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Abstract: Bacillus thuringiensis subsp. israelensis (Bti) is the first Bacillus thuringiensis 

to be found and used as an effective biological control agent against larvae of many 

mosquito and black fly species around the world. Its larvicidal activity resides in four 

major (of 134, 128, 72 and 27 kDa) and at least two minor (of 78 and 29 kDa) polypeptides 

encoded respectively by cry4Aa, cry4Ba, cry11Aa, cyt1Aa, cry10Aa and cyt2Ba, all 

mapped on the 128 kb plasmid known as pBtoxis. These six δ-endotoxins form a complex 

parasporal crystalline body with remarkably high, specific and different toxicities to Aedes, 

Culex and Anopheles larvae. Cry toxins are composed of three domains (perforating 

domain I and receptor binding II and III) and create cation-selective channels, whereas 

Cyts are composed of one domain that acts as well as a detergent-like membrane 

perforator. Despite the low toxicities of Cyt1Aa and Cyt2Ba alone against exposed larvae, 

they are highly synergistic with the Cry toxins and hence their combinations prevent 

emergence of resistance in the targets. The lack of significant levels of resistance in field 

mosquito populations treated for decades with Bti-bioinsecticide suggests that this 

bacterium will be an effective biocontrol agent for years to come. 
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1. Introduction 

Mosquitoes are an enormous public health menace in transmitting various tropical diseases and 

generally as a nuisance [1]. Many species of the genera Anopheles, Aedes and Culex are vectors of, 

e.g., malaria, yellow fever, dengue fever, hemorrhagic fever and lymphatic filariasis [2–4]. Despite the 
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use of synthetic pesticides over the past 70 years, mosquito-borne diseases are still threatening half of 

the world's population. Malaria remains one of the leading causes of morbidity and mortality and kills 

about 660,000 people a year, mainy young children in Africa [5]. Chemical insecticides used in 

vector control programs harm the environment with adverse impacts on man and nature. Resistance 

to such insecticides among mosquito species that are vectors of malaria (Anopheles gambiae) and 

West Nile virus (Culex pipiens) emerged over 25 years ago in Africa, America and Europe and it is 

frequently due to loss of sensitivity of the insect's acetylcholinesterase to organophosphates and 

carbamates [6]. Alternative technologies such as biological control offer alternatives to deal with 

these problems and limitations [7]. 

2. The Bacterium: Bacillus thuringiensis subsp. israelensis 

Bacillus thuringiensis subsp. israelensis (Bti) is the first subspecies of B. thuringiensis (Bt) found to 

be toxic to dipteran larvae. This gram-positive spore-forming subspecies is the most powerful and 

environmental-friendly biological alternative component in integrated programs to control disease 

vectors [8,9]. Bti forms a crystalline parasporal body composed of protein protoxins (δ-endotoxins) 

(Figure 1) that are also used as a commercial bio-pesticide against larvae of noxious arthropod species 

of the suborder Nematocera, including mosquitoes, black flies and chironomid midges [7,9]. Bti is 

much more effective against many species of mosquito and black fly larvae than any previously known 

bio-control agent. Resistance to Bti extensively searched for in field populations of mosquitoes, has not 

been detected despite nearly 35 years of extensive field usage [10–14]. Several recent studies reported 

decreased susceptibilities in some field populations [15–18], but natural variation in such populations 

and different laboratory strains as well as technical variations inherent in bioassay tests need to be 

considered in interpreting bioassay results [19]. Thus, lethal concentration values that differ by 5-fold 

or less are not likely to reliably indicate resistance, and as a general guideline, differences of at least 

10-fold are necessary for proof of resistance [15]. The lack of resistance to Bti is mainly attributed to 

different modes of action and synergistic interactions between the four major toxins, Cry4Aa, Cry4Ba 

and Cry11Aa and Cyt1Aa [20–22].  

