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Abstract: Aflatoxins are considered unavoidable natural mycotoxins encountered in foods, 

animal feeds, and feed grains. In this study, we demonstrate the application of our recently 

developed real-time immunoquantitative PCR (RT iq-PCR) assay for sensitive detection  

and quantification of aflatoxins in poultry feed, two types of dairy feed (1 and 2), horse feed, 

whole kernel corn feed grains, and retail yellow ground corn meal. Upon testing 

methanol/water (60:40) extractions of the above samples using competitive direct enzyme 

linked immunosorbent assay, the aflatoxin content was found to be <20 μg/kg. The RT  

iq-PCR assay exhibited high antigen hook effect in samples containing aflatoxin levels 

higher than the quantification limits (0.1–10 μg/kg), addressed by comparing the 

quantification results of undiluted and diluted extracts. In testing the reliability of the 

immuno-PCR assay, samples were spiked with 200 μg/kg of aflatoxin B1, but the recovery 

of spiked aflatoxin was found to be poor. Considering the significance of determining trace 

levels of aflatoxins and their serious implications for animal and human health, the RT iq-PCR 

method described in this study can be useful for quantifying low natural aflatoxin levels in 
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complex matrices of food or animal feed samples without the requirement of extra  

sample cleanup. 

Keywords: aflatoxin B1; immunomagnetic bead capture; real-time immunoquantitative PCR; 

animal feeds; feed grains 

 

1. Introduction 

Animal feedstuffs and agricultural commodities may contribute to the transfer of certain health 

hazards such as dioxins, mycotoxins, heavy metals, drug residues, pesticides, and microbiological 

hazards (e.g., Salmonella) into the food chain, raising global concerns about food safety. These hazards 

in animal feeds are usually prioritized based on their relevance to public health, extent of occurrence, 

and their impact on trade [1]. Mycotoxins are prioritized as ‘unavoidable natural contaminants’ in food 

and feedstuffs that if consumed may cause serious consequences to animal health [2]. Affecting nearly 

25% of the world’s food crops annually [3,4], mycotoxin-related losses in the United States are estimated 

to range from $0.5 million to over $1.5 billion annually [5], with a mean annual economic cost of  

$932 million in crop losses [6]. Mycotoxins are produced by several fungi under certain conditions of 

temperature, excessive moisture, relative humidity, drought, insect damage, variation in crop harvesting 

practices, and nutrient availability if favorable for the growth of molds [7–11]. Aflatoxins are mainly 

produced by the Aspergillus flavus and A. parasiticus fungi and are commonly encountered in foodstuffs 

and animal feeds worldwide [12,13]. Among the several types of aflatoxins, including B1, B2, G1, G2 

and M1, Aflatoxin B1 (AFB1) is the most toxic and prevalent member of the group [14–16]. AFB1 can 

enter a human or animal system through ingestion, inhalation, or dermal contact [6,17], causing a wide 

range of adverse acute and chronic toxic effects [14,18–22]. In order to avoid ill effects on human and 

animal health due to frequent occurrence and associated toxicity of aflatoxins, several countries have set 

maximum permissible limits in commodities of food and feeds. These limits are not universal to  

all countries. For example, in the United States, the U.S. Food & Drug Administration (FDA) has  

set the action levels for aflatoxins to be 20 μg/kg for feedstuffs and 0.5 μg/kg for aflatoxin M1 

(http://www.fda.gov/ICECI/ComplianceManuals/CompliancePolicyGuidanceManual/ucm074703.htm), 

and in the European Union, the regulatory limits for aflatoxin B1 in foodstuffs is at 2 μg/kg and for 

aflatoxin M1, it is at 0.05 μg/kg (http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010: 

050:0008:0012:EN:PDF). Because of the low permissible limits for aflatoxins and the associated high 

toxicity of aflatoxins impacting health even at sub-chronic exposure levels, the analytical methods for 

determination of aflatoxins need to be both sensitive and specific to be able to quantify trace levels. 

