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Abstract: A major factor in the resilience of Listeria monocytogenes is the alternative sigma factor B (o).
Type II Toxin/ Antitoxin (TA) systems are also known to have a role in the bacterial stress response
upon activation via the ClpP or Lon proteases. Directly upstream of the o® operon in L. monocytogenes
is the TA system mazEF, which can cleave mRNA at UACMU sites. In this study, we showed that the
mazEF TA locus does not affect the level of persister formation during treatment with antibiotics in
lethal doses, but exerts different effects according to the sub-inhibitory stress added. Growth of a
AmazEF mutant was enhanced relative to the wildtype in the presence of sub-inhibitory norfloxacin
and at 42 °C, but was decreased when challenged with ampicillin and gentamicin. In contrast
to studies in Staphylococcus aureus, we found that the mazEF locus did not affect transcription of
genes within the o® operon, but MazEF effected the expression of the oB-dependent genes opuCA and
Imo0880, with a 0.22 and 0.05 fold change, respectively, compared to the wildtype under sub-inhibitory
norfloxacin conditions. How exactly this system operates remains an open question, however, our
data indicates it is not analogous to the system of S. aureus, suggesting a novel mode of action for
MazEF in L. monocytogenes.

Keywords: Listeria monocytogenes; sigma B (oB); toxin-antitoxin modules; MazEF; antibiotics;
sub-MIC; stress response; persister cells

1. Introduction

Listeria monocytogenes is a foodborne pathogenic bacterium, capable of causing major pregnancy
complications or severe symptoms, such as septicaemia or meningitis, in immunocompromised
persons with upwards of 30% mortality [1]. In addition to the inhospitable conditions of the human
digestive system, L. monocytogenes has evolved to persevere in a several environments; from soil to
the intentionally harsh conditions of food processing facilities, where it must cope with exposure to
preservatives and disinfectants [2]. One of the most important factors in the resilience of this organism
is the alternative sigma factor B (¢®), which under specific conditions directs RNA polymerase to
transcribe >150 stress responsive genes [3,4] that allow this bacteria to cope with and even grow in
NaCl concentrations as high as 6%, temperatures near 0 °C, and pH as low as 4.3 [5].

Several other systems are involved in bacterial survival during stress conditions, including the
chromosomally encoded Toxin/Antitoxin (TA) systems, which are most widely known for their role
in the formation of persister cells [6]. TA systems are thought to become stochastically activated
in a small fraction of a bacterial population, leading to this reversible, dormant-like cell state that
renders the bacterial cell invulnerable to killing by most classes of antibiotics [6]. One of the most
widely studied TA systems is the type Il TA MazEF. Like all Type II TA systems, the mazEF genes are
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co-transcribed into two proteins, MazE, an unstable antitoxin that binds and inhibits activity of the
toxin MazF, an endoribonuclease that cleaves mRNA at specific sites. Under activating conditions of
stress in Escherichia coli, mazEF transcription is reduced leading to the degradation of MazE by the
ClpP or Lon proteases [7,8], thereby freeing up the toxin to induce stasis via the cleavage of mRNA
at ACA sites [9]. In Staphylococcus aureus, which lacks the Lon protease, MazE is degraded only by
the ClpP protease [8] and MazF mRNA cleavage is more specific, occurring at UACAU sites [10].
Persister cells have previously been observed in L. monocytogenes, where the authors speculated
that they may result from TA systems [11]. L. monocytogenes EDGe has two predicted type II TA
systems in its chromosome [12], which is relatively few for free-living prokaryotes [13]. The first is an
experimentally verified mazEF TA system that has been shown to induce dormancy and cleave mRNA
at UACMU sites upon overexpression [14], while the second is a putative TA system belonging to the
Xre-COG2856 family.

In addjition to persister formation, an increasing body of evidence suggests that TA modules also
have a wider regulatory role in stress-related processes, such as the response to nutrient starvation [15]
and biofilm formation [16]. Interestingly, the mazEF TA module has been found to be located directly
downstream of the stringent response regulator re/A in Gram negative bacteria like E. coli [17] and
directly upstream of o® in Gram positive bacteria such as Staphylococcus aureus [18], Bacillus subtillis [19],
and L. monocytogenes. Reasons for this synteny have so far been elusive, however, Donegan and
Cheung [18] have shown that o® of S. aureus auto-regulates the o® operon through the mazEF promoter
in a stress specific manner. MazF has also been shown to influence transcript levels of genes within the
oP operon [20,21], indicating that it may act as another level of regulation in the o® response.

A second proposed mechanism of action for MazEF presumes that specific genes have evolved
to contain unusually high abundances of the MazF cleavage site making them more susceptible to
degradation by the toxin under conditions where MazE is degraded. One example is the gene sraP
of S. aureus, which encodes the pathogenic adhesive factor SraP and contains 43 MazF cleavage
sites compared to the 11 expected by chance [10]. Furthermore, when the top MazF cut-site rich
genes of S. aureus are grouped according to biological function, the pathogenic factor gene group is
significantly over-represented [10], whereas the putative MazF target genes in Bacillus subtilis [22]
and Staphylococcus equorum [23] are mostly involved in the production of secondary metabolites or
metabolism, respectively, suggesting that MazF may regulate different specific cellular processes
depending on the bacteria.

