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Abstract: The adsorption of ochratoxin A (OTA) by yeasts is a promising approach for the 

decontamination of musts and wines, but some potential competitive or interactive 

phenomena between mycotoxin, yeast cells, and anthocyanins might modify the intensity of 

the phenomenon. The aim of this study was to examine OTA adsorption by two strains of 

Saccharomyces cerevisiae (the wild strain W13, and the commercial isolate BM45), 

previously inactivated by heat, and a yeast cell wall preparation. Experiments were 

conducted using Nero di Troia red wine contaminated with 2 μg/L OTA and supplemented 

with yeast biomass (20 g/L). The samples were analyzed periodically to assess mycotoxin 

concentration, chromatic characteristics, and total anthocyanins over 84 days of aging.  

Yeast cell walls revealed the highest OTA-adsorption in comparison to thermally-inactivated 

cells (50% vs. 43% toxin reduction), whilst no significant differences were found for the 

amount of adsorbed anthocyanins in OTA-contaminated and control wines. OTA and 

anthocyanins adsorption were not competitive phenomena. Unfortunately, the addition of 

yeast cells to wine could cause color loss; therefore, yeast selection should also focus on this 

trait to select the best strain. 
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1. Introduction 

The adsorption of wine components by yeasts, yeast lees, and inactivated yeast fractions is of 

increasing interest in winemaking, for managing fermentations, wine stabilization, and aging processes [1,2]. 

Several studies have reported on the interaction of yeast cells with a variety of wine compounds, 

including anthocyanins [3–6] and flavan 3-ol derivatives [2,7], aromatic substances [1,8], sulfur products [9] 

or undesirable components, such as octanoic and decanoic acids [10], 4-ethylphenol [11–13], geosmin [14], 

and some pesticides commonly used in vineyards [15]. 

Currently, there is an increasing interest towards yeast adsorption/removal of ochratoxin A (OTA) [16]. 

OTA is a mycotoxin produced as a secondary metabolite by several toxigenic molds belonging to 

Aspergillus and Penicillum species. It possesses nephrotoxic, immunosuppressive, teratogenic, and 

carcinogenic (group 2B) properties [17]. Since the vintage of 2006, with the adoption of Regulation CE 

123/05, the level of OTA in commercial wines cannot exceed 2 μg/L, but many trade agreements usually 

require lower limits (e.g., 0.5 μg/L) [18]. 

Several researchers studied the removal of OTA by yeasts during alcoholic fermentation [19–27]. 

Several winemaking practices involve a prolonged contact between yeasts or yeast-derived products and 

wine, thus suggesting that yeast cells could play a significant role in OTA removal also at the end of the 

fermentation process [28]. Núñez et al. [29] and Petruzzi et al. [28] studied the effect of aging on the 

removal of OTA in a model wine system by Saccharomyces cerevisiae and a commercial yeast-cell wall 

preparation. However, in real wine OTA adsorption might be modified by other molecules that could be 

also adsorbed by yeast cell wall. Therefore, a topic of great concern relies upon the potential interactions 

between OTA, yeasts, and anthocyanins, being these last compounds largely responsible for the color of 

red wines [30]. At present, only some speculations are available in the literature. For example,  

García-Moruno et al. [31] and Caridi et al. [19] suggested the existence of competition phenomena 

between wine polyphenols and OTA for the same binding sites on the surface of the yeast cells.  

Cecchini et al. [20] suggested that yeast mannoproteins, known to react with polyphenols, could interact 

with OTA, too. Thus, the aim of this paper was to investigate the ability of inactivated S. cerevisiae 

strains and a commercial yeast-cell wall preparation to reduce OTA content in Nero di Troia red wine 

over 84 days of aging. In addition, potential competitive or interlinking phenomena between OTA, yeast 

cells, and anthocyanins were evaluated through the analysis of anthocyanic compounds adsorbed on 

yeast cells in wines added with OTA. 

2. Results 

2.1. OTA-Removal by Inactivated Yeasts and Yeast Cell Walls 

The concentrations of OTA in wines with or without treatments with yeasts or yeast cell walls are 

shown in Table 1; the initial content of toxin was 2 μg/L. The coefficient of variation was from 0 to 

4.51%. These results were modeled as percentages of removed OTA and used as input values for a two-way 
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ANOVA (Figure 1). The analysis of variance shows the significant influence of the kind of adsorbent 

(yeasts or yeast cell walls), time, and their interactive effect (p < 0.01). Hypothesis decomposition 

(Figure 1A) pinpointed that the highest reduction was found for the yeast cell wall preparation (ca. 50% 

of initial concentration), whereas the results for the strains W13 and BM45 were not significantly 

different (OTA removed by 43%). Concerning the effect of time, the highest level of reduction  

(ca. 48%–55%) was found after 56 and 84 days (Figure 1B). Finally, a strong interactive effect was 

recovered for the strain BM45 (increase of OTA removal over time) and for yeast cell walls (decrease 

of OTA removal over time), whereas the performance of the strain W13 did not experience significant 

changes (Figure 1C). 

