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Abstract: Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid
arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A, (bvPLA;)
has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common
anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted
to evaluate the protective effects of bvPLA; in radiation-induced acute lung inflammation. Mice were
focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA, six times after radiation.
To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory
cytokine, and histological changes in the lung were measured. BvPLA; treatment reduced the
accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils.
In addition, bvPLA; treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related
genes’ mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA;
on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the
therapeutic effects of bvPLA; in radiation-induced pneumonitis, implicating the anti-inflammatory
effects of bvPLA, are dependent upon regulatory T cells. These results support the therapeutic
potential of bvPLA; in radiation pneumonitis and fibrosis treatments.
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1. Introduction

Bee venom (apitoxin) has long been used in alternative medicine to treat various diseases, such as
rheumatoid arthritis, asthma, cancer, and neurodegenerative diseases, and possesses strong immune
modulatory effects [1-6]. The therapeutic effect of bee venom is associated with its anti-inflammatory,
anti-cancer, and anti-nociceptive activity. Bee venom consists of phospholipase A, (bvPLA;), melittin,
adolapin, apamin, and mast cell degranulating peptide [7]. BvPLA; has been considered as a major
allergenic compound of bee venom; however, new experimental data has shown the protective immune
responses of bvPLA; against a wide range of diseases, including inflammatory disorders [8].
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Radiotherapy (Irradiation; IR) is a treatment involving the use of high-energy radiation, commonly
used to treat cancer. It can also be used prior to surgery to shrink a tumor so that it is easier to
remove, or post-surgery to destroy small amounts of tumor that may be left. Stereotactic body
radiotherapy (SBRT) delivers a higher dose of radiation with improved accuracy, compared to
conventional radiotherapy, and many SBRT studies in lung cancer have reported excellent results [9,10].
Nevertheless, the adverse effects of radiation on normal tissues that surround the tumor often preclude
the application of curative radiation doses. These radiation-induced side effects, which include
radiation pneumonitis and late pulmonary fibrosis, are common. In a previous study, it was shown that
radiation pneumonitis and late pulmonary fibrosis may involve inflammasomes and an innate immune
response to tissue inflammation and injury [11-13]. The innate immune system senses tissue damage
and translates the information to other repair and defense systems in the body by stimulating wound
repair and angiogenesis, as well as activating adaptive immunity [14]. Inflammasome signaling is
followed by IL-1f3 processing and secretion in dendritic cells, macrophages, and epithelial cells [15-20].
Taken together, these events are associated with concomitant radiation-induced pneumonitis and
fibrosis. In this study, we selected a clinical SBRT-treated animal model to better understand the
therapeutic effects of bvPLA; on radiation pneumonitis.

Our recent studies demonstrated that bee venom PLA; possesses a strong capability to increase the
population of regulatory T cells (Tregs) [21,22]. Tregs are potent immune modulatory cells and maintain
tolerance toward autoantigens, and are also key immune suppressors for preventing overwhelming
immune responses. Notably, bvPLA; induced Tregs and caused immunosuppressive effects via Tregs
in the lungs [23]. Based on these previous results, we hypothesized that bvPLA; might be able to
alleviate radiation-induced pneumonitis, mediated by Treg induction. In this study, we provide strong
evidence that bvPLA; has potential therapeutic use to reduce radiation-induced lung inflammation.

2. Results

2.1. The Effect of Bee Venom PLA; on Histological Changes in Irradiated Lung Tissue

To evaluate the effects of bvPLA; on radiation-induced lung injury, a single dose of 75 Gy of
X-rays was delivered to the left lung in a single fraction. Lung sections stained with H&E revealed
that focal irradiation induced the formation of an intra-alveolar hyaline membrane and inflammatory
cell infiltration (Figure 1). The alveolar inflammatory score of the IR+PBS group was significantly
higher compared with the control (Figure 1C). By contrast, the IR+PLA, group showed less tissue
damage, such as the formation of an intra-alveolar hyaline membrane and inflammatory cell infiltration
(Figure 1A). Masson’s trichrome staining revealed that the IR+PBS group showed significant increases
in collagen deposition and number of fibrotic foci (Figure 1B,D). Treatment with bvPLA; significantly
reduced collagen deposition (Figure 1B,D).