In addition to mosquitoes, black flies [23] and chironomid midges [24,25] the expanded host range 

of Bti includes the following species: Tabanus triceps (Diptera: Tabanidae) [26], Mexican fruit fly, 

Anastrepha ludens and Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae) [27,28], 

Tipula paludosa (Diptera: Nematocera) [29], fungus gnats, Bradysia coprophila and Bradysia 

impatiens (Diptera: Sciaridae) [30,31], nodule-damaging fly Rivellia angulata (Diptera: 

Platystomatidae) [32], pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea) [33], potato aphid, 

Macrosiphum euphorbiae (Homoptera: Aphididae) [34], cotton boll weevil Anthonomus grandis 

(Coleoptera: Tenebrionidae) [35], leaf beetle, Chrysomela scripta (Coleoptera: Chrysomelidae) [36], 

fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) [37], diamondback moth, Plutella 

xylostella (Lepidoptera: Plutellidae) [38], root-knot nematode, Meloidogyne incognita on barley [39] and 

trematode species, Schistosoma mansoni and Trichobilharzia szidati (Trematoda: Schistosomatidae) [40]. 

Originally isolated from a temporary pond with dying Cx. pipiens larvae [41], Bti seems able to 

reproduce and persist under natural conditions [42–44]. Spayed suspension of Bti (spores and crystals) 

settles within 24–48 h at the bottom of mosquito breeding sites. Ingested spores germinate and recycle 
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in carcasses of Bti-killed mosquito larvae [45–47] and pupae [48], and the carcasses are toxic to 

mosquito larvae. 

Other organisms coexisting in mosquito breeding sites may support Bti multiplication in nature, 

e.g., the ciliate protozoan Tetrahymena pyriformis [49]. Spores and δ-endotoxins are not destroyed in  

T. pyriformis during the digestion process; the spores germinate in excreted food vacuoles and 

complete a full growth and sporulation cycle in them [49,50]. In the absence of mosquito larvae, some 

recycling was observed in laboratory experiments with sediments and vegetation [42], in which case 

the persistence pattern of the δ-endotoxin components (Cry4 > Cry11 > Cyt) differs from that of the 

Bti parasporal body crystals [44]. 

Figure 1. B. thuringiensis subsp. israelensis: crystal (left) and spore (right). Modified from 

Manasherob et al. [49]. 

 

3. δ-Endotoxins of Bti 

The original isolate of Bti harbors eight circular plasmids ranging in size between 5 and 210 kb and 

a linear replicon of approximately 16 kb [51,52]. The larvicidal activity of Bti resides in at least four 

major crystal protoxins, of 134, 128, 72 and 27 kDa, encoded by cry4Aa, cry4Ba, cry11Aa and cyt1Aa 

respectively, all mapped on the 128 kb plasmid known as pBtoxis [53–55]. In addition, pBtoxis 

contains cry10Aa, cyt2Ba and cyt1Ca: Cry10Aa and Cyt2Ba accumulate in small amounts in the 

parasporal body and seem to contribute to the overall toxicity of Bti [56–58]. The large protoxins 

(Cry4Aa and Cry4Ba) have conserved C-terminal halves participating in spontaneous crystal 

formation via inter- and intra-molecular disulphide bonds [59,60], whereas the smaller (Cry11Aa and 

Cyt1Aa) do not possess this domain and hence require assistance in crystallization [61–63]. The 

cry11Aa is organized in an operon together with p19 and p20 [64,65]. The P20 accessory protein 

stabilizes both Cyt1Aa and Cry11Aa in recombinant Escherichia coli [61–63,66,67], Pseudomonas 

putida [63] and Bt [68,69] by interactions with the nascent polypeptides thus protecting these protoxins 

from proteolysis [61–63].  

The Cry and Cyt toxins are membrane-perforating proteins although unrelated structurally and 

differ in their requirement of essential membrane components; the Cry’s bind to membrane 

receptors [70–75] whereas Cyt1Aa binds with high affinities to unsaturated phospholipids [76,77]. 
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3.1. Major Toxins 

Cry4Aa, encoded by a sequence of 3543 bp (1180 amino acids), is highly toxic to larvae of Culex 

and less to Anopheles and Aedes [19,21,70,78,79], and Cry4Ba, encoded by a sequence of 3408 bp 

(1136 amino acids), has high larvicidal activities against Anopheles and Aedes but very low against 

Culex [19,21,70,78,79]. Consistent with the differential specificities, the identity between the amino 

acid sequences of their N-termini toxic portions is only about 30% (55% similarity) [80,81]. Cry11Aa 

is encoded by a sequence of 1929 bp (643 amino acids) and displays high larvicidities against the 

larvae of Aedes and Culex but lower against Anopheles [19,21,82]. 