  

 

Figure 1. Effective hypothesis decomposition of two-way ANOVA for the effects of 

yeast/time on OTA removal (%). (A) Effect of yeasts/yeast cell walls; (B) effect of time;  

and (C) interaction. Vertical bars denote 95% confidence. For each effect on the upper side 

of figure there are the F-test and the relative degrees of freedom. 
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Table 1. Concentrations of OTA (µg/L) in control wines and samples supplemented with 

yeasts or yeast cell walls. Mean values ± standard deviation. 

Time (Day) Control W13 BM45 Cell Walls 

1 1.98 ± 0.00 1.35 ± 0.03 1.45 ± 0.06 1.27 ± 0.03 

7 1.96 ± 0.03 1.43 ± 0.03 1.51 ± 0.03 1.25 ± 0.05 

14 1.92 ± 0.03 1.35 ± 0.04 1.43 ± 0.03 1.21 ± 0.05 

21 1.94 ± 0.00 1.39 ± 0.03 1.47 ± 0.03 1.27 ± 0.03 

42 1.94 ± 0.00 1.39 ± 0.05 1.47 ± 0.03 1.23 ± 0.03 

56 1.96 ± 0.03 1.31 ± 0.01 1.19 ± 0.06 1.39 ± 0.03 

70 1.94 ± 0.00 1.39 ± 0.03 1.27 ± 0.04 1.39 ± 0.04 

84 1.96 ± 0.03 1.31 ± 0.01 1.19 ± 0.03 1.39 ± 0.02 

 

  

 

Figure 2. Effective hypothesis decomposition of two-way ANOVA for the effects of 

yeast/time on the content of anthocyanins on pellets (mg/g). (A) Effect of yeasts/yeast cell walls; 

(B) effect of time; and (C) interaction. 

2.2. Evaluation of Potential Competitive Phenomena between OTA, Yeast Cells, and Anthocyanins 

Figure 2 shows the result of two-way ANOVA analysis for anthocyanins adsorption on yeast cells. 

Statistical analysis revealed that the kind of adsorbent, time, and their interactive effect were significant 
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(p < 0.01). The highest adsorption values were obtained for the yeast cell wall preparation (ca. 2.6 mg/g), 

whereas the lowest adsorption was detected in the case of the commercial isolate BM45. Moreover, the 

highest level of adsorption (ca. 1.8–1.9 mg/g) was found after 42 and 56 days (Figure 2B). Another 

interesting result was the significant interaction of the adsorbing tool (yeast or yeast cell wall) vs. time 

(Figure 2C), with a strong effect of time on the adsorption ability of yeast cell walls (after 21 days).  

A significant interactive effect was also found for the strain W13, as the amount of the adsorbed 

anthocyanins increased after 14 days and then decreased after 70 days. A second statistic revealed that OTA 

did not affect the adsorption of anthocyanins on yeast cell walls; Figure 3 shows the trend for the strain W13. 

 

Figure 3. Effective hypothesis decomposition of two-way ANOVA for the effects of 

absence/presence of OTA on the content of anthocyanins on the pellet of the strain W13 (mg/g). 

2.3. Effects of the Different Aging Techniques on Total Anthocyanins Content and Chromatic 

Characteristics of Wines 

After assessing OTA fate in wine and how OTA and anthocyanins interacted on cell walls, the second 

step of this research was aimed at studying the trends of anthocyanins, color intensity, and tonality of 

wines as a function of OTA and yeasts. First we focused on the impact of adsorbing material (yeasts or 

yeast cell walls) on anthocyanin content. The actual values of these compounds throughout time are in 

Table 2. Figure 4 shows the result of two-way ANOVA analysis for the changes in anthocyanins. Control 

wine was used as reference. Statistical analysis revealed that the kind of adsorbent, and time, affected 

the content of these compounds (p < 0.01). Wines supplemented with yeast cell walls showed a 

significantly lower content of anthocyanins (effect of adsorbing tool), whereas no significant differences 

between the different adsorbing tools were found (Figure 4A). As expected, the content of anthocyanins 

suffered a stronger reduction throughout time (Figure 4B); no interactive effects were found (data not 

shown). The practical implication of anthocyanins adsorption can be clearly observed in Figure 5, which 

shows the change in color intensity. Yeast cell walls showed a significant decrease in color intensity, 

whereas no significant differences between the strain W13 and the commercial isolate BM45 were found 

(Figure 5A). As expected, the parameter suffered a stronger reduction at the end of the aging (Figure 5B). 

Another interesting result was the significant interaction of the adsorbing tool vs. time, with a strong 

effect of time on the reduction of color intensity by the yeast cell wall preparation (Figure 5C). 
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Figure 4. Effective hypothesis decomposition of two-way ANOVA for the effects of 

yeast/time on the content of anthocyanins in wine (mg/L). (A) Effect of yeasts/yeast cell walls; 

and (B) effect of time. 