2.2. The Effect of Bee Venom PLA, on Pulmonary Inflammation

To elucidate whether bvPLA; influences immune cell infiltration into the lung in
radiation-induced inflammation, BAL fluid mice were evaluated three weeks after treatment with 75 Gy
of radiation. A significant increase in the influx of total cells, macrophages, neutrophils, lymphocytes,
and eosinophils was observed in the IR+PBS group compared to the control group. The bvPLA,
treatment group exhibited significantly decreased numbers of immune cells, including macrophages,
neutrophils, lymphocytes, and eosinophils in BAL fluid, compared with the IR+PBS group (Figure 2).
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Figure 1. Effect of bee venom PLA; on lung inflammation and lung fibrosis. (A) The lung sections were
stained with H&E. Representative images of magnifications (x200) at day 21. (B) The lung sections
were stained with Masson’s trichrome. Representative images of magnifications (x200) at day 21.
(C) Quantification of inflammatory foci. (D) Quantification of fibrotic foci. Data are expressed as
the mean + SEM (** p < 0.01, *** p < 0.001 versus IR+PBS; n = 7-10). CON: non-irradiation, IR+PBS:
irradiation + PBS, IR + PLAZ2: irradiation + bee venom PLA;.
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Figure 2. Effect of bee venom PLA; on immune cell profiles in BAL fluid. The number of total cells
(A); macrophages (B); neutrophils (C); lymphocytes (D) and eosinophils (E) were determined in BAL
fluid. Data are expressed as the mean number of cells £ SEM (* p < 0.05, ** p < 0.01, *** p < 0.001
versus IR+PBS; n = 7-10). CON: non-irradiation, IR+PBS: irradiation + PBS, IR+PLA2: irradiation + bee
venom PLA,.
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2.3. The Effects of Bee Venom PLA; on Inflammation- and Fibrosis-Related Gene Expressions in Irradiated
Lung Tissue

Gene expression profiles in the lung were assessed by real-time PCR. The expression of
inflammasome- (Nirp1, Nlrp3, II-1b, and Caspl), chemokine- (Mipla, Mcpl, and CCL4), cytokine-
(1I-6 and 1I-17c), and fibrosis-related (Col3al and Fnl) genes were increased in the IR+PBS group
(Figure 3). However, treatment with bvPLA; significantly reduced inflammasome-, chemokine-,
cytokine-, or fibrosis-related genes in lung tissue, compared to the IR + PBS group (Figure 3).
We also performed IHC staining for TGF-B1 (Figure 4), because TGF-f3 plays an important role
in the development of radiation pneumonitis and radiation fibrosis [24]. The histological results also
demonstrated that the TGF-31 positive areas of the X-ray irradiated lung were significantly decreased
by bvPLA; treatment (Figure 4B).
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Figure 3. Effect of bee venom PLA; on mRNA levels in lung tissue. (A) Nirp3; (B) Nlrp1; (C) Caspl;
(D) 1I-1b; (E) Col3al; (F) Fn1; (G) II-6; (H) Mipla; (I) Mcp1; (J) 1I-17c; (K) CCL4. Data are expressed as
the mean + SEM (* p < 0.05, ** p < 0.01, *** p < 0.001 versus IR+PBS; n = 7-10). CON: non-irradiation,
IR + PBS: irradiation + PBS, IR + PLA2: irradiation + bee venom PLA,.
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Figure 4. Effect of bee venom PLA; on TGF-B1 expression in lung tissue. Lung sections were
stained with TGF-$1 using immunohistochemistry at day 21 after irradiation. CON: non-irradiation,
IR+PBS: irradiation + PBS, IR + PLA2: irradiation + bee venom PLA;. (A) Representative images
of magnifications (x200). (B) Quantification of TGF-B1 expression foci, x200. Randomly selected
fields of view for each slide were scored for area and intensity of positively stained (brown) cytoplasm
and cell membrane. The intensity scores for positively stained areas were divided into 4 groups:
(1) no appreciable staining = 0; (2) barely detectable staining = 1; (3) readily appreciable brown
staining = 2; and (4) dark brown staining = 3. The total score was calculated by adding the intensity
scores from three independent slides in each sample, resulting in a final score of 0 to 9. For statistical
analysis, scores of 3 to 9 were defined as positive expression, while scores of 0 to 2 were defined as
negative expression. Data are expressed as the mean + SEM (** p < 0.01, *** p < 0.001 versus IR+PBS;
n =7-10).

