the presence of 0.1 to 80 µg toxin (data not shown). One possible explanation for the increased 

cytotoxicity of RTA
HDEL

 could be that mammalian cells—in contrast to yeast—possess three different 

ER retention signal recognizing KDEL receptors. One of them (Erd23) has been shown to recognize 

HDEL carrying proteins and to catalyze subsequent retrograde transport back to the ER [34]; in this 

study it was demonstrated that Erd21 preferentially recognizes KDEL, whereas Erd23 mainly binds 

proteins with a C-terminal HDEL motif; our present cell viability data are consistent with these 

findings. To fortify the cell viability data, we looked at the morphology of HeLa cells before and after 

RTA treatment (Figure 2C). Negative control cells did not show any visible change in morphology 

compared to untreated or buffer treated cells (data not shown). The majority of cells grew adherent on 

the bottom of the well and showed normal growth behavior; only a minimal amount of detached cells 

was detectable. Samples treated with unmodified RTA showed the same unchanged phenotype as 

negative control cells (Figure 2C); this result was also confirmed by the numbers of trypan blue 

positive cells which likewise was not altered in RTA-treated cells (Figure 2B). In contrast, HeLa cells 

treated with either RTA
HDEL

 or RTA
KDEL

 showed significant higher numbers of detached cells at 24 h, 

while after 48 h most of the cells grew non-adherent and were detached from the bottom of the well 

(Figure 2C). Moreover, trypan blue staining of cells treated with RTA
HDEL

 or RTA
KDEL

 identified a 

high number of dead cells compared to negative control cells or cells treated with unmodified RTA 
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(Figure 2B). In these samples, cell numbers were reduced over 50% compared to RTA lacking an ER 

retention motif (data not shown). So, in total, our data from cell viability assays, trypan blue staining 

and phase contrast microscopy altogether demonstrate that the addition of both, HDEL or KDEL to 

RTA results in a significant increase in the in vivo toxicity against HeLa cells.  

Figure 2. RTA containing a mammalian- or yeast-specific ER retention signal is toxic to 

HeLa cells. (A) XTT based cell viability assay of HeLa cells. Cells were incubated in the 

presence of 12 µg of the indicated RTA variant and controls for 48 h (buffer control set to 

100%). Each experiment was performed in triplicate (n = 3) and standard deviation 

(red bar) and p-values (* p < 0.05) are indicated; (B) Trypan blue staining of HeLa cells 

treated with 12 µg of each toxin variant after an incubation of 24 (black) or 48 (white) 

hours. Schemata show HeLa cell viability in % and the standard deviation for each sample 

(red bar). Each measurement was performed twice (n = 2). For p-value calculation,  

RTA-treated samples were compared to the negative control (* p < 0.05; ** p < 0.01);  

(C) Phase contrast microscopy of RTA treated HeLa cells after 48 h (10,000 

magnification). Cells were incubated in the presence of 12 µg of the indicated RTA  

protein fusion.  

 

3.3. Recombinant RTA Variants Induce Cell Death in Yeast Spheroplasts 

In further experiments we wanted to analyze whether or not RTA, RTA
HDEL

 and/or RTA
KDEL

 also 

influence cell viability in yeast. Since yeast cells do not possess terminal galactose residues within 

their cell wall components, native ricin cannot enter yeast cells because potential RTB binding sites are 

lacking on the yeast cell surface [15]. Therefore, all studies on intracellular RTA transport in yeast had 
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so far been restricted to the analysis of toxin retrotranslocation from the ER into the cytosol by 

expressing RTA variants in the ER [16,24,31]. Because of this restriction in using yeast as model to 

study toxin uptake and trafficking, we aimed to establish a modified yeast system by-passing these 

limitations. Such a system would have a big advantage over mammalian cells as an entire collection of 

yeast knock-out mutants is available allowing a comprehensive genetic screening to identify genes 

whose products are directly or indirectly involved in intracellular RTA transport. Potential candidates 

identified in yeast can then be analyzed for their particular function in mammalian cells. With such an 

assay, we could look at the ER upstream transport of RTA from the cell membrane to the ER. To 

bypass the lack of ricin binding sites in the cell wall of yeast, we generated yeast spheroplasts by 

zymolyase treatment and subsequently performed oxygen sensor microtiter plate assays to analyze 

yeast sensitivity against RTA [30]. If RTA was toxic for yeast spheroplasts, dissolved oyxgen 

concentration would be expected to stay constant. As illustrated in Figure 3A, we indeed observed 

such an effect in spheroplasts, while intact yeast cells showed the expected rapid decrease in dissolved 

oxygen, corresponding to the effect seen in the negative controls. The experiments with yeast 

spheroplasts uncovered an additional important finding: RTA, RTA
HDEL

 and RTA
KDEL

 likewise 

showed similar constant and high levels in dissolved oxygen at concentrations of about 12–50 µg RTA 

