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Abstract: The pore forming hemolysin A, Hla, is a major virulence factor of Staphylococcus aureus.
Apparently, 1–2 pore(s) per cell suffice(s) to cause cell death. Accumulated experimental evidence
points towards a major role of ATP-gated purinergic receptors (P2XR) for hemolysis caused by Hla,
complement and other pore forming proteins, presumably by increasing membrane permeability.
Indeed, in experiments employing rabbit erythrocytes, inhibitory concentrations of frequently
employed P2XR-antagonists were in a similar range as previously reported for erythrocytes of other
species and other toxins. However, Hla-dependent hemolysis was not enhanced by extracellular
ATP, and oxidized adenosinetriphosphate (oxATP) had only a minor inhibitory effect. Unexpectedly,
P2XR-inhibitors also prevented Hla-induced lysis of pure lipid membranes, demonstrating that
the inhibition did not even depend on the presence of P2XR. Fluorescence microscopy and
gel-electrophoresis clearly revealed that P2XR-inhibitors interfere with binding and subsequent
oligomerisation of Hla with membranes. Similar results were obtained employing HaCaT-cells.
Furthermore, calorimetric data and hemolysis experiments with Hla pre-treated with pyridoxal
phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS) showed that this compound directly binds to
Hla. Our results call for a critical re-assessment of the appealing concept, which suggests that P2XR
are general amplifiers of damage by pore-forming proteins.

Keywords: hemolysin; pore forming toxin; Staphylococcus aureus; P2XR; P2XR-antagonists;
erythrocytes; HaCaT-cells; liposomes; oligomerisation

1. Introduction

Pathogenic bacteria employ pore forming toxins (PFTs) to subvert, invade, or destroy host target
cells. The factors defining the toxin-susceptibility of different cell types and the species variation
for a given cell-type are only partially understood. This limits the development of anti-infective
strategies targeting PFTs, which are increasingly in demand due to a dwindling pool of effective
antibiotics. Generally, the susceptibility of host cells to a given toxin seems to depend on the presence
of specific high-affinity receptors for binding of toxin monomers, subsequent oligomerisation, and pore
formation [1,2]. Further, the efficiency of the host cell’s repair mechanisms co-determines the outcome
of an attack [3]. Yet another mechanism that may play a role for the impact of pore-forming toxins on
target cells is the enhancement of damage by purinergic signaling [4]. This mechanism is supported
by several lines of evidence: in case of RTX-family-toxins (Repeats in ToXin-family), hemolysis was
inhibited by inhibitors specific for ATP-gated purinergic receptors (P2XRs) or upon depletion of
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extracellular ATP [5,6]. Since P2XRs are activated by ATP, these observations point towards a role
of these receptors for enhancing the effect of RTX-toxin-induced hemolysis. Increased levels of
extracellular ATP were measured upon treatment of erythrocytes with the RTX-toxins HlyA (hemolysin
A from E. coli), and LTX (Leukotoxin from Aggregatibacter Actinomycetemcomitans), and based on the
absence of effect of various inhibitors, it was concluded that this increase could not be accounted for
by egress through cellular membrane channels, but was likely due to leakage through toxin pores [7].
Furthermore, leakage of ATP from liposomes loaded with ATP was observed upon addition of RTX
toxins, apparently supporting the idea that ATP (mass 507.18 g/mol) can pass through the RTX toxin
pores. Notably, under the same conditions, egress of calcein (mass 622.55 g/mol) was not detectable.
The concept that P2XR-signaling enhances the hemolytic effect of pore formers was extended to other
proteins, including Hla from S. aureus [8] and complement [9]. The collective data were interpreted to
indicate that P2XR-signalling is a general enhancer mechanism in hemolysis.