2.4. The Role of Tregs in the Therapeutic Effects of Bee Venom PLA, after Radiation-Induced
Lung Inflammation

A previous report demonstrated that Treg depletion by an anti-CD25 antibody injection abolished
the anti-inflammatory effects of bee venom in asthma, multiple sclerosis, and lupus nephritis [25-27].
Furthermore, it has been confirmed that bvPLA; induced Tregs from naive CD4 positive T cells [21]
and that Tregs are critical to lung fibrosis [28,29]. To determine whether Tregs were involved in the
effects of bvPLA; on radiation-induced pneumonitis, mice were injected with the PC61 antibody
to deplete Treg in vivo. The efficacy of Treg depletion (>90%) was confirmed prior to irradiation
(Figure 5A). The Treg-depleted model system showed a distinct role for Tregs in the effect of bvPLA,
on immune cell infiltration in lung tissue. BvPLA, treatment showed an obvious effect on the influx
of total cells, macrophages, neutrophils, lymphocytes, and eosinophils into BAL fluid in control IgG
antibody injected mice. In anti-CD25 antibody-injected mice, however, bvPLA; showed a tendency
to decrease the number of such infiltrated cells, but this was not statistically significant (Figure 5B).
These results suggest that Tregs, at least in part, contribute to the therapeutic effects of bvPLA; in
radiation-induced lung inflammation.
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Figure 5. Effect of bee venom PLA; and CD4*CD25* Treg deficiency on immune cell profiles in BAL
fluid. (A) Confirmation of CD4"CD25" Treg depletion (left: rat IgG treated, right: PC61 treated).
(B) The number of immune cells was counted in BAL fluid. CON: non-treated, PBS: irradiation + PBS,
PLA2: irradiation + bee venom PLA;, IgG: rat IgG, PC61: anti-CD25 antibody. Data are expressed as
the mean number of cells + SEM (* p < 0.05, ** p < 0.01, *** p < 0.001 versus indicated group; n = 5).

3. Discussion

Radiation-induced lung injury is characterized by airway inflammation and occurs in up to 30%
of patients who receive irradiation for lung tumor treatment and in approximately 15% of patients with
other thoracic cancer, which is now a leading and increasing cause of high morbidity and mortality
worldwide [30-32]. The goal of this study was to elucidate the effects of bvPLA; on IR-induced lung
injury. The results of the present study demonstrate that exposure to radiation induces structural
changes in terms of inflammation in the lung. In addition, we observed collagen deposition in IR+PBS
mice, suggesting an overlap between pneumonitis and fibrosis [33]. The lung tissue of the IR+PBS
group showed classical appearances of acute lung injury. By contrast, the bvPLA,-treated group
showed less inflammatory cell infiltration in the alveolar space and bronchial lumen.