The larvicidal activity of Cyt1Aa, encoded by a sequence of 744 bp (248 amino acids), is low 

against all three mosquito genera [19,83,84]. It is cytolytic in vitro to cells of certain vertebrates and 

invertebrates [85] and highly mosquito species-specific in vivo, implying a specific mode of action [83,86]. 

The cytotoxicity seems to derive from an interaction between its hydrophobic segment and membrane 

phospholipids. The sequence of Cyt1Aa has no homology to Cry polypeptides [87] but the toxins plays 

a critical role in delaying selection for resistance to Bti’s Cry proteins [22,88–90]. 

3.2. Minor Toxins 

Cry10Aa, encoded by a sequence of 2025 bp (675 amino acids), accumulates to minor amounts in 

Bti crystals [57,91] and differs markedly from Cry4Aa and Cry4Ba. The cry10Aa is arranged in an 

operon 48 bp upstream orf2 [55]. Orf2 is highly homologous (over 65%) to sequences at the 

carboxylic end of Cry4Aa and Cry4Ba. It can be speculated that together, cry10Aa and orf2 is a variant 

of the cry4-type genes. Toxicity of Cry10Aa is comparable to those of the other Cry4 toxins and is 

synergistic with Cyt1Aa against Aedes aegypti larvae [92] and with Cry4Ba against C. pipiens larvae [93]. 

Cyt2Ba, encoded by a sequence of 789 bp (263 amino acids), is found at very low concentrations in 

Bti crystals [56]. Proteolytically activated Cyt2Ba is hemolytic in vitro [94,95] and exhibits lower 

toxicities against larvae of Culex, Aedes and Anopheles than Cyt1Aa [94] but higher than Cyt1Ab from 

Bt subsp. medellin [96]. Cyt2Ba is synergistic with Cry4Aa, Cry4Ba or Cry11Aa [97,98] and with the 

B sphaericus binary toxin [96]; it may thus contribute to the overall toxicity of Bti. 

Cyt1Ca is encoded by sequence of 1575 bp (525 amino acids) [98,99]. Its N-terminal half is 52% 

identical to Cyt1Aa, and at the C terminus it contains an extra domain, which appears to be a β-trefoil 

carbohydrate-binding motif, similar to the receptor binding domain of ricin-B lectin type found in 

several ricin-like toxins [99]. Transcripts of cyt1Ca were detected, but Cyt1Ca has not been  

found [100]; the reason may include instability of the transcript or the protein and failure in message 

translation. Neither mosquito larvicidal activity nor other biological function has been reported for 

Cyt1Ca [98,99]. The lack of activity of Cyt1Ca may be related to its inability to undergo a certain 

conformational change due to its lack of flexibility [101]. 

3.3. Activation, Three-Dimensional Structure and Mode of Action of Major Cry Toxins 

Basic studies of the structures and modes of action of δ-endotoxins and their receptors are important 

for future development of biopesticides that will not be prone to insect resistance [74]. The level of 

toxicity depends on the capacity of the target species to activate the protoxin by cleaving it to the 
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active toxic component(s) using specific proteases under the alkaline conditions prevailing in the larval 

midgut. The activated Cry4Aa and Cry4Ba are ~65 kDa toxins with three distinct-domains. The  

N-terminal domain I is a seven helix bundle responsible for pore formation, and the following two 

resemble carbohydrate binding proteins: a β-prism (domain II) and a plant lectin-like β-sandwich 

(domain III) [81,102–105]. Their three-dimensional structures are similar to the tertiary structures of 

other previously-solved Cry’s [106–108]. In vitro and in vivo processing yields two fragments, of  

45 and 20 kDa for Cry4Aa and 45 and 18 kDa for Cry4Ba [79,109,110]. Processing of Cry11Aa yields 

similarly two fragments, of 38 and 30 kDa [79,82,111–113]. This mode of processing differs from 

those of the lepidopteran-specific toxins [114]. 

Subsequent steps involve toxin binding to receptors [72–75,104,105,114–116], oligomerization and 

membrane insertion leading to formation of gated, cation selective channels [117,118]. Lethality is due to 

collapse of the trans-membrane potential, with subsequent osmotic lysis of cells lining the midgut [119]. 