Transcriptomic data from other studies in L. monocytogenes [24,25] show that mazEF (Imo0887-0888),
one of only two type II TA systems predicted in the genome of L. monocytogenes EDGe [12], is also
co-transcribed in the o® operon. Thus, given the role of the mazEF loci in other organisms, its proximity
to the major stress response regulator %, and the finding that L. monocytogenes forms persister cells via
an unknown mechanism [11], our purpose in this study was to investigate the potential role of this
toxin/antitoxin system in the stress response of L. monocytogenes.

2. Results

2.1. Deletion of the mazEF TA System does not Detectably Alter Persister Formation

Due to an abundance of evidence showing the direct role of TA systems in the formation of
persister cells [26-28], we initially tested whether or not the deletion of one out of the two predicted
TA systems in L. monocytogenes EDGe would negatively impact survival when challenged with high
concentrations of antibiotics. Upon treatment with co-trimoxazole and ampicillin (Figure 1A,B),
bacterial counts of each strain did not significantly differ and remained stable throughout the 48 h of
exposure. All strains treated with norfloxacin exhibited a biphasic killing curve (Figure 1C), emblematic
of persister cells with an initial steep decline in CFU/mL over the first 10 h, followed by a stationary
plateau between 4 and 3 Logj9 CFU/mL for the AclpP mutant and between 5.5 and 5.7 Log19 CFU/mL
for the rest. Treatment with gentamicin resulted in a similar biphasic killing curve for all strains
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(Figure 1D). The only significant difference observed in CFU/mL to EDGe by the end of each 48 h
treatment period was the AclpP mutant exposed to norfloxacin (p = 0.001).
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Figure 1. Killing kinetics of EDGe (O), AsigB (W), AclpP (4), and AmazEF (O) exposed to approximately
30x Minimum Inhibitory Concentrations (MIC) for 72 h under shaking at 250 rpm with (A) co-trimoxazole
(10 pg/mL); (B) ampicillin (3 pg/mL); (C) norfloxacin (100 pg/mL); and (D) gentamicin (10 pug/mL).
Error bars represent standard deviation of the mean for three biological replicates. * p < 0.001.

2.2. MazEF Affects Growth under Specific Sub-Inhibitory Growth Conditions

Since no link between the mazEF TA system and persister formation was observed, we
hypothesized that it could have an active regulatory function, in which case it may require time
to initiate in response to a stress. Therefore, we investigated the effects of the gene knockouts on
growth under sub-inhibitory stress conditions: specifically, we selected clinically relevant antibiotics,
as well as conditions known to be alleviated by the o® response. When grown in the absence of
treatment (Figure 2A) all strains grew identically, with the exception of the AclpP, which was impaired
in the exponential growth phase. Relative growth trends in NaCl and bile salts (Figure 2B,C) were
essentially identical to growth in Brain Heart Infusion (BHI) alone, with the exception that the AsigB
mutant had a growth advantage when grown in the presence of bile salts. When grown at 42 °C,
the AmazEF strain had a stark growth advantage over the EDGe wildtype strain, and the AsigB mutant
displayed a moderate growth advantage (Figure 2D). In contrast to the killing kinetic experiment,
we observed significant differences in growth between the mutants and EDGe when grown in the
presence of sub-inhibitory concentrations of antibiotics (Figure 2E-H). The AclpP mutant was more
sensitive to all but gentamicin, where its relative growth deficiency to the other strains was abolished
(Figure 2H). For the AsigB mutant, we observed slight growth disadvantages relative to EDGe under
co-trimoxazole (Figure 2E) and ampicillin (Figure 2F) stress. The AmazEF mutant grew more poorly
than EDGe in the presence of co-trimoxazole (Figure 2E) and ampicillin (Figure 2F) and was severely
inhibited in gentamicin (Figure 2H). However, similar to growth at 42 °C, AmazEF grew faster and to a
higher cell density when challenged with norfloxacin (Figure 2G).
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Figure 2. Growth curves for EDGe (O), AsigB (), AclpP (), and AmazEF () exposed to sub-inhibitory
stress. OD600 was measured in 96-well plates over 24 h for strains receiving (A) no treatment;
(B) 0.625 M NaCl; (C) 0.01% bile salts; (D) 42 °C; (E) 0.25 pg/mL co-trimoxazole (SXT); (F) 0.07 pg/mL
ampicillin (AMP); (G) 1.5 ug/mL norfloxacin (NOR); and (H) 0.10 ug/mL gentamicin (GEN). Error
bars represent standard deviation of the mean for two biological replicates.

In summary, all strains grew identically (except for the AclpP mutant) in the absence of stress,
however, we observed unique growth differences between the strains depending on the stress added.
We observed similarities between the AsigB and AmazEF mutants, which grew better at 42 °C and
worse in the presence of ampicillin, with the AmazEF exhibiting a more extreme difference relative to
the wildtype in the two conditions, as well as some growth patterns specific for the AmazEF mutant,
which grew better than the rest of the strains in the presence of norfloxacin, but worse in gentamicin.