Aiming to achieve the safety of foods and foodstuffs and minimize associated regulatory/trade losses, 

the food and feed industry is in constant pursuit of rapid and reliable methods for detection and 

quantification of aflatoxins. Among the several available methods for aflatoxin detection, immunoassay 

methods are proven to provide such assurance during routine diagnostic applications due to the high 

selectivity and high affinity of antibodies specific for the antigen. Although methods such as radio 

immunoassays (RIAs), high performance liquid chromatography (HPLC), and enzyme-linked 

immunosorbent assay (ELISA) have been widely explored for aflatoxin detection, these techniques may 
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require extensive sample cleanup, may take a longer analysis time, and need trained personnel. However, 

the advantages of immunoassays can be combined with the enormous DNA amplification potential of 

polymerase chain reaction (PCR), as has recently been done in the immuno-PCR (iPCR) approaches that 

have become popular for sensitive antigen detection. Boasting a 10–1000-fold increase in limit of 

detection over the traditional ELISA methods [23,24], immuno-PCR methods allow quantification of an 

antigen with greater rapidity and sensitivity. Surprisingly, the use of this highly sensitive real-time 

immuno-PCR approach has not been exploited to quantitatively determine contamination of mycotoxins 

such as aflatoxin B1 in foodstuffs, animal feeds, or feed grains. This could mainly be due to the matrix 

complexity of these sample types. 

Recently, we developed a real-time immunoquantitative PCR (RT-iqPCR) method to detect aflatoxin 

B1 in a methanol/water solvent commonly used for aflatoxin extraction from foods, grains and  

feedstuffs [25]. Using this method, quantities as low as 0.1 μg/kg of aflatoxin B1 were detected, which 

falls well below the regulatory requirements in the United States and European Union for agricultural 

commodities. Some of the advantages in quantifying low levels of aflatoxins beyond the detection limits 

of popular ELISA methods are that one can establish a stricter quality assurance of finished products for 

better trade and export value, eliminate transfer of toxins in the food chain in commodities such as milk 

and eggs, and attain accurate diagnoses in the case of chronic toxicity to humans and animals. It was 

hypothesized that the robustness of the magnetic bead-based qPCR methodology, together with  

dilution-based extraction schemes to overcome high antigen hook effects, could be adopted to detect  

and quantify low levels of aflatoxins in natural feed and food samples. The sensitive detection and 

quantification of aflatoxin in poultry, horse, and dairy animal feeds, whole kernel corn feed grains, and 

also in yellow ground corn meal used for human consumption were demonstrated in this study. The 

methodology used here included first subjecting the sample extracts to a USDA-approved competitive 

displacement ELISA (CD-ELISA) test for initial evaluation of aflatoxin content and then to the  

RT-iqPCR assay, which is a simplified noncompetitive sandwich immunoquantitative PCR approach for 

detection and quantification of aflatoxin B1 [25]. It is demonstrated that a methanol/water extract of 

feeds and feed grains can be directly used, without further sample cleanup, for sensitive quantification 

of aflatoxin levels using our RT-iqPCR assay. Further, the assay is shown to be useful for eliminating 

false negative samples and the high antigen hook effect commonly encountered in immunoassays. 

2. Results and Discussion 

2.1. Estimation of Aflatoxin Using CD-ELISA  

Methanol extracts of all samples (whole kernel corn feed grains, dairy feed, poultry feed, horse feed, 

and yellow ground corn meal) were tested using Neogen’s Agri-Screen test kit (Neogen, Lansing, MI, 

USA); AFB1 levels were estimated to be less than 20 μg/kg of total aflatoxins as measured visually 

using color intensity. However, this measurement is semi-quantitative and the actual concentrations of 

aflatoxin cannot be stated, which is a limitation of this approach; while it can serve as a preliminary 

rough estimation of the aflatoxin content in the extracted samples, further confirmation for quality 

assurance may be needed. 
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2.2. Detection and Quantification of Aflatoxin B1 Using Real-Time Immune-Quantitative-PCR (RTiqPCR) 

The second part of the study involved estimation of aflatoxin content in methanol/water extracts of 

unspiked and AFB1-spiked animal feeds, whole grain feed corn, and yellow ground corn meal samples 

using RT-iqPCR. Methanol/water was chosen because it is the commonly used solvent for animal feeds 

and feed grains for extraction of aflatoxins and the use of water and hydroxylated solvents like methanol 

is highly recommended to facilitate the effective release of aflatoxins into the extractant solution [26,27]. 