  

 

Figure 5. Effective hypothesis decomposition of two-way ANOVA for the effects of 

yeast/time on color intensity of wines (A420 + A520 + A620). (A) Effect of yeasts/yeast cell walls; 

(B) effect of time; and (C) interaction. 
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Table 2. Concentrations of anthocyanins (mg/L) in control wines and samples supplemented 

with yeasts or yeast cell walls, with or without OTA (2 μg/L). Mean values ± standard deviation. 

Time (Day) 
Control W13 

no OTA OTA no OTA OTA 

1 191.82 ± 20.03 187.18 ± 25.22 172.41 ± 18.29 167.56 ± 15.54 

7 186.90 ± 15.31 184.34 ± 3.39 154.52 ± 6.15 160.39 ± 11.12 

14 174.37 ± 7.28 173.02 ± 8.09 137.24 ± 4.54 144.92 ± 8.12 

21 171.54 ± 7.57 161.97 ± 8.26 124.31 ± 5.65 127.74 ± 4.85 

42 152.77 ± 8.36 152.94 ± 6.52 103.18 ± 7.22 102.38 ± 3.71 

46 136.70 ± 5.93 142.03 ± 3.97 83.07 ± 2.69 84.69 ± 5.83 

70 128.82 ± 3.94 130.98 ± 2.25 72.26 ± 2.43 77.41 ± 3.74 

84 117.10 ± 5.47 116.56 ± 1.17 70.14 ± 3.17 71.55 ± 4.37 

Time (Day) 
BM45 Cell Walls 

no OTA OTA no OTA OTA 

1 166.75 ± 11.04 166.15 ± 23.48 166.05 ± 18.04 155.33 ± 11.85 

7 160.57 ± 10.96 163.32 ± 7.84 161.90 ± 17.03 150.79 ± 6.25 

14 148.36 ± 5.92 143.31 ± 6.81 148.16 ± 9.53 143.71 ± 5.04 

21 123.90 ± 5.30 134.82 ± 7.93 125.92 ± 3.33 128.55 ± 9.08 

42 111.93 ± 3.96 112.99 ± 6.24 112.18 ± 9.13 109.30 ± 10.91 

46 91.97 ± 4.16 88.83 ± 5.59 67.00 ± 3.09 80.14 ± 1.88 

70 84.49 ± 2.45 86.00 ± 5.42 66.80 ± 5.45 73.47 ± 5.45 

84 79.13 ± 2.22 79.74 ± 3.24 52.65 ± 2.96 55.79 ± 2.31 

Figure 6 reports two-way ANOVA for the tonality, which decreased stronger in the samples treated 

with the different adsorbing tools, rather than in the control wine (Figure 6A) and increased throughout 

time (Figure 6B). 

  

Figure 6. Effective hypothesis decomposition of two-way ANOVA for the effects of 

yeast/time on tonality of wines (A420nm/A520nm). (A) Effect of yeasts/yeast cell walls;  

and (B) effect of time.  
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The last statistic test was conducted to assess if OTA could influence anthocyanin content: OTA was 

never significant, as showed by hypothesis decomposition for the strain W13 (Figure 7A), BM45  

(Figure 7B), and yeast cell wall preparation (Figure 7C). 

  

 

Figure 7. Effective hypothesis decomposition of two-way ANOVA for the effects of 

absence/presence of OTA on the content of anthocyanins in wine (mg/L). (A) Strain W13; 

(B) strain BM45; and (C) yeast cell walls. 

3. Discussion 

Although several physical, chemical, and biological methods are available to control the levels of 

OTA in musts and wines [32], parietal adsorption of toxin by yeasts, mainly S. cerevisiae, is considered 

a promising solution, since it is possible to attain the decontamination without using harmful chemicals 

and without losses in nutrient value or palatability of decontaminated products [16]. 

OTA and yeast cell walls could interact due to the chemical traits of both of them. OTA is a complex 

organic compound, consisting of chlorine-containing dehydroisocoumarin linked through the 7-carboxyl 

group to 1-β-phenylalanine. Phenol and carboxyl are the main functional groups involved in some 

different adsorption mechanisms [16]. S. cerevisiae cell wall is described in terms of three layers, an 

outer electron-dense layer, an adjacent less dense layer, and another dense layer bordering the plasma 

membrane. The yeast wall is composed of a three-dimensional internal skeletal layer of 1,3-β-glucan 
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and 1,6-β-glucan (30%–40% of wall mass) stabilized by hydrogen bonds. Other important components 

of yeast wall are the mannoproteins (30%–40% of wall mass), which are the most highly-exposed  

cell-wall molecules, and can form sorption sites. These components are all interconnected by covalent 

bonds. Mannoproteins are bonded by a 1,6-β-glucan chain with 140 glucose residues to a 1,3-β-glucan 

chain of approximately 1500 sugar residues [33]. 