Toxins 2017, 9, 31 50f17

2.3. MazF Does not Detectably Degrade Putative Target Transcripts In Vivo

Given the established in vitro function of MazF in L. monocytogenes as an endoribonuclease that
cleaves mRNAs at UACMU motifs [14], we compared the actual number of MazF cleavage sites in
each gene of L. monocytogenes EDGe to the predicted number of MazF cleavage sites, as determined by
gene length and nucleotide content. This was done based on the assumption that genes which have
a much higher abundance of MazF cleavage sites, as compared to chance alone, will be more prone
to the ribonucleic activity of MazF. Table 1 shows the 10 genes with the highest frequency of MazF
cleavage sites, which ranged from functions involved in the electron transport chain (I102638), cell
wall biogenesis and modification (Im01090 and Imo0835, respectively), and sugar uptake (bvrB) and
metabolism (pgi).

Table 1. The top ten genes with the greatest frequency of MazF cleavage sites (p), as determined by
comparing the actual number of MazF cleavage sites to the predicated number based on gene length
and nucleotide content.

Gene Name Length UACMU Sites P Functional Description

Imo2638 1887 10 0.9738 NADH dehydrogenase

secY 1296 8 0.9436 preprotein translocase subunit SecY

Imo1310 1305 8 0.9413 hypothetical protein

borB 1923 8 0.9303 beta-glucoside-specific phosphotransferase
enzyme II ABC component

Imo1911 1137 7 0.8988 histidine kinase

Imo0835 1005 6 0.8770 peptidoglycan binding protein

Imo1090 984 6 0.8698 glycosyltransferase

Imo1030 1029 6 0.8600 Lacl family transcriptional regulator

Imo0880 1389 6 0.8261 wall associated protein precursor

pgi 1353 6 0.8259 glucose-6-phosphate isomerase

To test if we could observe MazF mediated mRNA cleavage in vivo, we then measured the
transcription of three genes with the high frequencies of MazF cut sites: burB, [m02638, and Im00880
in EDGe and the AmazEF mutant under non-stressed conditions. RT-qPCR showed a slight, but
non-significant increase in the number of the three transcripts present in AmazEF, as compared to
EDGe (Figure 3). We also measured the expression of 02638 in L. monocytogenes grown under
sub-inhibitory concentrations of NaCl and norfloxacin, but similarly observed no significant difference
between AmazEF and EDGe (data not shown). The mRNA level of 100880, a o® dependent gene,
was also measured under sub-inhibitory NaCl and norfloxacin stress (Figure 4B).
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Figure 3. Quantification of putative MazF target mRNA via RT-qPCR. Fold-change in Log, scale of
the AmazEF mutant relative to EDGe under non-stressed conditions is shown for 1102638, 100880,
and burB, with 1, 2, and 0 MazF cleavage motifs within the amplicon, respectively. Error bars represent
standard deviation of the mean for two biological replicates.
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2.4. MazEF Affects Expression of sigB Dependent Genes, but not sigB Operon

In order to test if the observed differences in growth were due to a MazEF mediated alteration
of the o® response, we measured the expression of the ¢® dependent genes opuCA (glycine betaine-
carnitine-choline ABC transporter ATP-binding protein), Imo0880 (wall associated protein precursor
LPXTG motif), and inlA (internalin A) in our strains grown without treatment, under osmotic stress
(0.5 M NaCl), or with a sub-MIC (Minimum Inhibitory Concentration) (1 pg/mL) of norfloxacin.
As expected, expression of each ¢® dependent gene (Figure 4) was decreased in the AsigB mutant in
each of the tested conditions with the greatest reductions observed for opuCA and 00880 under stress
treatment. Interestingly, in the AmazEF mutant, we observed a treatment specific response in opuCA
and Imo0880 expression relative to EDGe. We observed no effect on opuCA expression in AmazEF
cultures treated with NaCl, however, in untreated AmazEF cultures, opuCA expression increased when
compared to the wildtype (2.549 fold change; p = 0.00006) and decreased when exposed to sub-MIC
norfloxacin (0.215 fold change; p = 0.0004). This trend was reflected for opuCA expression in the AclpP
mutant, although the only significant difference (p = 0.0008) was a 0.400 fold change when treated with
norfloxacin (Figure 4A). We also observed a significant reduction (0.047 fold change; p = 0.00001) of
Imo0880 expression in the AmazEF strain under norfloxacin stress, but no significant difference under
no treatment or NaCl treatment. These results were again reflected in the AclpP mutant, where /1100880
expression decreased under norfloxacin pressure (0.348 fold change; p = 0.00005) and demonstrated
similar but non-significant trends in the other two treatment groups (Figure 4B). Expression of inlA
was not significantly different in the AclpP or AmazEF mutants (Figure 4C).

These results show a positive influence of o® on opuCA, 100880, and inlA expression under a
range of conditions as excepted. On the other hand, the mazEF gene products appear to repress opuCA
expression when cells are unstressed, but, along with ClpP, activate opuCA and 00880 expression
when exposed to norfloxacin.
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Figure 4. Quantification of oB-dependent gene expression via RT-qPCR. Fold-change in Log; scale of
each gene relative to EDGe is shown for the (A) opuCA; (B) [mo0880; and (C) inlA genes. Each strain
was grown at 37 °C with 200 rpm shaking and received either no treatment (MQ), osmotic stress
(0.5 M NaCl), or sub-MIC (1 pg/mL) norfloxacin. Ct values were normalized to the 165 rRNA gene
(ACt), and then compared to EDGe expression (AACt), and the average was taken from two independent

AACt

experiments. Significance was determined using a t-test on the log, transformed 2~ values.