The analysis of feedstuffs often involves several steps of extraction, filtration, sample cleanup, and 

concentration before subjecting to mycotoxin assays. Assay sensitivity and the release of bound aflatoxin 

may be affected by the complexity of food and feed matrices due to the interference of undefined and 

defined constituents of proteins, fats, and carbohydrates. However, the extraction step used in the method 

described herein requires no further time-consuming sample cleanup step. Further, the use of antibody-coated 

magnetic beads as solid support for sandwich immuno-PCR can be conveniently used for manual or  

semi-automatic bead recovery of mycotoxins using the Dynal bead retriever. The antibodies used in this 

study were unaffected by methanol solvent, and the toxin precipitation was rapidly done by immobilizing 

the toxin-captured antibodies onto protein G magnetic beads, as described previously [25]. 

Real-time PCR was optimized (Table 1) to obtain a standard calibration curve, indicating a real-time 

PCR efficiency of 99.52% with R2 value of 0.96, slope −3.33, and 27.81 intercept. The detection  

limits of RT-iqPCR assay for the standard AFB1 quantification was between 0.1 and 10 μg/kg and for 

concentrations above 10 μg/kg, a high antigen dose hook effect (Prozone) was observed while 

developing calibration curves (Figure 1). This effect is commonly seen in immunoassays involving 

antigen concentrations beyond upper detection limits [28–30]. If not addressed, the hook effects could 

potentially exhibit false-negative results, showing higher cycle threshold numbers (i.e., low toxin 

concentrations) in samples containing high antigen concentrations during the real-time PCR assay.  

In such cases, the use of sample dilution protocols is suggested [31–33] and may require the use of  

at least four- to ten-fold dilutions of sample extracts to detect the hook effect from samples containing 

unknown amounts of toxin levels greater than upper detection limits. Therefore, we opted to verify this 

phenomenon with high aflatoxin concentrations and avoid possible false negatives by performing 

measurements using undiluted and diluted extracts, as suggested by several researchers who have 

encountered the hook effect [31–33]. Thus, for samples containing unknown amounts of antigen in 

excess of hook effect levels, initial optimizations should be done to arrive at particular fold dilutions that 

can be standardized for routine estimations. At first, the immunoassay using 4-fold diluted extracts for 

corn and yellow corn meal extracts was tried, but the PCR fluorescence plots showed poor distinction 

between the undiluted and diluted extracts, with very close Ct values indicating a need for using more 

diluted extracts for immuno-capture of aflatoxin. Thus, in order to obtain distinguishable fluorescence 

signal plots, a 10-fold dilution for sample extracts containing native aflatoxin and 10- and 40-fold 

dilution for extracts prepared from samples spiked with 200 μg/kg aflatoxin B1 was adopted. 

  



Toxins 2014, 6 3227 

 

 

Table 1. Primer sequences used to amplify amino-modified detector DNA and an internal 

real-time PCR target sequence. 

Primers Oligonucleotide sequences (5'-3') Modification 
PCR  

product size 

Application of PCR 

product 

pGL2A_Fwd NH2-(C6)-GTTCGTCACATCTCATCTAC 5'-amino 
560-bp 

Tethered via SMCC to  

anti-AFB1 antibodies pGL2A_Rev TCGGGTGTAATCAGAATAGC None 

pGL2B_Fwd GAACTGCCTGCGTCAGATTC None 
101-bp 

Real-time PCR fragment 

for quantification pGL2B_Rev AACCGTGATGGAATGGAACAAC None 

Figure 1. Quantification of aflatoxin B1 in animal feed, food grain, and yellow corn meal 

extracts against a standard curve. Undiluted (left) and diluted feed extracts (right) were 

subjected to double antibody sandwich assay using PureProteome protein G beads. 

Undiluted feed extracts were compared with 10-fold diluted extracts. 

 

The undiluted methanol extracts of feeds, corn, and yellow corn meal samples were compared with 

respective 10-fold diluted extracts by subjecting them to immunomagnetic bead recovery of aflatoxin 

followed by real-time immuno-PCR quantification to generate the fluorescence signals [25]. In the case 

of dairy feed types 1 and 2, and horse feed extracts, the signals from the diluted extracts showed higher 

cycle threshold numbers and clear distinction from the signals of undiluted extracts (Figures 2 and 3) 

meaning that 10-fold dilutions were reliable enough for quantification of these samples. Thus, the cycle 

threshold (Ct) numbers from the signal plots of undiluted and 10-fold diluted extracts were used to 

calculate aflatoxin content using the linear regression equation of the calibration curve [25].  