Bee venom has long been used in alternative medicine to treat a variety of immune-related
diseases, such as multiple sclerosis and rheumatoid arthritis, and possesses strong immune modulatory
effects [1-6,34,35]. Our recent studies have demonstrated that bvPLA, possesses a strong capability to
increase the population of Tregs and to decrease the inflammatory responses [21,22]. PLA; is a lipolytic
enzyme that produces lysophospholipid and free fatty acids, mainly arachidonic acid, which is a
precursor of different bioactive lipid mediators [36]. PLA; is present in the venoms of snakes, bees,
mammals, and scorpions. It has been classified into 15 distinct groups and 4 main types, according to
its structure, source, and function [36]. PLA; derived from bee venom belongs to group III secretory
PLA; [8]. Each PLA; has an intrinsic function separate to the common function of these enzymes,
which causes cleavage of the sn-2 acyl bond of phospholipids. Von Allmen et al. demonstrated that
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PLA,-IID secreted from mouse Tregs promoted the differentiation of Tregs, and inhibited disease
development of colitis and multiple sclerosis [37]. For the proper function of bvPLA,, catalytic
activity was not required, yet, in our previous study, heat-inactivated bvPLA; lost its effect for Treg
differentiation [21,22]. In the current study, we used catalytically active bvPLA, and verified its
therapeutic effects on radiation-induced lung inflammation; however, we did not compare the effects
between enzymatically active- and inactive-forms of bvPLA;. A comparison of the effects of wild-type
and H34Q [38] point mutated-recombinant bvPLA; would confirm whether the enzymatic activity is
involved, or not, in the observed anti-inflammatory action. Recently, Palm et al. demonstrated that
bvPLA; induced a Th2 response, which was dependent on MyD88 [39]. The necessity of the catalytic
activity of bvPLA; for its therapeutic use remains unclear. Even though we focused on the Treg-related
mechanism in this study, the anti-inflammatory effect of bvPLA; on radiation-induced inflammation
might be partly due to anti-inflammatory cytokines, such as IL-4 [40]. In some part, different Th
response could be dependent upon the used dosage of bvPLA,; for each experiment, since the binding
affinity of bvPLA, for receptors, such as MyD88 and CD206, is different. In practice, we used a much
lower dosage of bvPLA; (1/12 to 1/25 of the dosage used by Palm et al.) [39]. The binding capacity to
CD206 and the enzymatic activity of each venom’s PLA; may play a role in PGE2 production within
dendritic cells. Baratelli et al. showed that PGE2 induces Foxp3 gene expression and Treg function in
human CD4" T cells [41]. To elucidate the detailed function of bvPLA,, further mechanistic studies
are required.

The anti-inflammatory actions of Tregs can protect against lung injury by inhibiting the influx of
macrophages, neutrophils, lymphocytes, and eosinophils, which act as a source of pro-inflammatory
cytokine production [42,43]. Tregs can inhibit fibrosis, and, moreover, impairment of Treg is shown in
fibrosis in the lungs and other organs [28,29,44]. In our previous study, we demonstrated that bvPLA,
binds to the CD206 receptor on dendritic cells, and this binding induced COX2 expression and resulted
in PGE2 secretion [21]. PGE2 directly induced Treg differentiation by binding to the EP2 receptor on
CD4* T cells. Ultimately, the Treg population was increased through this pathway. In addition, it is
suggested that PGE2 increases cAMP in fibroblasts through EP2 receptors, which inhibited fibroblast
proliferation, stimulated the death of fibroblasts, and inhibited extracellular matrix protein synthesis,
resulting in protection against bleomycin-induced pulmonary fibrosis [45,46]. We have also shown that
bvPLA; induced Treg and showed immunosuppressive effects via Treg in the lung of OVA-induced
asthmatic mice [23]. Our findings show that, in line with our previous data, the therapeutic effect of
bvPLA; is associated with Treg in a radiation-induced lung inflammatory model. However, the number
of infiltrated inflammatory cells into the lung tissue was decreased by bvPLA; treatment in a Treg
deficient system, though it was not statistically significant. The result might come from incomplete Treg
deletion, or it implies that there is another cellular mechanism beyond Treg for the anti-inflammatory
effects of bvPLA,. For example, CD206" macrophages may participate in the effects of bvPLA; in
radiation-induced lung inflammation. The mechanism of bvPLA; involved in radiation-induced lung
injury remains, for the most part, unknown.