The most recent winemaking technologies are focused on the use of inactivated yeast fractions  

(e.g., inactivated whole yeasts, yeast autolysates, yeast extracts, cell walls, or mannoproteins) to reduce 

the time required to obtain wines with physico-chemical and sensory characteristics similar to those aged 

on lees [2,34]. To address this important topic, two strains of S. cerevisiae (the wild strain W13, and the 

commercial isolate BM45), previously inactivated by heat, and a commercial yeast cell wall preparation 

have been tested for their OTA-adsorption ability. Yeast cell walls revealed the highest adsorption values 

in comparison to thermally-inactivated cells (50 vs. 43% toxin reduction). Probably, heat treatment 

caused the inactivation of the metabolism, as well as a possible damage to cell structure. This injury 

could in turn cause a loss of some cell wall components involved in interactions with OTA and/or to an 

important alteration of their three-dimensional structure, affecting the accessibility to interaction sites 

and OTA adsorption within the wall network thickness. Although yeast cell walls removed more OTA 

than whole yeasts, there is another main trait to keep in mind for the final selection and choice amongst 

the aging tools, i.e., yeasts or yeast cell walls elimination. Removing the yeast cell wall fraction from 

wine is more difficult than eliminating whole yeasts, which only require filtration through a filter of 

0.45-μm pore size, common in the cellars [7]. 

Concerning the removing percentages of OTA found in this research, these values were in line with 

previous reports. For example, Piotrowska et al. [35] added a thermally inactivated biomass of  

S. cerevisiae yeast to wines from white grape and blackcurrant juices and decreased after 24 h the content 

of OTA by ca. 60%. Similarly, heat-treated yeast cells have been used by Var et al. [36] to remove OTA 

(a maximum of 30.45% within 4 h) from white wine, but in both studies the time of contact between the 

yeast and the OTA was shorter than in our research. 

An important issue to be addressed is if OTA adsorption could compete with the removal of some 

wine components, namely anthocyanins. 

Although numerous studies have clearly proven the interaction of yeast cells with a variety of 

compounds, the deep understanding of phenomenon is a challenge since it is driven by a complex 

interaction solute/solvent, solute/surface, surface/solvent physic-chemical interactions, and solvent 

cohesion. The affinity for the surface (initial adsorption) as well as the maximum adsorbed amount relies 

upon the number of binding sites, the accessibility to them, a possible conformational rearrangements of 

the solute when dealing with polymers and lateral interactions between adsorbed species [2]. 

The results of this research suggested that OTA and anthocyanins adsorption were not competitive 

phenomena, as they probably acted in different ways and impacted on different targets on yeast cell wall. 

At a molecular level, cell wall mannoproteins play a major role in the adsorption of toxin [16], although 

other parietal components could be involved. For example, some authors reported that a mixture of chitin 

and β-glucan as well as their hydrolysates removed OTA by 64% to 74% [37]. Similarly, anthocyanins 

adsorption by yeasts is attributed to cell walls. Morata et al. [4] studied the adsorption of anthocyanins 

by the cell wall of different strains of Saccharomyces spp. throughout fermentation, and found that some 

strains showed removal rate two-fold higher than the others. Unfortunately, information concerning 
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anthocyanin interactions with mannoproteins throughout wine aging remains scarce and is missing for 

β-glucans and chitins. 

A different explanation for the not competitive nature of adsorption phenomenon between OTA and 

anthocyanins could rely upon the possibility of partial intracellular penetration of these compounds into 

the whole yeasts [7] and a consequent interaction with the plasma membrane lipids [38]. This hypothesis 

has been also suggested by Pradelles et al. [14] to explain the adsorption of geosmin by autolysed cells. 

The passage of anthocyanins through the cell wall to the periplasmic space and their interaction with the 

plasma membrane could also explain the lower adsorption by whole cells than the commercial yeast cell 

wall preparation. 

We could also suggest that the adsorption of anthocyanins on yeast cells in a complex polyphenolic 

environment does not rely upon a simple adsorption mechanism [6]. Mechanisms of adsorption and 

complexation (with other biopolymers such as proteins and polysaccharides) could interact, with 

significant effects by hydrophobic attraction and hydrogen links. 

The last issue relies upon the effect of yeast cell wall on the qualitative traits of wine. It is well known 

that the addition of adsorbing tools such as yeast cells to wine causes important reductions in anthocyanin 

content, leading to color losses [13]. Thus, the selection of suitable yeasts could also address this trait 

and avoid the use of strains with high adsorption levels of anthocyanins. 

Further investigations are required to elucidate some critical issues, like the effect of the concentration 

of cell wall material and yeasts; hereby, we focused on a standardized protocol and used the weight as a 

way to compare the treatments. Another issue that should be addressed is if the preliminary treatment of 

yeasts or cell walls could affect the adsorption properties towards OTA and anthocyanins. 

4. Experimental Section 

4.1. Yeast Strains 

The yeasts used in this study were (1) Saccharomyces cerevisiae W13 (Accession number: 

KC542799), a yeast strain belonging to the Culture Collection of the Laboratory of Predictive 

Microbiology (Department of the Science of Agriculture, food and Environment, University  

of Foggia, Foggia, Italy) and selected for its OTA-removal ability in a model wine system [28],  

semi-synthetic [24] and natural grape must [27], and (2) Saccharomyces cerevisiae BM45, a commercial  

mannoprotein-overproducing yeast strain (Lallemand Inc., Montreal, QC, Canada) commonly used in the 

over-lees aging of red wines [39,40], and previously studied for its OTA-removal ability in a model wine 

system [28]. 