The aflatoxin content in undiluted extracts of dairy feed 1 and 2 and horse feed were estimated to be 

4.18, 0.32, and 0.7 μg/kg, and for their 10-fold diluted extracts, the dilution corrected aflatoxin content 

was 3.38, 1.48, and 0.4 μg/kg, respectively (Table 2). Note that since the diluted extracts showed higher  

Ct values than the undiluted extracts, the aflatoxin content of 10-fold diluted extracts can be treated as 

the reliable estimate. However, in the case of poultry feed, corn grain, and yellow corn meal extracts, 

the Ct numbers of diluted extracts were lower than the Ct numbers of undiluted extracts, indicating 

excess antigen hook effects even after 10-fold dilution of the extracts (Figure 3). Although the diluted 

extracts of these samples showed aflatoxin content of 7.03, 16.23, and 24.40 μg/kg, respectively, further 

confirmation of aflatoxin capture and quantification may be obtained by using dilutions higher than  
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10-fold. Though, these samples were roughly estimated to contain aflatoxin amounts of around 20 μg/kg 

using the Agri-Screen test kit (Neogen, Lansing, MI, USA), this may also mean that the extraction 

efficiency of 60% methanol may be poor for poultry feed, corn grains, and yellow corn meal,  

which needs further attention. 

Figure 2. Comparison of immuno-PCR fluorescence signals obtained with dairy feed type 1 (A); 

dairy feed type 2 (B); and horse feed (C) extracts subjected to aflatoxin detection. 

Fluorescence signal curves were generated from the undiluted and 10-fold diluted 

methanol/water extracts. Legends indicate the average cycle threshold (Ct) number and 

standard deviation from the replicates. 

  
(A) (B) 

 
(C) 

Testing for the validity and accuracy of our RT-iqPCR assay was also done by spiking the finely 

ground feed samples with a known concentration (200 μg/kg) of pure aflatoxin B1 standard prepared in 

methanol (Figure 4). The fluorescence signals that were generated, and their respective Ct numbers, are 

shown in Figure 4 and the calculated aflatoxin contents in Table 2. Note that for dairy feed 1, poultry feed, 

and yellow corn meal, the Ct numbers of diluted extracts are higher than the previous diluted or undiluted 

extracts. For spiked dairy feed, the Ct numbers and calculated aflatoxin content of the undiluted extract 

and the 40-fold diluted extracts were 28.81 (0.5 μg/kg) and 30.1 (8.21 μg/kg), respectively; for the spiked 
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poultry feed, the Ct numbers of 10-fold diluted and 40-fold diluted extracts were 26.97 (17.88 μg/kg) 

and 28.96 (18.06 μg/kg), respectively, whereas for the spiked yellow corn meal, the Ct numbers and 

calculated aflatoxin content of undiluted extracts and the 10- and 40-fold diluted extracts were 27.92  

(0.93 μg/kg), 29.51 (3.09 μg/kg), and 29.41 (13.23 μg/kg), respectively. In the case of the spiked horse 

feed extracts, the fluorescence plots indicated an aflatoxin content of 193.5 μg/kg in the 40-fold diluted 

extracts; this overestimation could be due to high antigen hook effect and may not be due to efficient 

recovery of added aflatoxin because the cycle threshold number of 25.53 was lower than the 10-fold (29.81) 

and undiluted (29.63) extracts. The Ct numbers for certain diluted extracts are generally higher than the 

undiluted or previous dilutions because the starting concentration of template DNA available for PCR is 

generally lowered due to dilution effect (reduced antigen concentration and reduced detection  

antibody-DNA), which resulted in signal detection at later cycles. Overall, the spiked feed and corn meal 

extracts did not show a good estimation and recovery of the added aflatoxin in our assay. This could be 

due to the complex nature of feed samples and the dependency of the aflatoxin recovery on the solvent 

chosen for extraction. The efficiency of aflatoxin extraction is known to be concentration-dependent, 

suggesting that the recovery of aflatoxin is better when the native aflatoxin concentration in a sample is 

at low levels than for samples at higher concentrations [34]. This indicated that the spiking levels and 

the efficiency of the extraction solutions should be pre-determined for a particular feed sample before 

subjecting to routine immuno-PCR assays. In addition, comparing with other conventional methods like 

ELISA and HPLC can further help to test the effect of inherent composition of different feed samples 

affecting the final results. However, these methods rely heavily on sample cleanup and by demonstrating 

that our approach does not need any sample cleanup, we are emphasizing the application of the  

immuno-PCR method. Comparing with other methods would also provide relative information on cost, 

time, sample size etc., but we did not place emphasis on these topics in this study. 