*p <0.05, ** p < 0.0005, *** p < 0.000005.
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We investigated whether the observed MazEF mediated modification of the o® response was the
result of transcriptomic regulation of sigB by mazEF, or vice-versa, by quantifying the gene expression
of mazF, rsbW (anti-o® factor), and sigB in our strains grown under the same treatment conditions.
The log, adjusted fold change of mazF (Figure 5A), rsbW (Figure 5B), and sigB (Figure 5C) expression
relative to EDGe was less than two-fold for all of the mutants, signifying that neither oB, ClpP, or MazEF
detectably influences the expression of these genes.
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Figure 5. Quantification of o® operon expression via RT-qPCR. Fold-change in Log, scale of each gene
relative to EDGe is shown for the (A) mazF; (B) rsbW; and (C) sigB genes. Each strain was grown at 37 °C
with 200 rpm shaking and received either no treatment (MQ), osmotic stress (0.5 M NaCl), or sub-MIC
(1 ng/mL) norfloxacin. Ct values were normalized to the 165 rRNA gene (ACt), and then compared to
EDGe expression (AACt), and the average was taken from two independent experiments. Significance
was determined using a t-test on the log, transformed 2~ 24t values. NE: No Expression detected.

As previously mentioned, the promoter of mazEF acts as a stress specific driver of sigB
transcription in S. aureus [18]. Here we investigated if the mazEF promoter in L. monocytogenes
is also stress responsive by measuring the gene expression of mazF in EDGe cultures receiving either
no treatment or exposure to stress (osmotic shock and sub-MIC norfloxacin). We could not observe a
significant difference in expression of mazF across the different treatment groups (Figure 6), signifying
that the promoter of mazEF in L. monocytogenes is not responsive to the stress conditions tested.
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Normalized Expression (mazF/16S x 10‘5)

Figure 6. Expression of mazF under different stress conditions (no treatment, 0.5 M NaCl, or
1 pg/mL norfloxacin). The copy number of mazF transcripts were calculated and normalized to
the copy number of 16S rRNA transcripts. Error bars represent standard deviation of the mean for
two biological replicates.

3. Discussion

Given the established function of the mazEF toxin/antitoxin system in the stress response of
several bacterial species [9,21,26,29,30], as well as its synteny to the major stress response regulator oB,
we hypothesized that this TA system could have an observable role in the response of L. monocytogenes
to stress. As chromosomally encoded toxin/antitoxin systems are associated with persister cell
formation and tolerance to antibiotics in other bacteria [6,31], we initially conjectured that the mazEF
TA system in L. monocytogenes would serve a similar function, but this was not the case. We then
hypothesized that the mazEF TA system could actively regulate the response of L. monocytogenes
towards stress, which is supported by the observation that mazEF exerts an effect on the growth of
this bacterium under specific sub-inhibitory growth conditions. TA systems have long been known
to induce stasis [32,33], however, this is, to our knowledge, the first report of a more nuanced role,
whereby the TA system exerts different effects according to the stress (i.e., enhanced growth of the
AmazEF mutant relative to the wildtype in the presence of norfloxacin and 42 °C, but decreased growth
when challenged with ampicillin and gentamicin) and agrees with the idea that the major function of
most TA systems is to serve as a flexible response of a bacterial cell to stress conditions [28,34].

According to the Toxin/ Antitoxin Database [12], type Il TA systems are highly redundant in many
bacterial chromosomes, such as E. coli MG1655 strain (16 predicted), Salmonella Typhimurium str. LT2
(18 predicted), and Mycobacterium tuberculosis H37Rv (77 predicted). This redundancy means that in
some bacteria, multiple TA systems must be removed before an effect on persister formation can be
observed [30,35,36]. Thus, it may be possible that the second predicted TA system of L. monocytogenes
EGDe from the Xre-COG2865 family is acting redundantly, however, this TA family is essentially
uncharacterized and to our knowledge has not been linked to the formation of persister cells.
Furthermore, the MazEF TA system appears to exert a dominant effect in certain cases, in that a single
deletion of this TA system can have significant effects on the formation of persister cells in E. coli [7]
and S. aureus HGO003 (nearly isogenic to NCTC8325), even when challenged with a bacteriostatic
antibiotic [21]. Conversely, a recent study in S. aureus Newman found that knocking out all known TA
systems (including mazEF) had no effect on the level of persisters when challenged with antibiotics,
and that persister cells in this Gram positive bacteria are instead the result of a stochastic entry into
the stationary phase, which the authors speculated could hold true for all Gram positive bacteria [37].
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Fittingly, the prediction that L. monocytogenes only has two TA systems [12] and our observations that
one of these had no detectable effect on the rate of persister formation is supportive of this theory.

clpP was the only gene in this study found to affect persister formation. Whether this is due to
the bacteria being unable to degrade the antitoxin from the second predicted type II TA system of
the Xre-COG2856 family (Imo0113-0114), or is the result of an already stressed cell due to an inability
to clear toxic levels of altered proteins [38], is unknown. However, a reduction in persister cells has
recently been shown in a AclpP S. aureus mutant, where the AclpP persister cells were more sensitive
to an antibiotic from the f-lactam class (oxacillin), but not to a fluoroquinolone (levofloxacin) [39],
whereas we observed the opposite with L. monocytogenes. The fact that -lactams target cell wall
biogenesis [40] and fluoroquinolones replicating DNA [41], suggests different roles for ClpP in the
formation of persister cells between these two organisms.