4.2. Preparation of Inactivated Yeasts 

Yeast biomass was obtained by culturing the strains in YPG medium (yeast extract 10 g/L, Oxoid, 

Milan, Italy; bacteriological peptone 20 g/L, Oxoid; glucose 20 g/L, C. Erba, Milan, Italy; 12 g/L agar 

technical no. 3, Oxoid) at 30 °C for 24 h. A loop full of yeast culture was then used to inoculate 250 mL 

Erlenmeyer flasks containing 100 mL of a model synthetic grape juice medium [41]. The flasks were 

closed with a Müller valve previously filled with sulfuric acid, and incubated at 25 °C. The fermentation 

rate was monitored daily by weight loss as a result of CO2 escaping from the system, until the weight 
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was constant. Completion of fermentation (less than 2 g/L residual sugar) was confirmed by enzymatic 

determinations (K-FRUGL; Megazyme, Bray, Ireland). Yeast lees were harvested by centrifugation at 

4600 g for 15 min at 4 °C (ALC 4239R centrifuge, ALC, Milan, Italy) and washed three times with 0.9% 

NaCl in order to obtain a yeast biomass with no nutrient impurities [41]. Yeasts were then inactivated 

by heating at 80 °C for 24 h in an oven [42] to exclude possible changes in wine composition during the 

experimental aging [14], as well as the involvement of a potential metabolic conversion of toxin by 

viable cells [43]. The absence of live yeast populations after heating was confirmed by plate count on 

YPG agar. 

4.3. Yeast Cell Walls 

A commercial yeast cell wall preparation (Biolees; Laffort, Bordeaux, France), previously studied for 

its ability to remove OTA in a model-wine system [28], was included in the experiment. 

4.4. Simulation of Wine Aging 

In accordance with the literature [31], 20 g/L dry weight of inactivated yeasts (or yeast cell walls) 

were suspended in 60-mL flasks containing 50 mL of Nero di Troia red wine (Vitis vinifera L.; grape 

harvest, 2013) previously filtered under vacuum (pore size 0.22-μm; Sigma-Aldrich, Milan, Italy) [44] 

and supplemented with OTA (2 μg/L; Sigma-Aldrich). Two different controls were prepared: (i) wine 

supplemented with OTA but without yeasts/yeast cell walls and (ii) wine with yeasts/yeast cell walls but 

without OTA. All dispensed wines were incubated for 84 days [31] in darkness at 18 °C [45] with  

a weekly stirring (inversion and shaking for 15 s) to simulate enological batônnage [46]. Thus, a total of 

216 aging experiments were performed (three independent experiments per each adsorbing tool, with or 

without OTA, for nine sampling points). 

The following parameters were assessed: (1) OTA concentration, (2) total anthocyanins, and  

(3) chromatic characteristics. 

4.5. Analytical Determinations 

4.5.1. Extraction of Anthocyanins Adsorbed by the Yeast Cells 

The samples were centrifuged at 4600 g for 5 min at 4 °C to separate yeast cells (or yeast cell walls) 

from wine; then, wines and yeasts were separately treated. Yeasts were washed twice using 10 mL of 

distilled water and then centrifuged at 4600 g for 5 min at 4 °C to eliminate any residual wine. The 

supernatants formed by the washing waters was generally discarded with the exception of those collected 

at 56 and 84 days, which were submitted to OTA determination in order to assess any losses during the 

washing operations. 

Anthocyanins adsorbed by yeast cells were then extracted by six washes with 5 mL of 

ethanol:water:hydrogen chloride 37% (70:30:1 v/v/v), mixed with a Vortex for 30 s. Centrifugation at 

4600 g followed each wash, and the supernatant was kept to obtain 30 mL of yeast extract. 
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4.5.2. Determination of Total Anthocyanins 

Anthocyanins concentration of wines and yeast extracts were spectrophotometrically determined 

(Cary 50 SCAN UV–Visible spectrophotometer; Varian, Palo Alto, CA, USA) according to the methods 

of Di Stefano et al. [47] and Di Stefano and Cravero [48]. When necessary, wines and/or yeast extracts 

were opportunely diluted with aliquots of a solution of ethanol:water:hydrogen chloride 37% (70:30:1). 

Absorbance spectrum between 230 and 700 nm was recorded. The total anthocyanin contents were 

determined at 540 nm. The results were expressed as mg of malvidin-3-O-glucoside chloride per liter of 

wine (m/L) or per gram of yeast (m/g). 

4.5.3. Determination of Chromatic Parameters 

Chromatic parameters were determined according to the Glories [49] method. The color intensity was 

given by the sum of the absorbance to 420, 520, and 620 nm or A420, A520, and A620. Color tonality was 

expressed by the ratio of the A420 and A520. Determination of chromatic parameters was done 

spectrophotometrically using quartz cells of 0.1 cm path length. 