Table 2. Real-time iq-PCR quantification of aflatoxin in animal feeds, corn feed grain, and 

yellow corn meal samples. The calculated and dilution-corrected aflatoxin (μg/kg) 

concentrations are shown for the undiluted and diluted methanol/water extracts of un-spiked 

and spiked samples. 

Methanol/water  

(60:40) extracts 

Cycle threshold (Ct) 

number 1 

Calculated aflatoxin 

(μg/kg) 

Dilution-corrected aflatoxin 

(μg/kg) 

Dairy feed 1 25.74 a 4.18  

Dairy feed 1 (1:10) 29.38 b 0.34 3.38 

Dairy feed 2 29.44 a 0.32  

Dairy feed 2 (1:10) 30.57 b 0.15 1.48 

Horse feed 28.33 a 0.70  

Horse feed (1:10) 32.46 b 0.04 0.40 

Poultry feed 28.78 a 0.51  

Poultry feed (1:10) 28.32 a 0.70 7.03 

Corn feed grains 29.06 a 0.42  

Corn feed grains (1:10) 27.11 b 1.62 16.23 

Yellow corn meal 28.51 a 0.62  

Yellow corn meal (1:10) 26.52 b 2.44 24.40 
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Table 2. Cont. 

Methanol/water  

(60:40) extracts 

Cycle threshold (Ct) 

number 1 

Calculated aflatoxin 

(μg/kg) 

Dilution-corrected aflatoxin 

(μg/kg) 

Dairy feed 1 + AFB1 28.81 a 0.50  

Dairy feed 1 + AFB1 (1:10) 27.95 b 0.91 9.08 

Dairy feed 1 + AFB1 (1:40) 30.1 c 0.21 8.21 

Poultry feed + AFB1 29.61 a 0.29  

Poultry feed + AFB1 (1:10) 26.97 b 1.79 17.88 

Poultry feed + AFB1 (1:40) 28.96 c 0.45 18.06 

Horse feed + AFB1 29.63 a 0.28  

Horse feed + AFB1 (1:10) 29.81 a 0.25 2.51 

Horse feed + AFB1 (1:40) 25.53 b 4.84 193.53 

Yellow corn meal + AFB1 27.92 a 0.93  

Yellow corn meal + AFB1 (1:10) 29.51 b 0.31 3.09 

Yellow corn meal + AFB1 (1:40) 29.41 b 0.33 13.23 
1 Data within the same feed set with different lower case letters are significantly different (p < 0.05). 

Figure 3. Comparison of immuno-PCR fluorescence signals obtained with poultry feed (A); 

corn (B); and yellow corn meal (C) extracts subjected to aflatoxin detection. Fluorescence signal 

curves were generated from the undiluted and 10-fold diluted methanol/water extracts. Legends 

indicate the average cycle threshold (Ct) number and standard deviation from the replicates. 

  
(A) (B) 

 
(C) 
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Figure 4. Comparison of immuno-PCR fluorescence signals from the 200 μg/kg AFB1 

spiked dairy (A); poultry (B); horse feed (C); and yellow corn meal (D) extracts subjected 

to aflatoxin detection. Fluorescence signal curves were generated from the undiluted,  

10- and 40-fold diluted methanol/water extracts. Legends indicate the average cycle 

threshold (Ct) number and standard deviation from the replicates. 

  
(A) (B) 

  
(C) (D) 

3. Experimental Section  

3.1. Animal Feeds, Feed Grain, and Yellow Corn Meal Samples 

Four finished animal feed samples were obtained from the Willard Sparks Cattle Research Center, 

Animal Science Department of Oklahoma State University. Five-pound samples of various types of 

animal feed (poultry feed, dairy feed types 1 and 2, horse feed, and a whole kernel corn feed grain sample) 

were collected directly from the feed storage facility. The animal feeds selected contained the most 

commonly used ingredients in the respective animal diets. The samples were properly mixed in a large 

container and ground to fine powder using a household electric coffee grinder (capable of finely grinding 

coffee beans to less than 300-micron size) and stored at 4 °C. A finely ground food sample of yellow 

corn meal was also obtained from a local grocery store. 