The observed inflammatory changes were accompanied by an increase in cytokines, such as IL-1(3
and IL-6, as is observed in pneumonitis, which are associated with impaired lung function [47-53].
In addition, profibrotic cytokines, such as TGF-f3 and IL-13, contribute to pulmonary fibrosis by
promoting the conversion of fibroblasts to myofibroblasts [24,54-56]. Specifically, TGF-f plays an
important role in the development of radiation pneumonitis and radiation fibrosis [24]. These cytokines
also activate macrophages [55,56]. In the present study, the bvPLA,-treated group showed a
suppression of these cytokines and macrophages in lung tissue. Our recent study demonstrated
that radiation can injure the cells that activate the NLRP3 inflammasome [33]. The failure to clear
the byproducts of cellular damage induced by radiation leads to a hyperactivation of the innate
immune system and fibrosis in the lungs [57]. CD4* T cells abolish macrophage NLRP1 and
NLRP3 inflammasome-mediated caspase-1 activation and subsequent interleukin 1f3 release [58].
CD4*CD25" Tregs are a subset of the thymus-derived CD4* T cell population that play a crucial
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role in immune regulation by inhibiting the production of cytokines via their constitutive expression
of the transcription factor Foxp3 [59,60]. Consistent with these reports, our results show that the
NLRP3 inflammasome-related (Nlrp1, Nlrp3, 1I-1b, and Caspl) and fibrosis-related (Col3al and Fnl)
genes are reduced. These findings suggest that the protective effects of bvPLA; are associated with the
suppressed hyperactivation of the innate immune system.

Taken together, the results of this study suggest that bvPLA; is an effective target for the regulation
of Tregs to significantly ameliorate radiation-induced lung inflammation and fibrosis. BvPLA; is,
as such, a potential candidate for treating radiation-induced inflammation and fibrosis.

4. Materials and Methods

4.1. Irradiation Equipment

Radiation was delivered to a small volume of the left lung, using an image-guided small-animal
irradiator, an X-RAD 320 (Precision, North Branford, CT, USA). This irradiator is equipped with a
collimator system that is composed of 3.5-cm-thick copper to produce focal radiation beams, an imaging
subsystem consisting of a fluorescent screen coupled with a charge-coupled-device camera, and a
manually operated stage. The collimators generate a cone beam that ranges from 1 to 7 mm in diameter.
The percentage depth doses were measured with GAFCHROMIC EBT2 film [61]. To mimic clinical
stereotactic ablative radiotherapy conditions by irradiating only a small tissue volume, we selected
3-mm collimators.

4.2. Mouse Irradiation

All the experiments and animal handling procedures in this study were approved by the Animal
Experimental Ethics Committee of the Kyung Hee University and Yonsei University (permit number:
2014-0164-1, approved on 06/26/2014) and performed according to local guidelines. C57BL/6 female
mice (6 weeks old, weighing 20-25 g) were purchased from Charles River Korea (Orient Bio, Seongnam,
South Korea). The mice were housed (1 = 5 in each cage) and allowed to acclimatize for 1 week prior
to treatment. A single dose of 75 Gy was delivered to the left lung in a single fraction. In our previous
study, we found that a radiation dose of 75 Gy induced inflammation after 3 weeks. The mice were
randomly divided into 3 groups (n = 7-10/group): (1) control group: Negative control mice received
an intraperitoneal (i.p.) injection of phosphate-buffered saline (PBS) on day 7, 10, 12, 14, 17, and 19;
(2) IR+PBS group: Mice were exposed to a single dose of 75 Gy delivered to the left lung in a single
fraction and then i.p. injection with PBS on day 7, 10, 12, 14, 17, and 19; (3) bvPLA; group: Bee
venom-derived PLA; (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in PBS (1 mg/mL) for the
stock solution. Stocks were stored —20 °C and diluted with PBS before administration. The mice
were administered with bvPLA; (0.2 mg/kg body weight.) via i.p. injection on day 7, 10, 12, 14, 17,
and 19 after IR. During irradiation, the mice were anesthetized with an i.p. administered mixture
of 30 mg/kg zoletil and 10 mg/kg rompun. At day 21, mice were sacrificed by CO; asphyxiation,
and lung tissues were collected for analyses. No mice died during the experiment.