The majority of studies on the MazEF TA system have relied on the ectopic overexpression of the
toxin to identify its target genes and physiological effects. We, however, employed a strictly genetic
approach, comparing only the presence or absence of the mazEF loci, as we feared that overexpression
could have led to false positives not reflective of this TA system in its natural state. For instance, it seems
to us that the conclusion that MazF induces dormancy in S. aureus [20] and L. monocytogenes [14] may be
an artefact of the artificially high levels of toxin in the bacteria. While it appears to be true for E. coli [7],
the observation that no changes in the level of persister cells (a proxy for dormancy) can be observed
in AmazEF knockouts of S. aureus [37], and as we have shown here for L. monocytogenes, indicates
that under natural circumstances the toxin does not accumulate in high enough concentrations in
these Gram positive bacteria to induce dormancy. This reasoning was also partially why we did not
perform a complementation experiment for the AmazEF knockout, as we feared that even a minor
deviation from the natural levels of MazEF may introduce an artefactual result in the complemented
strain. Additionally, we believe that the probability of an off-target mutation occurring in this study
was sufficiently low to justify omitting a complementation experiment, given the method of allelic
replacement we used, which employed two flanking regions with ~450 bp homology to target and
delete each gene.

Due to the ribonuclease nature of the MazF toxin in vitro [14], as well as its location within the o®
operon, we then hypothesized that mazEF could serve in more of an active regulatory role and that
any MazF, or potentially related o® mediated effects would require time to manifest. If true, effects of
the mazEF deletion would likely be undetectable when challenged with a sudden exposure to high
concentrations of antibiotics. To test this, we measured the effect that each knockout had on growth in
sub-inhibitory concentrations of different stressors. We first tested conditions known to stimulate a
strong o® response in L. monocytogenes, specifically NaCl [42], bile salts [43], and heat [44]. Interestingly,
the only effect of MazEF on o associated stress conditions was the enhanced growth of the AmazEF
mutant at 42 °C, suggesting it plays a role in the thermo-tolerance of L. monocytogenes and is likely
the result of heat induced upregulation of mazF [18,45] and/or the ClpP [46] protease, observed in
other organisms. We also observed better growth of the AmazEF mutant when grown in sub-inhibitory
concentrations of norfloxacin, signifying that under certain conditions, the toxin becomes active and
slows the growth of L. monocytogenes, presumably in order to protect the bacteria by reducing the
activity of antibiotic targets [47], which is consistent with studies showing that ectopic induction of
artificially high levels of MazF induces stasis in other bacteria [20,48,49].

In contrast, when grown in sub-inhibitory concentrations of ampicillin, the AmazEF mutant grew
more poorly than the wild type, which correlates with a study showing that AmazEF mutants of
S. aureus also become more sensitive to 3-lactams, where the authors speculate that it may be due
to one or more unknown targets of MazF involved in cell wall synthesis or turnover [21]. We also
observed an enhanced sensitivity of the AmazEF mutant towards gentamicin. This suggests MazEF
exerts a protective effect by reducing the membrane potential of the bacteria, as aminoglycosides like
gentamicin are dependent upon this for their uptake into cells [50]. Given that MazF in L. monocytogenes
has been established in vitro as an endoribonuclease that cleaves mRNAs at UACMU motifs [14],
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as well as the demonstrated cleavage of the top putative MazF target genes in S. aureus upon
mazF overexpression [10], it is tempting to explain these growth results through cleavage of the
putative MazF target genes, such as those predicted to be involved in cell wall biogenesis and
modification (Imo1090 and Imo0835, respectively) and the electron transport chain (1102638, a NADH
dehydrogenase). However, we were unable to detect a significant increase in the transcript levels of
the three putative MazF target genes we tested in the AmazEF mutant as compared to the wildtype.
The discrepancy between the MazF mediated mRNA cleavage in vitro and a lack of cleavage in vivo has
also been observed in S. aureus and is thought to be the result of protective RNA binding proteins [20].
Furthermore, the observation that /m00880, which is both a ¢® dependent and putative MazF target
gene, is significantly decreased under norfloxacin stress in the AmazEF mutant contrasts with the
idea of MazF mediated cleavage of transcripts containing high frequencies of the UACMU motif in
L. monocytogenes.

We also investigated the possibility that MazEF affects growth under stress by modifying the
response, which is supported by our observation that MazEF activates the expression of the
oP dependent genes opuCA and Imo0880 under norfloxacin stress. However, we observed that
inlA expression was not affected by the absence of MazEF, but speculate that the effect may be

oB

diluted for this gene due to its co-regulation by the global virulence regulator PrfA [51]. In a recent
study on the transcriptomic response to sub-lethal antibiotics [25], L. monocytogenes was found to
significantly down-regulate the expression of certain o® dependent genes, including opuCA and
Imo0880, in response to all tested antibiotics. Our observations suggest that MazEF tempers this
antibiotic induced downregulation of these genes, thereby acting as a negative feedback mechanism to
fine tune this response, which is consistent with the hypothesis that TA systems act as a quality control
mechanism for gene expression under stress [28].