These reports led us to investigate whether P2XR-signaling is also relevant for Hla-dependent
toxicity towards spontaneously transformed human adult skin keratinocytes (HaCaT). Our initial
finding that pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS) inhibited Hla-dependent
cytotoxicity seemed to support this idea. However, subsequent binding assays indicated that PPADS
already inhibited the interaction of Hla with cells. This raised the question of whether Hla-dependent
action on erythrocytes, detected as hemolysis, might be affected by P2XR-inhibitors through similar
non-canonical mechanisms. Accordingly, we decided to re-investigate the role of P2XR-signalling
for Hla-dependent lysis of erythrocytes. We chose rabbit erythrocytes and Hla from S. aureus
as a model. Rabbit erythrocytes are the most sensitive erythrocytes with respect to Hla-induced
hemolysis. Early experiments indicated that the amount of Hla molecules irreversibly bound to rabbit
erythrocytes are about 10 monomers per cell at a level of 50% lysis (after 6 h), corresponding to
1–2 pores [10]. It seems plausible that in order to obtain hemolysis by such a small number of pores,
cellular mechanisms enhancing the permeability of the plasma-membrane could be involved. Just as
in the studies mentioned above, we investigated the extent of hemolysis in the absence or presence of
inhibitors and activators of P2XRs. Furthermore, in order to exclude unspecific interactions between
the P2XR-inhibitors, lipid-membranes and Hla, we also studied calcein efflux from liposomes in the
presence of these substances. In addition, oligomerisation of Hla in the presence of inhibitors was
investigated by gel-electrophoresis, using liposomes or erythrocyte membranes, supplemented by
a calorimetric study of the PPADS/Hla binding in absence of liposomes or cells. The results of this
study indicate that P2XR-antagonists interfere with binding and/or oligomerisation of Hla to target
membranes, raising doubts that P2XRs play a general role in pore-forming toxin-dependent hemolysis.

2. Results

2.1. PPADS Reduces Cytotoxicity of Hla for HaCaT-Cells and Binding of the Toxin

In order to elucidate the role of P2XRs for nucleated cells, HaCaT-cells that had been used in
several previous studies with Hla [11] were used. In the case of nucleated cells, an early cytotoxic
effect that has been consistently observed with all of the membrane pore-forming agents investigated
is a drop of cellular ATP-levels, which is thought to result from mitochondrial failure as a consequence
of dissipating ion gradients. If P2XRs were relevant for Hla-dependent cytotoxicity, PPADS, a potent
P2XR-inhibitor, should prevent this drop of ATP. We observed that HaCaT-cells, exposed for 2 h to
Hla (6 nM), lost about 80% of their cellular ATP, but in the presence of 1 mM PPADS, this effect was
completely blocked; about 40% inhibition was achieved with 200 µM of the inhibitor (Figure 1A).
This finding was reminiscent of a recent observation by Nagahama et al., who observed for human
leukemia monocytic cells (THP1-cells), that PPADS inhibited the cytotoxicity of C. perfringens beta-toxin,
a small PFT related to Hla [12].
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Figure 1. Pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS) protects HaCaT-cells from 
Hla-dependent loss of ATP and inhibits Hla oligomerisation. Panel (A): Human adult skin 
keratinocytes (HaCaT-cells) were treated with 6 nM Hla for 2 h in the presence or absence of PPADS 
(pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) at the indicated concentrations. 
Subsequently cellular ATP was measured. Shown are mean ± standard deviation of n = 3 
independent assays. Differences between control samples (co; i.e., HaCaT cells with Hla only) and 
samples receiving additionally 1 mM or 200 µM PPADS are significant as assessed by ANOVA 
multiple comparison and Tukey’s post-test: ns (not significant) denotes p > 0.05; * denotes p ≤ 0.05 
and **** denotes p ≤ 0.0001; Panel (B): HaCaT-cells were incubated in absence (control) or presence of 
1 mM PPADS for 30 min at 37 °C, followed by incubation for 40 min on ice with radioactive Hla 
(about 30 nM). Directly after washing (0 min) or after a subsequent incubation at 37 °C for 15 min, 
bound Hla was determined. Cell-associated Hla was immune-precipitated from the pellet (IP), while 
membrane-associated Hla was precipitated employing surface-biotinylation followed by application 
on a streptavidin-column (CSPL). Fluorographic analysis of the SDS-gel separated bands show the 
presence of two bands, the monomeric Hla at about 33 kDa, and the oligomeric form between 200 
and 250 kDa. The experiment was repeated with virtually identical results. The reduced intensity of 
the bands in presence of PPADS indicate a reduced level of cell-associated and membrane-associated 
monomers and oligomers. 