These three toxins bind in vitro to the apical brush border of midgut cells in the gastric caecae and 

posterior stomach of An. gambiae larvae [120] and to the midgut microvilli of Ae. aegypti [79]. The 

same cells in Cx. pipiens bind Cry4Aa specifically (both in vitro and in vivo) [75]. Each of the two 

Cry4Aa fragments of 20 (domain I) and 45 kDa (the α6 and α7 helices of domain I and domains II and 

III), produced by the intramolecular cleavage of the 65-kDa intermediate, are separately not toxic 

against larvae of Cx. pipiens, but together they display significant toxicity through association with 

each other to form an active complex of apparently 60 kDa [109,110]. 

Different mosquito larvicidal activity spectra of both activated Cry4Aa and Cry4Ba likely stem 

from the structural differences found within domain II and distinct sites binding to the host 

receptors [70,81,105]. Domain II consists of three anti-parallel β-sheets packed by a central 

hydrophobic core and three surface-exposed loops at the apex of the domain which are thought to be 

involved in receptor binding. Loops 2 and 3 of Cry4Aa are an important determinant of the specific 

toxicity against larvae of Aedes, Anopheles and Culex [105,121], whereas in Cry4Ba, loops 1 and 2 

specify the toxicity for Anopheles and Aedes [70,105,122]. Aminopeptidase N and alkaline 

phosphatase, anchored to glycosyl-phosphatidyl-inositol (GPI) in the epithelial membrane of the Ae. 

aegypti larval midgut were identified as the receptors of Cry4Ba [123,124], and α-amylase was 

identified as such in the midgut brush border membrane vesicles of Anopheles albimanus [125]. 

Cry4Aa may contains multiple sub-sites spread out in domains II and III that cooperate for receptor 

binding and thus differ from other well-characterized Cry toxins of Bt in their receptor binding 

mechanism(s) [126]. 

Pre-pore trimeric structures of either Cry4Aa or Cry4Ba seem to form in aqueous solution and in lipid 

monolayer, which may facilitate insertion of their three α4-α5 hairpins into the membrane [104,127,128]. 

Proteolytically activated Cry4Ba in vitro can also form pre-pore oligomers that are proficient in 

perforation and formation of stable ion channels even without support of the receptors [129]. 

The three-dimensional structure of Cry11Aa has still not been solved but an in silico model was 

obtained based on that of Cry2Aa [115]. The pattern of the protoxin activation involves specific 

proteolytic removal of 27 N-terminal residues and intra-molecular cleavage into two fragments of 

about 30–33 and 34–36 kDa. Coexistence of the two fragments is essential for toxicity against larvae 

of Cx. pipiens and Culex quinquefasciatus [111–113]. Cry11Aa binds specifically to 148 kDa and 78 kDa 

proteins of brush border membrane vesicles of An. stephensi and Tipula oleracea respectively [72]. Its 
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putative receptors were identified as GPI-aminopeptidase N, GPI-alkaline phosphatase, cadherin and 

α-amylase [71,73,125,130,131]. Cry11Aa-receptor interaction seems to involve at least three exposed 

regions of domain II (loop α-8, β-4 and loop3) [115]. Loop α-8 plays a significant role in the 

interaction of the toxin with its receptor and subsequent toxicity [115]. 

3.4. Activation, Three-Dimensional Structure and Mode of Action of Cyt1Aa and Cyt2Ba Toxins 

The crystal structure of the proteolytically activated, monomeric forms of Cyt2Ba and Cyt1Aa were 

solved to 1.8 Å and 2.2 Å resolutions, respectively [101,132]. The toxins are composed of a single 

pore-forming domain of α/β architecture with a β-sheet surrounded by two α-helical layers 

representing a cytolysin fold. This structure is strikingly similar to those of the protoxin form of 

Cyt2Aa from Bt kyushuensis [133] and the fungal volvatoxin A2 [134], suggesting that the toxic 

monomer of these proteins has a similar mode of activity against cell membrane. 

Based on its structure, toxicity of Cyt1Aa is correlated with ability to undergo conformational 

changes that must occur prior to membrane insertion and perforation [101,132]. The cytolysin fold 

allows the α-helical layers to swing away, exposing the β-sheet to insert into the membrane. The 

putative lipid binding pocket between the β-sheet and the helical layer of Cyt1Aa and the hemolytic 

activity of Cyt1Aa, which resembles that of the pore-forming agents α-toxin and saponin, support this 

mechanism [101]. 