(Figure 3B), while the negative control sample showed a similar kinetic in oyxgen consumption as 

untreated spheroplasts. Compared to intact cells, yeast spheroplasts showed slower oxygen uptake over 

time, resulting in a shift seen in the time course (Figure 3B) which is likely caused by a slower growth 

of yeast spheroplasts which hardly double during the time course of the experiment. Nevertheless our 

data support the hypothesis that RTA is taken up by yeast spheroplasts and finally reaches the cytosol 

to inhibit protein biosynthesis. In contrast, the cell wall of intact yeast prevents toxin uptake and 

therefore causes RTA resistance. The current data also shows that RTA lacking a C-terminal retention 

signal is biologically active against yeast spheroplasts, while it completely loses its in vivo toxicity 

after heat-treatment at 95 °C for 20 min (Figure 3D). As no significant difference in dissolved oxygen 

concentration was seen against the three tested RTA variants at high toxin concentration, we analyzed 

RTA toxicity on yeast spheroplasts at low toxin concentration. As illustrated in Figure 3B, RTA
HDEL

 

resulted in a mean average of 79.8% dissolved oxygen after 16 h which was significantly higher than 

dissolved oxygen concentrations present in samples that had been treated with either RTA (47.1%) or 

RTA
KDEL

 (50.5%); both variants—RTA and RTA
KDEL

—showed similar kinetics at a low toxin 

concentration of 3 µg (Figure 3C). p-values below 0.05 and 0.01 confirmed significance of the 

observed effect in comparison to RTA
HDEL

 (data not shown). Taken together, these results indicate that 

the yeast-specific ER retention motif HDEL is more efficient in ensuring retrograde RTA transport than the 

mammalian-specific retention signal KDEL. This might be explained by the fact that yeast—in contrast 

to mammals—only possess a single cellular HDEL receptor (Erd2p) which preferentially recognizes 

and binds HDEL-carrying proteins within the secretory pathway [35,36]. 

3.4. RTA Endocytosis is an Essential Prerequisite for Cell Killing 

Since endocytotic uptake of only a limited number of toxin molecules is sufficient for in vivo cell 

killing [37], we asked if spheroplasts of a yeast Δend3 mutant which is blocked in early steps of both, 

fluid-phase and receptor endocytosis [38] behave phenotypically RTA resistant when tested under the 
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same conditions as wild-type cells. As illustrated in Figure 3F, this was indeed the case and Δend3 

cells were effectively protected against all three toxin variants RTA, RTA
KDEL

 and RTA
HDEL

. The 

same resistant phenotype was also seen in spheroplasts of a Δrpl12B mutant (Figure 3E) which expresses 

a mutant ribosomal protein of the 60S subunit that prevents ricin-mediated 28S rRNA depurination within 

the sarcin/ricin loop [39]. 

Figure 3. RTA toxicity against yeast spheroplasts. Dissolved oxygen concentration was 

measured for intact wild-type cells (WT) and spheroplasts in the presence of the indicated 

RTA variant. All experiments were performed in triplicate (n = 3) at 30 °C and 120 rpm 

over 16 h. (A) Intact wild-type yeast cells treated with 50 µg of the indicated RTA variant; 

(B,C) Same experiment performed on yeast spheroplasts in the presence of 50 or 3 µg 

RTA; (D) Spheroplasts treated with 50 µg RTA before and after heat-inactivation;  

(E,F) Yeast spheroplasts of a Δrpl12B or Δend3 mutant in the presence of 50 µg of the 

indicated RTA variant. 

 

To further confirm the power and significance of the yeast-based RTA toxicity assay described here, 

we additionally performed propidium-iodide (PI) staining of yeast spheroplasts and determined PI 

fluorescence intensity after RTA treatment. As summarized in Figure 4, a significant increase in 

fluorescence was only seen in yeast spheroplasts (and not in whole cells) after RTA treatment at high 
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toxin concentration (12 µg), thereby nicely confirming our previous results from oxygen consumption 

measurements (see Figure 3B).  

Figure 4. PI fluorescence of RTA-treated intact cells and yeast spheroplasts. Propidium 

iodide (PI) fluorescence intensity of yeast spheroplasts and intact cells after treatment with 

the indicated RTA variant. In the positive control (set to 100%), cells were heat-inactivated 

at 95 °C for 20 min. In each case, cells were incubated in the presence of 12 µg of the 

indicated RTA variant for 24 h (mean average of five independent experiments; standard 

deviation (red bar) and p-values (* p < 0.05, ** p < 0.01) are indicated). 

 

4. Conclusions 

In the present study we demonstrate that both the addition of a mammalian- and/or a yeast-specific 

ER retention signal (HDEL, KDEL) to the C-terminus of RTA significantly increases its in vivo 

toxicity against mammalian cells and yeast cell spheroplasts. Furthermore, we established an oxygen 

sensor based bioassay which now opens the possibility to use yeast as model to study A/B toxin uptake 

and intracellular trafficking in more detail. We believe that this bioassay will be helpful to dissect and 

mechanistically understand how microbial, plant and viral A/B toxins can efficiently intoxicate 

mammalian cells. Such comprehensive screening in yeast might also bring up novel targets and 

therapeutic strategies for the treatment of various human diseases, including cancer. 
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