In order to elucidate the mechanism of PPADS-mediated protection from Hla-dependent 
cytotoxicity towards HaCaT-cells, we investigated whether PPADS affects the interaction of Hla 
with the target cell membrane. To this end, we studied the binding of 35S-Hla to HaCaT-cells. 
Gel-electrophoresis of whole cell lysates revealed that the total amount of toxin and the level of 
oligomer formation on these cells is markedly reduced in the presence of 1 mM PPADS (Figure 1B). 
The amount of membrane-associated monomers and SDS-stable oligomers was reduced by PPADS 
in presence of the inhibitor, whether probed directly after Hla incubation on ice and washing (0 
min), or after 15 min of further incubation at 37 °C. The same was observed when comparing the 
total cell associated Hla amount, which also includes the fraction located in the cytosol. These data 
indicate that PPADS reduces Hla-binding and/or oligomerisation on HaCaT-cells, which will result 
in a lower number of pores and reduced cytotoxicity. Since this raises the question whether similar 
mechanisms may apply to erythrocytes and since the concept of P2XR-enhanced lysis has been put 
forward based on experiments with these cells, we extended our study accordingly. 
  

Figure 1. Pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS) protects HaCaT-cells from
Hla-dependent loss of ATP and inhibits Hla oligomerisation. Panel (A): Human adult skin keratinocytes
(HaCaT-cells) were treated with 6 nM Hla for 2 h in the presence or absence of PPADS (pyridoxal
phosphate-6-azo(benzene-2,4-disulfonic acid) at the indicated concentrations. Subsequently cellular
ATP was measured. Shown are mean ± standard deviation of n = 3 independent assays. Differences
between control samples (co; i.e., HaCaT cells with Hla only) and samples receiving additionally
1 mM or 200 µM PPADS are significant as assessed by ANOVA multiple comparison and Tukey’s
post-test: ns (not significant) denotes p > 0.05; * denotes p ≤ 0.05 and **** denotes p ≤ 0.0001;
Panel (B): HaCaT-cells were incubated in absence (control) or presence of 1 mM PPADS for 30 min
at 37 ◦C, followed by incubation for 40 min on ice with radioactive Hla (about 30 nM). Directly after
washing (0 min) or after a subsequent incubation at 37 ◦C for 15 min, bound Hla was determined.
Cell-associated Hla was immune-precipitated from the pellet (IP), while membrane-associated Hla
was precipitated employing surface-biotinylation followed by application on a streptavidin-column
(CSPL). Fluorographic analysis of the SDS-gel separated bands show the presence of two bands, the
monomeric Hla at about 33 kDa, and the oligomeric form between 200 and 250 kDa. The experiment
was repeated with virtually identical results. The reduced intensity of the bands in presence of PPADS
indicate a reduced level of cell-associated and membrane-associated monomers and oligomers.

In order to elucidate the mechanism of PPADS-mediated protection from Hla-dependent
cytotoxicity towards HaCaT-cells, we investigated whether PPADS affects the interaction of Hla
with the target cell membrane. To this end, we studied the binding of 35S-Hla to HaCaT-cells.
Gel-electrophoresis of whole cell lysates revealed that the total amount of toxin and the level of
oligomer formation on these cells is markedly reduced in the presence of 1 mM PPADS (Figure 1B).
The amount of membrane-associated monomers and SDS-stable oligomers was reduced by PPADS in
presence of the inhibitor, whether probed directly after Hla incubation on ice and washing (0 min),
or after 15 min of further incubation at 37 ◦C. The same was observed when comparing the total cell
associated Hla amount, which also includes the fraction located in the cytosol. These data indicate
that PPADS reduces Hla-binding and/or oligomerisation on HaCaT-cells, which will result in a lower
number of pores and reduced cytotoxicity. Since this raises the question whether similar mechanisms
may apply to erythrocytes and since the concept of P2XR-enhanced lysis has been put forward based
on experiments with these cells, we extended our study accordingly.