4.3. Depletion of CD4*CD25% Regulatory T Cells In Vivo

Anti-mouse CD25 rat IgG1 (anti-CD25; Clone PC61) was generated in-house from hybridomas
obtained from American Type Culture Collection (Manassas, VA, USA). Before irradiation,
we confirmed the efficacy of CD4*CD25" Treg depletion by flow cytometry. We used FOXP3EGFP mice,
with PE-anti-mouse CD25 and APC-mouse CD4 antibodies. A single dose of 75 Gy was delivered
to the left lung in a single fraction. The C57BL/6 female mice were randomly divided into 7 groups
(n =5/group): (1) control group; (2) IR + PBS group; (3) IR + PBS + total rat IgG group; (4) IR + PBS +
PC61 group; (5) IR + bvPLA; group; (6) IR + bvPLA; group+total rat IgG group; and (7) IR + bvPLA;,
group+PC61 group. A dose of 0.25 mg of the anti-CD25 antibody and total rat IgG was injected on days
0 and 7; (1) control group: Negative control mice received an i.p. injection with PBS alone on days 1, 4,
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6,8, 11, and 13; (2) IR + PBS groups: Mice were exposed to a single dose of 75 Gy delivered to the left
lung in a single fraction and then i.p. injection with PBS alone on days 1, 4, 6, 8, 11 and 13; (3) bvPLA,
groups: Mice were administered with bvPLA; (0.2 mg/kg body weight.) via i.p. injection on days 1,
4,6, 8,11 and 13 after IR. During irradiation, the mice were anesthetized with an i.p. administered
mixture of 30 mg/kg zoletil and 10 mg/kg rompun. At day 14, the mice were euthanized using CO,
asphyxiation, and lung tissues were collected for analysis.

4.4. Analysis of Lung Inflammatory Cells

PBS was gradually infused into the lungs and then withdrawn via a cannula that had been inserted
into the trachea. This procedure was repeated 3 times, and the lavages were collected. Following
this, collected BAL fluid was centrifuged at 1300 rpm for 10 min. The supernatants were stored at
—80 °C until further analysis, and the cell pellets were resuspended in 1 mL PBS and adhered to glass
slides using cytocentrifugation. The numbers of total and differential cells in the BAL fluid were then
determined in a hemocytometer, using trypan blue exclusion. Cells in BAL fluid were distinguished
as macrophages, neutrophils, lymphocytes, and eosinophils by Diff-Quick staining [62]. In brief,
we classify immune cells by size, shape, and color by staining. Eosinophils were stained using Eosin.
Macrophages, neutrophils and lymphocytes were stained using hematoxylin. Cells with single, large,
round, or indented nuclei were classified as macrophages. Cells with a polymorphonuclear nucleus,
with several lobes were sorted as neutrophils. Cells with a clear perinuclear zone around the nucleus
were categorized as lymphocytes.

4.5. Preparation of Lung Tissue for Histology and Immunohistochemistry

Lung tissues were fixed in a 4% paraformaldehyde solution and then embedded in paraffin.
For histological examination, 4-um sections of lung tissue were stained sequentially with
hematoxylin and eosin (H&E), Masson’s trichrome (MT), and immunohistochemical (IHC) stains.
For TGF-B1 detection, lung tissues were treated with 0.3% H;O-methanol for 20 min to block
endogenous peroxidase. Subsequently, the sectioned tissues were incubated at 4 °C overnight
with an anti-TGF-f1 primary antibody (1:100 dilution; ab64715, Abcam). After the slides were
incubated with biotinylated secondary antibody and then with a VECTASTAIN® ABC Reagent
(Vector Laboratories, Burlingame, CA, USA), the color was developed with 3,3'-diaminobenzidine
tetrachloride (DAB; Zymed Laboratories, San Francisco, CA, USA). After IHC staining, the slides
were counterstained with Harris’s hematoxylin for 1 min and then mounted with Canada balsam
(Show Chemical Co. Ltd., Tokyo, Japan).