4.5.4. Quantification of OTA Concentration 

The concentration of OTA in wines, in yeast extracts, and in the distilled-water used to wash the yeast 

cells was determined using an enzyme linked immuno-sorbent assay (ELISA) method, after 

immunoaffinity column (IACs) clean-up. A RIDASCREEN®Ochratoxin A 30/15 ELISA kit  

(Art. No. R1311) and RIDA®Ochratoxin A column (Art. No. R1303) were used for the analysis. The 

test procedures were performed following the protocols provided by the manufacturer (R-Biopharm, 

Darmstadt, Germany). The optical density of the reaction product was determined using ELISA a  

96-well plate reader Model No. 680 (Bio-Rad, Hercules, CA, USA) set to 450 nm wavelength. The 

results were reported as percentages of OTA removed in wine by yeasts or yeast cell walls. 

4.6. Statistical Analysis 

Data were analyzed through two-way analysis of variance (two-way ANOVA) and Tukey’s test as 

the post hoc comparison test (p < 0.01), using the software STATISTICA for Windows (StatSoft, Inc., 

Tulsa, OK, USA; software version 10.0.1011.0). 

5. Conclusions 

The results of this paper suggested that OTA and anthocyanin adsorption were not competitive 

phenomena, as they probably acted in a different way and impacted on different targets on yeast cell 

wall. Yeasts removed OTA in an early stage, as significant performances were found just after one day. 

Longer treatments (>56) hardly increased the removal rates. A challenge was that the addition of yeast 

cells to wine caused important reductions in anthocyanins content, leading to color loss. This result 

suggested that the studied yeasts could be proposed as adsorbing tools for short treatments and their use 

for wine aging could be hardly proposed. Finally, proper selection of yeast for wine aging, with the 
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functional trait of toxins removal, should take into account parietal adsorption of phenols in order to 

minimize their impact on wine attributes. 

Author Contributions 

All the authors designed the research and planned the experiments. Antonio De Gianni and  

Leonardo Petruzzi performed the experiments. Antonio Bevilacqua analyzed the data.  

Antonio Bevilacqua and Leonardo Petruzzi wrote the paper. Milena Sinigaglia, Maria Rosaria Corbo 

and Antonietta Baiano supported the research with their research funds. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Comuzzo, P.; Tat, L.; Fenzi, D.; Brotto, L.; Battistutta, F.; Zironi, R. Interactions between yeast 

autolysates and volatile compounds in wine and model solution. Food Chem. 2011, 127, 473–480. 

2. Mekoue Nguela, J.; Sieczkowski, N.; Roi, S.; Vernhet, A. Sorption of grape proanthocyanidins and 

wine polyphenols by yeasts, inactivated yeasts, and yeast cell walls. J. Agric. Food Chem. 2015, 

63, 660–670. 

3. Vasserot, Y.; Caillet, S.; Maujean, A. Study of anthocyanin adsorption by yeast lees. Effect of some 

physicochemical parameters. Am. J. Enol. Vitic. 1997, 48, 433–437. 

4. Morata, A.; Gómez-Cordovés, M.C.; Suberviola, J.; Bartolomé, B.; Colomo, B.; Suárez, J.A. 

Adsorption of anthocyanins by yeast cell walls during the fermentation of red wines. J. Agric.  

Food Chem. 2003, 51, 4084–4088. 

5. Mazauric, J.P.; Salmon, J.M. Interactions between yeast lees and wine polyphenols during 

simulation of wine aging: I. Analysis of remnant polyphenolic compounds in the resulting wines.  

J. Agric. Food Chem. 2005, 53, 5647–5653. 

6. Mazauric, J.P.; Salmon, J.M. Interactions between yeast lees and wine polyphenols during 

simulation of wine aging: II. Analysis of desorbed polyphenol compounds from yeast lees. J. Agric. 

Food Chem. 2006, 54, 3876–3881. 

7. Razmkhab, S.; Lopez-Toledano, A.; Ortega, J.M.; Mayen, M.; Merida, J.; Medina, M.  

Adsorption of phenolic compounds and browning products in white wines by yeasts and their cell 

walls. J. Agric. Food Chem. 2002, 50, 7432–7437. 

8. Chalier, P.; Angot, B.; Delteil, D.; Doco, T.; Gunata, Z. Interactions between aroma compounds 

and whole mannoprotein isolated from Saccharomyces cerevisiae strains. Food Chem. 2007, 100, 

22–30. 

9. Palacios, S.; Vasserot, Y.; Maujean, A. Evidence for sulfur volatile products adsorption by yeast 

lees. Am. J. Enol. Vitic. 1997, 48, 525–526. 

10. Alexandre, H.; Lubbers, S.; Charpentier, C. Interactions between toxic fatty acids for yeasts and 

colloids, cellulose and yeast ghost using the equilibrium dialysis method in a modelwine system. 

Food Biotechnol. 1997, 11, 89–99. 