Cyt1Aa do not bind specific receptors but have strong binding affinity to the unsaturated fatty acids 

that compose the membrane of midgut epithelial cells of dipterans [77,135]. In vitro processing of 

Cyt1Aa protoxin yields single active 22–25 kDa fragment [136,137] that is about three times more 

effective than the protoxin [138,139]. 

Cyt1Aa binds to the apical brush border of midgut cells, to the gastric caecae and to stomach cells 

of An. gambiae larvae; this may be related to the ability of the toxin to perforate cell membranes 

without participation of any specific receptor [120] by a mechanism that is still a subject of debate. A 

higher proportion of unsaturated phospholipids in diptera than in other insects may be the reason for a 

greater affinity of Cyt δ-endotoxins to dipteran cell membranes and activity in vivo. This implies a 

specific mode of action that is different to those of Bti Cry’s, but an insect-specific receptor may still 

be essential for the specificity of the Cyt toxins [133,140]. 

Two different models were proposed for the mode of action of Cyt toxins: pore-forming [141,142] 

and detergent-like [143]. According to the former, Cyt binds as a monomer which then undergoes 

conformational changes, its C-terminal half composed mainly of β-strands is inserted into the 

membrane and the N-terminal half comprising mainly α-helices is exposed on the outside of the 

membrane [101,144]. Oligomerization on the cell membrane forms β-barrel pores [133,144,145] 

that induce equilibration of ions and net influx of water, cell swelling, and eventual colloid-osmotic 

lysis [117,119,146]. Consistent with a detergent-like mechanism, Cyt1Aa is rather adsorbed onto the 

surface as aggregates thereby causing nonspecific defects in membrane lipid packing, through which 

intracellular molecules can leak by all-or-nothing mechanism [138,139,143]. Both models may coexist 

if one considers a differential activity under different doses (concentration × time) [147]: specific 

perforation occurs at low toxin concentration or short exposure, whereas membrane disruption occurs 

at high levels or long times. 
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4. Synergy between the Toxins and Resistance of Targets 

4.1. Synergistic Interactions between Bti δ-Endotoxins 

The high, specific mosquito larvicidal properties of Bti δ-endotoxins are attributed to complex 

interactions between six proteins, Cry4Aa, Cry4Ba, Cry10Aa, Cry11Aa, Cyt1Aa and Cyt2Ba, 

differing in toxicity levels and against different species of mosquitoes (Table 1) [19–22,92,93,96,148]. 

Toxicity of each of the four Cry’s is higher than of the Cyt’s, but the high activity of the whole 

crystal results in synergies among them [19–22,92,98]. The combinations of Cry4Aa and Cry4Ba, of 

Cry4Aa and Cry11Aa, or of the three Cry’s, are synergistic against larvae of Culex, Aedes and 

Anopheles [19–21,66,78,149], whereas Cry4Ba and Cry11Aa are synergistic against Ae. aegypti [20]. 

Two minor crystal toxins, Cry10Aa and Cyt2Ba contribute to the insecticidal activity of Bti by 

synergistic interactions: Cry10Aa with Cyt1Aa against Ae. aegypti [92] and with Cry4Ba against Cx. 

pipiens [93] and Cyt2Ba with Cry4Aa against Ae. aegypti [98]. Despite the low toxicities of Cyt1Aa 

and of Cyt2Aa of Bt kyushuensis against exposed larvae, they are highly synergistic with the Bti Cry 

toxins and their combinations [20,22,88–90,150–159]. Each functions as a receptor for Cry4Ba, which 

binds through its domain II loops, explaining the synergy mechanism [155,159]. 

The suggestion that Cyt1Aa synergizes Cry11Aa by facilitating the latter’s interaction with the 

target cell or translocation of the corresponding toxic fragment [157] was later confirmed [154,158]: 

the interaction is based on their binding as follows. Cyt1Aa, which functions as a membrane-bound 

receptor, inserts its β-sheet into the membrane after conformational changes, two of its components 

(loop β6-αE and part of β7) bind with high affinity to Cry11Aa, which subsequently is inserted into the 

larval epithelial membranes [114,154,158]; residues K198 on β7, and E204 on α6 and K225 on β8 are 

involved in this process. Inconsistent with this model, these three residues seem to be inserted into the 

cell’s membrane [101], and an alternative mechanism suggests that Cry11Aa binds to Cyt1Aa using 

these exposed, charged residues prior to its membrane insertion. This mechanism was recently 

confirmed [160]: the synergy is retained in mutants of Cyt1Aa helix α-C that were affected in 

oligomerization, membrane insertion, hemolytic and insecticidal activities. Binding between Cyt1Aa 

and Cry11Aa may occur in solution or in the membrane plane, promoting oligomerization of Cry11Aa 

and thus synergizing its toxicity. 