In an attempt to characterize the direct mechanism through which MazEF influences the
expression of opuCA, Imo0880, and potentially other o-dependent genes, we first examined whether
or not MazEF directly modifies the expression of genes within the ¢® operon, as has been observed
in S. aureus for sigB [20] and rsbW [21], however, we were unable to observe any effect on transcript
levels of either gene in the presence or absence of mazEF. We then tested another link observed in
S. aureus between mazEF and the o® operon discovered by Donegan and Cheung [18] who, using an
experimental setup similar to ours, showed that transcripts of mazF in S. aureus were significantly
elevated in their AsigB strain, and that the complete 3.7 kb o® operon transcript (mazEF-sigB) was
present only when exposed to certain conditions, such as heat shock or sub-inhibitory concentrations
of erythromycin and tetracycline, but not to vancomycin. This, in effect, means that the promoter of
mazEF in S. aureus acts as a stress specific promoter for the o® operon that is auto-repressed by ¥,
thereby allowing the bacterium to fine tune its response to particular stimuli. This would explain the
conditional effect of mazEF on opuCA and Imo0880 expression, however, we observed no significant
effects of either sub-inhibitory NaCl or norfloxacin on the expression of mazF, which would be expected
if the promoter of mazEF in L. monocytogenes were acting in an analogous manner. Furthermore, o® had
no effect on the expression of mazF in our study, or mazE as reported by other transcriptomic studies on
AsigB mutants of L. monocytogenes [52,53], indicating that it does not act in the auto-regulatory manner
observed in S. aureus. Our results suggest that mazEF modulates the o® response via some novel
mechanism in L. monocytogenes, perhaps by cleaving the mRNA of the protein or proteins responsible
for affecting the antibiotic induced downregulation of these genes.

4. Conclusions

At the physiological level, mazEF appears not to stop growth, as evidenced by its null effect on
dormant persister cell formation, but rather modulate growth in response to specific stress factors.
At the transcriptional level, MazEF modifies the expression of certain o dependent genes like opuCA
and Imo0880 in a stress specific manner. Interestingly, with the exception of heat, mazEF seems
immaterial with respect to conditions typically associated with the o® response (i.e., NaCl and bile),
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suggesting that it may work by co-opting and redirecting the pre-existing o® stress response pathway
to cope with additional stressors like antibiotics. How exactly this system operates remains an open
question, however, we have ruled out similar models based on research in S. aureus, suggesting a novel
mode of MazEF action in L. monocytogenes.

5. Materials and Methods

5.1. Bacterial Strains and Growth Conditions

L. monocytogenes EGDe wild-type was used in the study (Table 2). Bacterial stock cultures were
stored at —80 °C and inoculated on Brain Heart Infusion (BHI; Oxoid CM 1135) agar and grown at
37 °C overnight. An overnight culture was obtained by inoculating one colony in 10 mL BHI broth
and incubating aerobically at 37 °C with shaking (250 rpm).

Table 2. Bacterial strains and plasmids used in this study.

Strain or Plasmid  Genotype and Relevant Characteristics Source or Reference

E. coli DH5« Plasmid construction and cloning Lab stock

L. monocytogenes strains

L. monocytogenes virulent wild-type BUG1600, Lineage II,

EGDe serotype 1/2a, MLST ST35 ©. Dussurget

AclpP cIpP deletion mutant derived from L .monocytogenes EDGe This study
Imo0887 and Imo0888 (mazEF antitoxin/toxin) deletion .

AmazEF mutant derived from L. monocytogenes EDGe This study

AsigB sigB deletion mutant derived from L. monocytogenes EDGe This study

Plasmids

pAUL-A Temperature sensitive origin of replication, lacZa” multiple [54]

cloning site, erythromycin resistance marker

5.2. Antibiotic Preparation

Fresh antibiotic solutions were prepared for each experiment: ampicillin (dissolved in sterile
MilliQ water; Sigma-Aldrich A9518, St. Louis, MO, USA), gentamicin (dissolved in sterile MilliQ
water; Sigma-Aldrich G3632), norfloxacin (dissolved in sterile MilliQ with 1% glacial acetic acid;
Fluka N9890), and co-trimoxazole, which is comprised of one part trimethoprim (dissolved in sterile
MilliQ with 1% glacial acetic acid; Sigma-Aldrich 92131) and five parts sulphamethoxazole (dissolved
in acetone; Fluka S7507).

5.3. Constructions of Mutants

In-frame deletion mutants were constructed in the sigB, cIpP, mazEF genes using the gene splicing
by overlap extension (gene SOEing) method [55]. Primers (Table 3) were constructed using the
published sequence of L. monocytogenes EGD-e (31). Chromosomal DNA from EGDe was used as
the PCR template for the SOEing amplicons, which were subsequently cloned into the pAUL-A
vector [54]. Standard protocols were used for plasmid extractions, restriction enzyme digests, and DNA
ligations [56]. Plasmids harboring the SOEing fragments were isolated and verified by sequencing.
Generation of the deletion mutants was performed as described by Guzman et al. [57], with the
exception that electrocompetent cells were prepared as described in Monk et al. [58]. Putative mutants
were verified by sequencing at GATC (Koln, Germany). The morphology of each strain was determined
to be identical using an Olympus BH2 microscope at 1000X magnification.
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Table 3. List of primers used in this study.