Toxins 2015, 7 4363 

 

 

11. Chassagne, D.; Guilloux-Benatier, M.; Alexandre, H.; Voilley, A. Sorption of wine volatile phenols 

by yeast lees. Food Chem. 2005, 91, 39–44. 

12. Pradelles, R.; Ortiz-Julien, A.; Alexandre, H.; Chassagne, D. Effects of yeast wall composition on 

4-ethylphenol sorption in model wine. J. Agric. Food Chem. 2008, 56, 11854–11861. 

13. Palomero, F.; Ntanos, K.; Morata, A.; Benito, S.; Suárez-Lepe, J.A. Reduction of wine 4-ethylphenol 

concentration using lyophilized yeast as a bioadsorbent: Influence on anthocyanin content and 

chromatic variables. Eur. Food Res. Technol. 2011, 232, 971–977. 

14. Pradelles, R.; Chassagne, D.; Vichi, S.; Gougeon, R.; Alexandre, H. (−)Geosmin sorption by 

enological yeasts in model wine and FTIR spectroscopy characterization of the sorbent. Food Chem. 

2010, 120, 531–538. 

15. Navarro, S.; Barba, A.; Oliva, J.; Navarro, G.; Pardo, F. Evolution of residual levels of six pesticides 

during elaboration of red wines. Effect of wine-making procedures in their disappearance. J. Agric. 

Food Chem. 1999, 47, 264–270. 

16. Petruzzi, L.; Sinigaglia, M.; Corbo, M.R.; Campaniello, D.; Speranza, B.; Bevilacqua, A. 

Decontamination of ochratoxin A by yeasts: Possible approaches and factors leading to toxin 

removal in wine. Appl. Microbiol. Biotechnol. 2014, 98, 6555–6567. 

17. Giovannoli, C.; Passini, C.; Di Nardo, F.; Anfossi, L.; Baggiani, C. Determination of ochratoxin A 

in Italian red wines by molecularly imprinted solid phase extraction and HPLC analysis. J. Agric. 

Food Chem. 2014, 62, 5220–5225. 

18. Solfrizzo, M.; Avantaggiato, G.; Panzarini, G.; Visconti, A. Removal of ochratoxin A from contaminated 

red wines by repassage over grape pomaces. J. Agric. Food Chem. 2010, 58, 317–323. 

19. Caridi, A.; Galvano, F.; Tafuri, A.; Ritieni, A. Ochratoxin A removal during winemaking.  

Enzyme Microb. Tech. 2006, 40, 122–126. 

20. Cecchini, F.; Morassut, M.; García-Moruno, E.; Di Stefano, R. Influence of yeast strain on ochratoxin 

A content during fermentation of white and red must. Food Microbiol. 2006, 23, 411–417. 

21. Meca, G.; Blaiotta, G.; Ritieni, A. Reduction of ochratoxin A during the fermentation of Italian red 

wine Moscato. Food Control 2010, 21, 579–583. 

22. Esti, M.; Benucci, I.; Liburdi, K.; Acciaro, G. Monitoring of ochratoxin A fate during alcoholic 

fermentation of wine must. Food Control 2012, 27, 53–56. 

23. Bevilacqua, A.; Petruzzi, L.; Corbo, M.R.; Baiano, A.; Garofalo, C.; Sinigaglia, M. Ochratoxin A 

released back into the medium by Saccharomyces cerevisiae as a function of the strain, washing 

medium and fermentative conditions. J. Sci. Food Agric. 2014, 94, 3291–3295. 

24. Petruzzi, L.; Bevilacqua, A.; Baiano, A.; Beneduce, L.; Corbo, M.R.; Sinigaglia, M. Study of 

Saccharomyces cerevisiae W13 as a functional starter for the removal of ochratoxin A.  

Food Control 2014, 35, 373–377. 

25. Petruzzi, L.; Bevilacqua, A.; Baiano, A.; Beneduce, L.; Corbo, M.R.; Sinigaglia, M. In vitro removal 

of ochratoxin A by two strains of Saccharomyces cerevisiae and their performances under 

fermentative and stressing conditions. J. Appl. Microbiol. 2014, 116, 60–70. 

26. Petruzzi, L.; Bevilacqua, A.; Corbo, M.R.; Garofalo, C.; Baiano, A.; Sinigaglia, M. Selection of 

autochthonous Saccharomyces cerevisiae strains as wine starters using a polyphasic approach and 

ochratoxin A removal. J. Food Prot. 2014, 7, 1168–1177. 



Toxins 2015, 7 4364 

 

 

27. Petruzzi, L.; Corbo, M.R.; Baiano, A.; Beneduce, L.; Sinigaglia, M.; Bevilacqua, A. In vivo stability 

of the complex ochratoxin A—Saccharomyces cerevisiae starter strains. Food Control 2014, 50, 

516–520. 

28. Petruzzi, L.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Yeast cells as adsorbing tools to remove 

ochratoxin A in a model wine. Int. J. Food Sci. Tech. 2014, 49, 936–940. 