3.2. Anti-Aflatoxin Antibodies and Magnetic Beads 

Anti-aflatoxin B1 polyclonal antibody raised in rabbit (part#A-8679) was supplied by Sigma-Aldrich 

(St. Louis, MO, USA), and monoclonal anti-aflatoxin B1 (AFC-13 IgG1 isotype) produced in mouse 
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(part# sc-69863) was purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA). 

PureProteome™ Protein G magnetic beads (part# LSKMAGG02) were purchased from Millipore 

(Billerica, MA, USA) and used as a solid support for sandwich immunoassays. The magnetic beads were 

pre-washed and resuspended in a citric acid buffer (pH 5.0) containing 4.7 g/L citric acid and 9.2 g/L 

dibasic sodium phosphate (Na2HPO4) dehydrate. The blocking step of the beads involved use of  

normal rabbit serum (part# 011-000-001) supplied by Jackson Immuno-Research Laboratories Inc.  

(West Grove, PA, USA).  

3.3. Aflatoxin Extraction 

Aflatoxin B1 analytical standard was purchased from Supelco Analytical (Bellefonte, PA, USA), 

containing 20 μg AFB1/mL in 100% methanol. Feed and grain samples were finely ground using a 

household electric coffee grinder and the ground samples (<300 microns) were subjected to solvent 

extraction as follows. A 50-g ground sample was mixed with 100 mL of 60:40 HPLC grade 

methanol/water solvent in a screw cap tube and left for 30 min at room temperature with vigorous 

shaking. After centrifugation at 3000 rpm for 15 s, the supernatant was collected in a separate tube. 

Sample extractions were stored at 4 °C and subjected to magnetic bead recovery of aflatoxin on the  

same day, as explained below. 

3.4. Aflatoxin Detection Using CD-ELISA 

An Agri-Screen aflatoxin test kit (Neogen Corporation, Lansing, MI, USA, part#8010) that provides 

a visual semi-quantitative estimation of total aflatoxins in methanol extracts based on competitive direct 

enzyme-linked immunosorbent assay (CD-ELISA) was used for comparison. The Agri-Screen test kit 

(Neogen, Lansing, MI, USA) has been approved by the USDA’s Grain Inspection, Packers and 

Stockyards Administration (USDA/GIPSA #2006-09) and the Association of Analytical Communities 

(AOAC official method #990.32) and is widely used by quality control personnel worldwide for several 

commodities including corn, peanuts, feed grains, and mixed feeds. Using this kit, the methanol extracts 

of mixed feeds, corn, and yellow corn meal were screened for aflatoxin against a known control 

concentration of 20 μg/kg aflatoxin, as recommended by the manufacturer. Briefly, a 100 μL aliquot of 

the thoroughly mixed sample extract solution (60:40 methanol/water) was combined with an equal 

volume of enzyme-conjugated aflatoxin in a mixing well and added on to anti-aflatoxin antibodies 

immobilized in a microwell. The competitive reaction for the available antibody binding sites was 

allowed for two minutes between the free toxin in the sample (or control) and the added  

enzyme-conjugated toxin. The wells were washed five times with deionized water and, after the  

washing step, a 100 μL aliquot of substrate was added that reacts with the bound enzyme conjugate to 

produce a blue color. After 3 min, 100 μL of stop solution was added to end the reaction and the resultant 

color of the sample and control were visually compared, as recommended by the manufacturer. 

3.5. Spiking of Feed and Food Samples 

A 50-g sample of finely ground feed/food was spiked by adding 10 mL of 200 μg/kg of aflatoxin B1 

prepared in 60% methanol. After mixing vigorously, the spiked samples were stabilized at room 
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temperature for 30 min. Extractions of spiked samples were prepared as described above, using 90 mL 

of 60:40 methanol/water solvent to collect the clear supernatant. The extracted samples were stored at  

4 °C and subjected to magnetic bead recovery of aflatoxin on the same day, as explained below.  

The dilution protocol strategy for the spiked samples was used to fit the aflatoxin estimation under the 

detection limits of the immuno-PCR assay and to avoid false negative results due to excess antigen  

hook effect. The aflatoxin wastes, toxin-spiked food/feed, and toxin-positive grain/feed samples were 

detoxified or decontaminated with bleach according to the USDA guidelines prior to autoclaving and 

disposal as biohazardous wastes. 