Table 1. B. thuringiensis subsp. israelensis crystal δ-endotoxins. 

Synergistic with Toxicity Activated form (kDa) Toxin 

Cry4Ba, Cry11Aa, Cyt1Aa, Cyt2Ba Cx > An ≥ Ae  20 and 45 Cry4Aa (134 kDa) 

Cry4Aa, Cry11Aa, Cry10Aa, Cyt1Aa, Cyt2Aa An ≥ Ae > Cx 18 and 45 Cry4Ba (128 kDa) 

Cry4Aa, Cry4Ba, Cyt1Aa, Cyt2Ba Ae ≥ Cx > An 30–33 and 34–38 Cry11Aa (72 kDa) 

Cry4Aa, Cry4Ba, Cry11Aa, Cry10Aa Cx ≥ Ae > An  22–25 Cyt1Aa (27 kDa) 

Cyt1Aa, Cry4Ba Ae > Cx 58–68 Cry10Aa (78 kDa) 

Cry4Aa, Cry4Ba, Cry11Aa Cx ≥ Ae > An 22.5 Cyt2Ba (29 kDa) 

ND ND ND Cyt1Ca (57 kDa) 
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4.2. Resistance of Targets to Bti δ-Endotoxins 

Field and laboratory resistance of Cx. quinquefasciatus and Cx. pipiens to Bti have been found, 

regardless of their origin or the level of selection pressure applied [15], but only insignificant levels of 

resistance were attained against Ae. aegypti. In both examples, resistance was unstable in the absence 

of larval selection pressure and declined by 50% over three generations. Under laboratory selection 

pressure against individual Cry4Aa, Cry4Ba and Cry11Aa or in their combinations, larvae of Cx. 

quinquefasciatus evolve variable levels of resistance and cross-resistance, but only negligible 

resistance emerged when selected against all four major toxins, three Cry’s and Cyt1Aa [88–90]. 

Moreover, in the presence of moderate Cyt1Aa concentrations, the strains resistant to these Cry toxins 

(without Cyt1Aa) retained their original wild type sensitivity levels even to this highly effective 

combination [15]. Thus, increasing the number of Cry toxins delayed the evolution of resistance, but 

including Cyt1Aa in the combination used for selection was essential to the process [15,22,88,89]. The 

synergy between Cyt1Aa and Cry’s is significantly high against resistant larvae [22,90] due to the 

unique feature of Cyt1Aa that serves as an additional receptor for Bti Cry’s. Genetically,  

Cx. quinquefasciatus evolve multiple-loci resistance to the Bti Cry toxins, but progeny of reciprocal 

crosses to a sensitive strain exhibited autosomal inheritance with intermediate levels of resistance [161]. 

The interactions in the diverse mixture of Bti δ-endotoxins, particularly with Cyt1Aa, allow a long 

term use of Bti as a biological control means against mosquitoes and black flies. 

5. Antibacterial and Anticancer Activities of Bti δ-Endotoxins 

Expression of cyt1Aa alone in recombinant acrystalliferous Bt kurstaki and in E. coli causes loss of 

colony-forming ability [68,162]; the latter cells arrest growth and DNA replication leading to strong 

nucleoid compaction and partial lysis [163,164]. These findings support the suggestion that, in addition 

to its membrane perforating activity, Cyt1Aa specifically disrupts nucleoid associations with the 

cytoplasmic membrane. Simultaneous, high-affinity interactions of Cyt1Aa with zwitterionic 

phospholipids as well as with DNA may enhance detachment of DNA from the membrane and hence 

affect nucleoid compaction [163]. Co-expression with p20 (encoding a putative chaperonin) preserves 

cell viability [68,165]. Antibacterial activity of expressed N terminus-truncated Cyt1Ca in E. coli 

causes instant arrest in biomass growth and decreased viability [99]. 