Primer Purpose Sequence (5'- > 3/) &P
Mutagenesis
ClpP_UpSt_A A primer: EcoRI AAAGAATTCCAGTTAATGGGCCAGATT
ClpP_UpSt_B B primer ACGAATGGTCAAACTAGG
ClpP_DnSt_C C primer CCTAGTTTGACCATTCGTGCACAAAATGCAAAACCTCT
ClpP_DnSt_D D primer: BamHI AAAGGATCCCGTGACGGATTATTACCA
ClpP_IC_Fw Integration and deletion check TGGCTCTAACGATGATCTTG
ClpP_IC_Rv TTGATGTTAGTGCACCTGTTG
mazEF_A_Hind A primer: Hind III ATGCAAGCTTTTAGTAGGCGGGGAACTTGCC
mazEF_B B primer TAACACGTGTCACACCCCCAA
mazEF _C C primer TTGGGGGTGTGACACGTGTTAGGTTAATGGCTGATGGTGAA
mazEF _D_Bam D primer: BamHI ATGCGGATCCTCAGACCCTTTTGCCCTGC
mazEF _IC_Fw Integration and deletion check CCTTCCACAGAAATCAAAAC
mazEF _IC_Rv CCAACCTTTCTCCACTATT
SigB_A_3 A primer: EcoRI AAAGAATTCAGCTGTAAGTGAAGCCATCAC
SigB_B_3 B primer CGCCTCTTTATCAGGTTGAGA
SigB_C_3 C primer TCTCAACCTGATAAAGAGGCGGTGTCTAGAATCCAACGTCAA
SigB_D_3 D primer: BamHI AAAGGATCCTAATAGCTATCGCAGCACC
SigB_IC_Fw Integration and deletion check CGTCAACGCCAAAGTGAA
SigB_IC_Rv CACCTTTCAAACCATCGCTA
qPCR
mazF_qPCR_Fw Quantification of mazF ACGGCCTGTTCTCATCATTC
mazF_qPCR_Rv expression CGTTGGCAATTTTGCTTTTT
sigB_qPCR_Fw Quantification of sigB GAAGCAATGGAAATGGGAAA
sigB_qPCR_Rv expression CCGTACCACCAACAACATCA
rsbW_qPCR_Fw Quantification of rsbW ATTACAACTTCCTGCCAAGC
rsbW_qPCR_Rv expression AATTGCTTCATAAGAAAATCCTG
opuCA_qPCR_Fw  Quantification of opuCA ACATCGATAAAGGAGAATTTC
opuCA_gPCR_Rv  expression GCCGGTTAATCATCTTCATTG
2638_qPCR_Fw Quantification of 1102638 CTGCTGCTACATCTGGTGCT
2638_qPCR_Rv expression ACTGGAACCAACCAGGCATA
bvrB_qPCR_Fw Quantification of burB GCAATTGGCGCTAAAACTTC
bvrB_qPCR_Rv expression ATTGTAACGATGGCGGTTTC
0880_qPCR_Fw Quantification of 1mo0880 ATTCCGAACAAAATGGCAAA
0880_qPCR_Rv expression TTTCTGCAACGGAGACATCA

? Bold and underlined indicate restriction sites and the regions binding to the AB fragments in second round

PCR, respectively. P Primers for insertion and integration check were designed in a multi cloning site (MCS)
in pAUL-A.

5.4. Killing Kinetics

Standard killing kinetic experiments were performed as previously described [11], with the
exception that the second regrowth and killing step was omitted. In brief, an overnight culture from
each strain was diluted 10°-fold and grown for 16 h at 37 °C at 250 rpm to obtain an early stationary
phase culture. This 16 h culture was diluted to ODggg = 0.4 in 2 mL BHI broth and treated with roughly
30 times the Minimum Inhibitory Concentration (MIC) of four bactericidal antibiotics: norfloxacin
(100 pg/mL), co-trimoxazole (10 ng/mL), ampicillin (3 pg/mL), and gentamicin (10 pg/mL).
Cultures were incubated at 37 °C and 250 rpm during antibiotic treatment. Bacterial counts were
determined just before treatment and at subsequent time points by plate counting on BHI agar.
The experiment was performed with three biological replicates.

5.5. Growth Kinetics

Overnight cultures of each strain were adjusted to ODgp = 0.2 and diluted by 10%-fold, then the
Minimum Inhibitory Concentration (MIC) for each treatment (antibiotics, 42 °C, NaCl, and Bile acid)
was identified using a standard two-fold dilution series in 96-well plates using two biological replicates
for each strain. Plates were incubated at 37 °C for 24 h in the SpectraMax i3 (Molecular Devices)
Multi-Mode microplate reader set to measure ODgo every hour. Once the MIC for each treatment was
identified, the same procedure above was carried out using two biological replicates, with the exception
that the highest concentration started with the MIC and was serially diluted by 10%. Sub-inhibitory
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concentrations were chosen on the basis of being closest to the MIC, while still allowing for exponential
and stationary growth curves of EDGe, AsigB, and AmazEF. Antibiotics were prepared as described
above, and fresh solutions of NaCl (Merck) and Bile Salts (Cholic acid sodium salt 50% and Deoxycholic
acid sodium salt 50%; Fluka, 48305-50G-F) were dissolved in sterile MilliQ water.