4.6. Histopathology and Immunohistochemistry Scoring

For histopathological evaluation, sections were stained with H&E and MT stains, and scored
for the number of inflammatory or fibrotic foci, respectively. For IHC evaluation, sections were
stained with TGF-f31 staining. Slides were assessed according to a dual rate semi-quantitative method
carried out by 5 independent pathologists who were blinded to the sample data [63]. Randomly
selected fields of view for each slide were scored for area and intensity of positively stained (brown)
cytoplasm and cell membrane. The intensity scores for positively stained areas were divided into
4 groups: (1) no appreciable staining = 0; (2) barely detectable staining = 1; (3) readily appreciable
brown staining = 2; and (4) dark brown staining = 3. The total score was calculated by adding the
intensity scores from three independent slides in each sample, resulting in a final score of 0 to 9.
For statistical analysis, scores of 3 to 9 were defined as positive expression, while scores of 0 to 2 were
defined as negative expression.

4.7. Real-Time Quantitative PCR Analysis

RNA was isolated from lung tissue using an RNeasy Mini Kit (Qiagen, CA, USA) according
to the manufacturer’s instructions, and the RNA was quantified using a NanoDrop (ND-1000;
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NanoDrop Technologies, Inc., Wilmington, DE, USA). Real-time quantitative PCR was performed
using LightCycler 480 SYBR Green I Master mix and a Light Cycler 480 real-time PCR machine
(Roche Applied Science, Indianapolis, IN, USA). The expression levels of transcripts were
evaluated using Light Cycler 480 software. The transcript levels of 3-actin were used for sample
normalization. Data were obtained from 3 independent experiments and are represented as
average + standard error. The sequences of the mouse primers were as follows: Nirpl (FW
5'-catggctggttcctaccact-3'; RW 5'-ccaaccaccatgtgactcetg-3'), Nlrp3 (FW 5'-atgctgcttcgacatctect-3'; RW
5'-gtttctggaggttgcagage-3'), Caspl (FW 5'-cacagctctggagatggtga-3'; RW 5'-ggtcccacatatteectect-3"), II-1b
(FW 5'-gcccatectctgtgactcat-3'; RW 5'-aggccacaggtattttgtcg-3'), Ccl4 (FW 5'-cccacttectgcetgtttcte-3'; RW
5'-gtctgectettttggtcagg-3'), Col3al (FW 5'-accaaaaggtgatgctggac-3'; RW 5'-gacctegtgctecagttage-3'), Frl
(FW 5'-acagagctcaacctecctga-3'; RW 5'-tgtgctetectggttetect-3'), II-6 (FW 5'-ccggagaggagacttcacag-3'; RW
5'-tccacgatttcccagagaac-3'), Mipla (FW 5'-atgaaggtctccaccactge-3'; RW 5'-gatgaattggegtggaatct-3'), Mcpl
(FW 5'-ccaatgagtaggctggaga-3'; RW 5'-tctggacccattccttettg-3'), II-17c (FW 5'-aggtgctggaagctgacact-3;
RW 5'-catccacgacacaagcattc-3'), Foxp3 (FW 5'-tcttgccaagctggaagact-3'; RW 5'-gggettcaaggaagaagagg-3'),
and B-actin (FW 5'-gatctggcaccacaccttct-3'; RW 5'-ggggtgttgaaggtctcaaa-3').

4.8. Statistical Analysis

Statistical analysis of the data was conducted using Prism 5 software (GraphPad Software Inc.,
San Diego, CA, USA). All of the values are presented as the mean + SEM (standard error of the
mean). The statistical significance was assessed by one-way ANOVA followed with Turkey’s test with
randomly selected samples. A p-value < 0.05 was considered statistically significant.
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