Cyt1Aa, Cry4Ba and Cry11Aa, as well as two proteins (of 36 and 34 kDa) isolated from Bti, are 

antibacterial also exogenously, against E. coli and Gram-positive species (Micrococcus luteus, 

Streptomyces chrysomallus and Staphyloccocus aureus) [137,166,167]. Cyt1Aa is bactericidal for  

E. coli, whereas it is bacteriostatic for S. aureus as reflected in morphological changes and ion balance 

alteration [137]. Cyt1Aa may bind to the outer membrane of Gram-negative cells and easily penetrate 

the cytoplasmic membrane, whereas in Gram positive cells, it must cross the massive peptidoglycan 

layer before reaching the cytoplasmic membrane. Furthermore, Cyt1Aa can contribute to the 

antibacterial activity of some antibiotics through partial disruption of the outer membrane, enabling 

better penetration of the antibiotic [137]. 

Cry toxins from other Bt subspecies (kurstaki, galleriae, tenebrionis) are toxic to the anaerobic 

Gram-positive bacteria Clostridium butyricum and Clostridium acetobutylicum and the archaea 

Methanosarcina barkeri [168]. 
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Cyt1Aa and Cyt2Ba display anti-cancer activities as well; conjugation of activated Cyt1Aa to a 

peptide carrier molecule is toxic against murine hybridoma cells [169] whereas activated Cyt2Ba 

exhibits some cytotoxicity to human breast cancer cells (MCF-7) [170]. Cyt1Aa may be useful in other 

medical applications: specific toxicity against cells bearing a high number of insulin receptors is 

enhanced by linking it to insulin [171]. 

6. Limitations of Bti and Recombinant Bacteria 

Applying Bti for mosquito control is limited by short residual activity of current preparations under 

field conditions [9] due to: (i) sinking to the bottom of the water body; (ii) adsorption onto silt particles 

and organic matter; (iii) consumption by other organisms to which it is nontoxic; and (iv) inactivation 

by sunlight. In order to overcome these shortcomings, the δ-endotoxin genes have already been 

expressed individually or in combinations in various Gram-positive and -negative species [7,9]. Best 

results were achieved by expressing the genes encoding binary toxin of B. sphaericus in Bti [172]. The 

recombinant bacteria were highly potent against fourth instar larvae of Cx. quinquefasciatus and  

Cx. tarsalis, even to lines selected for resistance to the binary toxin. Higher toxicity against  

fourth-instar Cx. quinquefasciatus was achieved in recombinant acrystalliferous Bti strain that 

produces the combination of B. sphaericus binary toxin together with Cyt1Aa of Bti and Cry11Ba 

from Bt subsp. jegathesan [173]. 

Several attempts have been made during the last two decades to produce transgenic mosquito 

larvicidal cyanobacteria [9,174]. Most promising results were obtained when cry4Aa and cry11Aa 

alone or with cyt1Aa were expressed from the dual constitutive and efficient promoters PpsbA and PA1 
in the filamentous, nitrogen-fixing cyanobacterium Anabaena PCC 7120 [174–179]. LC50 values of 

these clones against third and fourth instar Ae. aegypti larvae were 8.3 × 104 and 3.5 × 104 cells mL−1 

respectively, the lowest reported values for engineered cyanobacterial cells with Bti toxin genes. 

Toxicity of the Anabaena clone expressing constitutively cry4Aa and cry11Aa with p20 is retained 

following irradiation by high doses of UV-B, doses that partially inactivate Bti toxicity [177]. This 

latter recombinant strain exhibited decent toxicity against larvae of An. merus, An. arabiensis and  

An. gambiae, but very weak activity against An. funestus [178]. Optimizing growth conditions in a 

photobioreactor was described for this cyanobacterial clone [179]. 

7. Concluding Remark 

Bti is environmentally friendly and a safe alternative means to control mosquitoes and blackflies. 

Emergence of resistant variants has not been found despite three decades of extensive use, likely due 

to the complex and diverse δ-endotoxins composition of its crystal. To overcome or prevent 

theoretical, future emergence of resistance, recombinant microorganisms can be engineered to  

co-express toxins with different modes of action or chimeric toxins with improved efficacy [180]. 

Enhancing Bti’s mosquito larvicidal activity can be achieved by totally different mechanisms that 

wane larval survival, e.g., chitinase (damaging the peritrophic membrane) [181] and Trypsin 

Modulating Oostatic Factor (causing larval starvation) [182,183]. 
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