3.6. Preparation of Reporter DNA and Detection Antibodies 

The signal-generating complex involved capturing of aflatoxin between a capture antibody and a 

reporter DNA-conjugated detection antibody in a noncompetitive sandwich immune-quantitative  

PCR (RT-iqPCR). The reporter DNA marker was generated using the modified protocol of Wu and  

co-workers [35], as described in [25]. Briefly, a 563-bp fragment of firefly (Photinus pyralis) luciferase 

gene was amplified from the pGL2 plasmid vector (Catalog# E1641, Promega, Madison, WI, USA) 

using a 5'-C6 amino-modified forward primer (pGL2A_Fwd), as shown in Table 1. The reporter DNA with 

5'-NH2 group was chemically tethered to an anti-aflatoxin polyclonal antibody using a heterobifunctional 

cross linker, sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-L-carboxylate (Sulfo-SMCC, catalog 

# 22622, Thermo Fisher Scientific Inc., Rockford, IL, USA), and this antibody-DNA conjugate was used 

as the secondary detector antibody.  

3.7. Sandwich Immunoassay and Immunomagnetic Bead Recovery of Aflatoxin from Sample Extracts 

Immunomagnetic bead recovery of aflatoxin from methanol/water extractions of animal feeds, corn, 

and yellow corn meal was done at room temperature by capturing with 1 μg (5 μL) of AFC-13 

monoclonal anti-AFB1 antibodies in a 1.5 mL microcentrifuge tube containing 100 μL of extract. After 

a short (5 min toxin capture, 10 μL of PureProteome™ protein G magnetic beads (pre-washed in a 

citrate-phosphate wash buffer, pH 5.0) were added to immobilize the toxin-captured antibodies at  

room temperature with gentle shaking to avoid settling of the beads. After 15 min incubation, the 

immunomagnetic beads were allowed to form a pellet by using a magnet and were washed once with 

200 μL of the citrate-phosphate wash buffer. A 25% normal rabbit serum (Jackson ImmunoResearch 

Laboratories Inc., West Grove, PA, USA) diluted in the wash buffer was used to block the beads for  

5 min before adding 100 μL of detection antibody (reporter DNA-conjugated polyclonal anti-AFB1 

antibody containing 0.0075 ng DNA/μL). A short incubation time of 5 min was employed for formation 

of the sandwich, avoiding nonspecific binding of the detection antibody, which occurs when prolonged 

incubation is done with the detection antibodies. Immediate recovery of the magnetic beads supporting 

the complex of ‘mouse anti-AFB1 monoclonal antibody-aflatoxin B1-rabbit anti-AFB1 polyclonal 

antibody’ sandwich was done by magnetic retention. Washing of the complex was done twice, each time 

with 200 μL citrate-phosphate wash buffer followed by washing twice with nuclease-free water.  

The beads were further collected in 100 μL nuclease-free water and heated for 10 min at 80 °C in  

0.2 mL PCR tubes to release the bound molecules. After brief centrifugation at 5000 RPM,  

the supernatant was collected in new tubes and used for real-time PCR detection. 
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3.8. Dilution Protocols to Overcome Hook Effect 

As previously demonstrated in our earlier paper [25], we suggested the use of dilution protocols to 

avoid the hook effect occurring in the immune assay because of excess antigen, and to reduce nonspecific 

binding of detection antibodies. Methanol extractions of the animal feed and feed grain samples were 

subjected to toxin capture as both undiluted and diluted aliquots were prepared at 1:4, 1:10, and 1:40 

dilutions in distilled water. This dilution protocol was adapted to test the possibility of obtaining a 

fluorescence signal curve in RT-iqPCR that comes later (with a higher cycle number) than the signal 

from respective undiluted or lower dilution during the PCR amplification, indicating a weaker signal 

response concomitant with a lower sample amount due to dilution. This would help with verifying the 

method and quantifying toxin levels beyond the detection limits of the assay. 

3.9. Detection and Quantification of Aflatoxin B1 Using Real-Time Immunoquantitative-PCR (RT-iqPCR) 

Development of the RT-iqPCR assay for aflatoxin detection and quantification in animal feeds and 

feed grains involved initial optimization and troubleshooting mainly aimed at sensitive detection, signal 

amplification, and minimizing nonspecific binding of DNA-conjugated secondary detection antibodies. 