5.6. Sample Collection and RNA Isolation

To obtain balanced growth, overnight cultures of each strain were diluted 10°-fold in 10 mL
BHI broth and incubated aerobically at 37 °C with shaking (250 rpm) for 16 h, then subsequently
diluted to OD600 0.01 in 50 mL pre-warmed BHI in a 500 mL flask. Upon reaching OD600 0.1, each
culture was split into three 100 mL flasks, by taking 7 mL of culture into 23 mL pre-warmed BHI, and
further incubated to OD600 0.1. Flasks received either 3 mL MQ water for the no treatment control, or
3 mL MQ water containing NaCl or norfloxacin, yielding a final concentration of 0.5 M or 1 pg/mL,
respectively. Each culture was incubated to OD600 0.40, then 5 mL culture was immediately added
to 10 mL RNA-protect Bacteria Reagent (Qiagen, 76506, Hilden, Germany) and subsequently treated
according to the manufacturer’s instructions. Two independent biological replicates for each strain
were carried out.

Cell lysis for downstream RNA purification was carried out by first resuspending each isolated
pellet in 500 puL Buffer RLT (Qiagen, 74104) with 5 uL. f-meracaptoethanol. Three hundred milligrams
of acid washed glass beads were added to the cell suspension, and lysed using the FastPrep FP120
Cell Disruptor. Samples were centrifuged at 4500 x ¢ for 2 min at 4 °C, then 500 uL of the cell lysis
supernatant was mixed with 250 pL 96% ethanol and further processed using the RNeasy mini kit
(Qiagen, 74104) according to manufacturer’s protocol “Purification of total RNA from bacteria”, using
the additional on column DNase treatment step. RNA quality and quantity were measured using the
Agilent 2100 Bioanalyser with a RNA 6000 Nano chip and the DeNovix DS-11+ spectrophotometer,
respectively. All RIN values were above 9, with the exception of one replicate of the AclpP under
non-stressed conditions, which had a RIN value of 7.6.

5.7. Measuring Relative Gene Expression via Quantitative Reverse Transcription PCR (RT-qPCR)

Prior to cDNA synthesis, 2 pug of RNA from each sample was treated with DNase I (Invitrogen,
18068-015, Carlsbad, CA, USA) and split into reverse transcriptase positive (RT+) and negative (RT—)
tubes. cDNA synthesis was carried out for RT+ samples using SuperScript III Reverse Transcriptase
(Invitrogen, 18080-044) and random primers (Invitrogen, 48190-011) according to the manufacturer’s
protocol for First-Strand cDNA Synthesis. RT— samples were treated identically, with the exception
that MQ water was substituted for reverse transcriptase. Prior to qPCR templet cDNA was diluted 4 x
in MQ water except when investigating 16S, which was diluted 1000 x.

RT-qPCR was performed using SYBR Green PCR Master Mix (Applied Biosystems, Foster City,
CA, USA) on the Mx3000P (Stratagene, San Diego, CA, USA) using the following program: one cycle
at 95 °C for 10 min, followed by 40 cycles at 95 °C for 30 s and 60 °C for 1 min followed by a
dissociation curve. Three technical replicates for each RT+ cDNA sample and two technical replicates
for RT— cDNA sample were performed for each reaction, along with negative template control using
MQ water. Primers (Table 3) were designed using Primer3 [59] and standard curves for each primer
set were done using a dilution series of EDGe genomic DNA. 165 gene expression has previously been
demonstrated to be stable under stress conditions [60], and was shown in this experiment to be similar
between each strain and condition tested using an ANOVA test. 165 gene expression was measured
and used to normalize expression levels of each gene measured, which were further normalized to
EDGe expression levels using the 2~22Ct method [61]. When comparing the expression of the mazF
gene alone under different conditions, copy numbers for mazF and 165 rRNA gene transcripts were
calculated and expressed as target (mazF)/housekeeping (16S rRNA gene).
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5.8. Bioinformatic Analysis of MazF Cut Site Abundance in EDGe Genome

In order to predict the relative abundance of the UACMU motif per gene, as compared to chance,
the coding sequences (CDS) of L. monocytogenes EDGe (accession No. NC_003210.1) were run through
a custom python script based on the formula described in Zhu et al., 2009 [10]:

(L—4)!

_ i L—4—i
P=2 =) (L —4—1i)!

o

i=0

Briefly, the probability (p) of the UACMU motif occurring in a CDS was calculated using the
length (L) and base composition, which equals (%U’s)?(%A’s)?(%C’s) + (%U’s)?(%A’s) (%C’s). Thus,
the expected number of motifs in each CDS equals p(L-4). If K is the actual number of motifs found
in a CDS, then P equals the probability of a CDS containing K or fewer motifs. Source code has been
uploaded to GitHub [62].

5.9. Statistical Analysis

Bacterial counts and ODggp measurements from each biological replicate were logyo transformed,
whereas AACt values from RT-qPCR were log, transformed, prior to statistical analysis using the
macro, Analysis ToolPak, in Microsoft Excel. The F-Test was used to test for equal Variances of the
sample populations and Students ¢-test with equal or unequal variance was used when appropriate,
with a significance level of p < 0.05.
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