29. Núñez, Y.P.; Pueyo, E.; Carrascosa, A.V.; Martínez-Rodríguez, A.J. Effects of aging and heat 

treatment on whole yeast cells and yeast cell walls and on adsorption of ochratoxin A in a wine 

model system. J. Food Prot. 2008, 71, 1496–1499. 

30. Caridi, A. New perspectives in safety and quality enhancement of wine through selection of yeasts 

based on the parietal adsorption activity. Int. J. Food Microbiol. 2007, 120, 167–172. 

31. García-Moruno, E.; Sanlorenzo, C.; Boccaccino, B.; Di Stefano, R. Treatment with yeast to reduce 

the concentration of ochratoxin A in red wine. Am. J. Enol. Vitic. 2005, 56, 73–76. 

32. Quintela, S.; Villarán, M.C.; de Armentia, I.L.; Elejalde, E. Ochratoxin A removal in wine:  

A review. Food Control 2013, 30, 439–445. 

33. Nieto-Rojo, R.; Ancín-Azpilicueta, C.; Garrido, J.J. Sorption of 4-ethylguaiacol and 4-ethylphenol 

on yeast cell walls, using a synthetic wine. Food Chem. 2014, 152, 399–406. 

34. Del Barrio-Galán, R.; Pérez-Magariño, S.; Ortega-Heras, M. Effect of the aging on lees and other 

alternative techniques on the low molecular weight phenols of Tempranillo red wine aged in oak 

barrels. Anal. Chim. Acta 2012, 732, 53–63. 

35. Piotrowska, M.; Nowak, A.; Czyzowska, A. Removal of ochratoxin A by wine Saccharomyces 

cerevisiae strains. Eur. Food Res. Technol. 2013, 236, 441–447. 

36. Var, I.; Erginkaya, Z.; Kabak, B. Reduction of ochratoxin A levels in white wine by yeast 

treatments. J. Inst. Brew. 2009, 115, 30–34. 

37. Bornet, A.; Teissedre, P.L. Chitosan, chitin-glucan and chitin effects on minerals (iron, lead, 

cadmium) and organic (ochratoxin A) contaminants in wines. Eur. Food Res. Technol. 2008, 226, 

681–689. 

38. Marquez, T.; Millan, C.; Salmon, J.-M. Plasma membrane sterols are involved in yeast’s ability to 

adsorb polyphenolic compounds resulting from wine model solution browning. J. Agric. Food 

Chem. 2009, 57, 8026–8032. 

39. Escot, S.; Feuillat, M.; Dulau, L.; Charpentier, C. Release of polysaccharides by yeasts and the 

influence of released polysaccharides on colour stability and wine astringency. Aust. J. Grape Wine 

Res. 2001, 7, 153–159. 

40. Guadalupe, Z.; Martínez, L.; Ayestarán, B. Yeast mannoproteins in red winemaking: Effect on 

polysaccharide, polyphenolic, and color composition. Am. J. Enol. Vitic. 2010, 61, 191–200. 

41. Guilloux-Benatier, M.; Chassagne, D. Comparison of components released by fermented or active 

dried yeasts after aging on lees in a model wine. J. Agric. Food Chem. 2003, 51, 746–751. 

42. Pinna, M.V.; Budroni, M.; Farris, G.A.; Pusino, A. Fenhexamid adsorption behavior on soil 

amended with wine lees. J. Agric. Food Chem. 2008, 56, 10824–10828. 

43. Paster, N. Means to prevent contamination with patulin in apple-derived produce and with 

ochratoxin A in wines. In Mycotoxins in Fruits and Vegetables; Barkai-Golan, R., Paster, N., Eds.; 

Elsevier: San Diego, CA, USA, 2008; pp. 351–386. 



Toxins 2015, 7 4365 

 

 

44. Mussatto, S.I.; Santos, J.C.; Ricardo Filho, W.C.; Silva, S.S. A study on the recovery of xylitol by 

batch adsorption and crystallization from fermented sugarcane bagasse hydrolysate. J. Chem. 

Technol. Biotechnol. 2006, 81, 1840–1845. 

45. Mauricio, J.C.; Millán, M.C.; Moreno, J.; Ortega, J.M. Changes in the urea concentration during 

controlled wine aging by two “flor” veil-forming yeasts. Biotechnol. Lett. 1995, 17, 401–406. 

46. Patynowski, R.J.; Jiranek, V.; Markides, A.J. Yeast viability during fermentation and sur lie ageing 

of a defined medium and subsequent growth of Oenococcus oeni. Aust. J. Grape Wine Res. 2002, 

8, 62–69. 

47. Di Stefano, R.; Cravero, M.C.; Genilizzi, N. Metodi per lo studio dei polifenoli nei vini. 

L’Enotecnico 1989, 5, 83–89. (In Italian) 

48. Di Stefano, R.; Cravero, M.C. Metodi per lo studio dei polifenoli delle uve. Riv. Vitic. Enol. 1991, 

2, 37–43. (in Italian) 

49. Glories, Y. La couleur des vins rouges. Mesure, origine et interprétation. Partie I. Connaiss.  

Vigne Vin 1984, 18, 195–217. (In Italian) 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