At first, the real-time PCR reaction itself was optimized with gradient concentrations of forward and 

reverse primers (Table 1), amplifying an internal fragment of the reporter DNA in order to obtain higher 

signals in positive samples and to see the absence of fluorescence signals in negative controls  

(nuclease-free water). A combination of 80-nM concentration of primers and the PerfeCTa® SYBR® 

Green I FastMix® proved to give better amplification efficiency (99.5%) and fast cycling (data not 

shown). The reaction efficiency was tested to meet quantification requirements of real-time PCR using 

dilutions of antibody-conjugated reporter DNA and each iPCR reaction included melting curve analyses 

to detect nonspecific products, if any. A standard calibration curve using real-time immune-quantitative 

PCR was developed and the aflatoxin detection and quantification in animal feeds and food samples 

were performed using the optimized calibration curve, as we have described earlier [25]. Briefly,  

a 101-bp internal region of the reporter DNA was amplified in a 20 μL reaction mix containing 1× 

concentration of PerfeCTa® SYBR® Green I FastMix® (Quanta BioSciences Inc., Gaithersburg, MD, 

USA) and 80 nM concentrations of pGL2B primers (Table 1). During the PCR amplification of reporter 

DNA, the increase in fluorescence signals after each PCR cycle was recorded by the Opticon-2 software 

to arrive at a threshold cycle value (Ct number, the cycle number where the fluorescence signal crosses 

a manually set threshold, showing linear signal increase). The obtained Ct values were used to inversely 

correlate with antigen concentrations, wherein the ‘no template control’ or ‘antigen negative controls’ 

would have the highest numerical Ct, which decreases with increasing template concentrations. Using 

the calibration curve, the aflatoxin content of samples was estimated by correlating the Ct value of the 

recovered DNA with the standard toxin concentrations (Figure 2). The quantification of aflatoxin in 

animal feeds, corn, and yellow corn meal samples was done directly by using their methanol extracts 

and also by using the extracts of samples spiked with 200 μg/kg of aflatoxin B1, as described by Babu 

and Muriana [25]. Briefly, the methanol/water extracts of each sample were individually subjected to 

magnetic bead recovery of aflatoxin, wherein a capture monoclonal antibody bound to the magnetic 
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beads was used to recover the aflatoxin from the extract and then sandwiched between DNA-tethered 

detection antibodies. The complex was washed and subjected to RT-iqPCR quantification.  

3.10. Statistical Analysis 

Statistical analysis of fluorescence signals and estimation of aflatoxin content in unknown samples 

was done using SigmaPlot (ver. 11, Systat, San Jose, CA, USA) software for linear regression analysis 

of the four intra-assay replicates. Real-time PCR efficiency was used in plotting the standard curves. 

Standard deviation values for cycle threshold numbers (Ct) were obtained using Opticon-2 software, 

which computes the population standard deviation evaluated over the entire set of sample Ct values. 

Similarly, the aflatoxin contents (μg/kg) were calculated based on the linear regression equation, and 

population standard deviations were calculated using MS Excel software (Microsoft, Redmond,  

WA, USA). One-way analysis of variance (ANOVA) was used to determine significant differences, with 

an overall significance level of 0.05; pairwise comparisons were completed using the Holm-Sidak 

method within the statistics analysis functions in SigmaPlot (Systat, San Jose, CA, USA). 

4. Conclusions 

Developing rapid, sensitive, and specific analytical methods for detecting and quantifying aflatoxins 

can effectively address sub-chronic toxicity issues associated with food and feedstuffs containing trace 

levels of aflatoxin. The real-time immune-quantitative PCR (RT iq-PCR) method discussed in this study 

is able to detect aflatoxin levels lower than 20 ug/kg in feeds and feedstuffs, and also detects the high 

antigen hook effects commonly encountered in immunoassays. Although this method does not need 

sample cleanup, we recommend using dilution strategies for estimating potential problems with excess 

aflatoxin content in complex matrices of food and feed extracts. The recovery of high aflatoxin levels 

from spiked samples seemed to be poor using the 60% methanol solvent and needs further study. Where 

many samples of the same food/feed are to be tested, it may be prudent to perform standard curves with 

the same food/feed type in order to obtain similar extraction efficiencies with experimental samples. 
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