2.2. Hla-Dependent Lysis of Rabbit Erythrocytes is only Partially Altered by Modulation of P2XR Function

First, we repeated the experiments with P2X-receptor antagonists on hemolysis following the
protocols published for murine and horse erythrocytes [8]. As shown in Figure 2, the general
P2XR-antagonist PPADS and the analogue MRS2159, which inhibits P2XR1 with a higher efficiency
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than P2XR7, inhibited Hla-induced hemolysis of rabbit erythrocytes, reminiscent of previous results
with mouse erythrocytes. Notably, the inhibition of hemolysis by antagonists was most efficient
at moderate Hla concentrations, which is again in line with previous results. The P2XR7-specific
antagonist BBG (Brilliant Blue G) also reduced Hla-dependent hemolysis, albeit somewhat higher
concentrations of the inhibitor were required as compared to a previous report [8].
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after 30 min of incubation (Figure 3A). This is in line with the previous observation that exogenous 
ATP leads to a significant decrease of Hla-dependent hemolysis at times >15 min in mouse 
erythrocytes [8]. However, at very early points in time (2.5 min) it had been shown for Hla-induced 
lysis of mouse erythrocytes that upon addition of 3 mM ATP, an increase from 4% hemolysis to 6% 
occurs. We could not observe a significant ATP-dependent enhancement with rabbit erythrocytes 
and Hla at comparable conditions. Similarly, removing extracellular ATP by hexokinase or apyrase 
was reported to have a strong inhibitory effect on the hemolysis caused by LTX or HlyA [5,6]; 
hexokinase was also reported to inhibit the effect of Hla in the case of mouse erythrocytes [8]. In 
contrast, lysis of rabbit erythrocytes by Hla was not significantly affected by hexokinase; the 
addition of this ATP-consuming enzyme, rather, increases hemolysis slightly (Figure 3A). Along 
these lines, the competitive P2XR7-specific inhibitor oxATP, even at a concentration of 2 mM, had a 
considerably less drastic effect on rabbit erythrocytes (Figure 3B) than reported for mouse 
erythrocytes [8]. 

 

Figure 2. P2XR-inhibitors inhibit Hla-dependent hemolysis of rabbit erythrocytes. Rabbit erythrocytes
were incubated for 60 min at 37 ◦C with three different inhibitors of ATP-gated purinergic receptors
(P2XRs): Panel (A): PPADS (pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid), number of
experiments: control: n = 5; 125 µM: n = 3, 250 µM: n = 2); Panel (B): MRS2159 (a PPADS derived
inhibitor) (control: n = 4; 125 and 250 µM: n = 2 each; Panel (C): BBG (Brilliant Blue G) (inhibitor and
control: n = 3 each). Controls denote the hemolysis curve in absence of inhibitor.

The addition of extracellular ATP decreased Hla dependent hemolysis of rabbit erythrocytes after
30 min of incubation (Figure 3A). This is in line with the previous observation that exogenous ATP
leads to a significant decrease of Hla-dependent hemolysis at times >15 min in mouse erythrocytes [8].
However, at very early points in time (2.5 min) it had been shown for Hla-induced lysis of mouse
erythrocytes that upon addition of 3 mM ATP, an increase from 4% hemolysis to 6% occurs. We could
not observe a significant ATP-dependent enhancement with rabbit erythrocytes and Hla at comparable
conditions. Similarly, removing extracellular ATP by hexokinase or apyrase was reported to have a
strong inhibitory effect on the hemolysis caused by LTX or HlyA [5,6]; hexokinase was also reported to
inhibit the effect of Hla in the case of mouse erythrocytes [8]. In contrast, lysis of rabbit erythrocytes by
Hla was not significantly affected by hexokinase; the addition of this ATP-consuming enzyme, rather,
increases hemolysis slightly (Figure 3A). Along these lines, the competitive P2XR7-specific inhibitor
oxATP, even at a concentration of 2 mM, had a considerably less drastic effect on rabbit erythrocytes
(Figure 3B) than reported for mouse erythrocytes [8].
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Figure 3. Effect of ATP and analogues on hemolysis. Panel (A): Rabbit erythrocytes were mixed
with 4 nM Hla with or without extracellular ATP and hemolysis was measured after 15 min at 37 ◦C.
The importance of extracellular bulk ATP was additionally investigated by incubation of erythrocytes
in absence and presence of 20 units of hexokinase for 60 min at 37 ◦C. Lysis levels were normalized to
the value in absence of ATP or hexokinase, respectively; Panel (B): Rabbit erythrocytes were incubated
for 60 min at 37 ◦C in presence of 2 mM of oxidized ATP (oxATP) and various concentrations of Hla.
Number of experiments: ATP and hexokinase: triplicates; oxATP (control: n = 2; oxATP: n = 4).

2.3. P2X-Receptor-Antagonists Inhibit Binding to Erythrocytes and Formation of Oligomers

That hexokinase and ATP did not have the expected effect on Hla-dependent lysis of rabbit
erythrocytes, while P2X-receptor antagonists did, and the observation that less Hla is bound to
HaCaT-cells in presence of PPADS, fueled the idea that a non-canonical effect of P2X-receptor
antagonists was involved: possibly direct interference with the interaction of Hla with the erythrocyte
membrane causes the reduction in hemolysis. Accordingly, we studied binding of Hla to rabbit
erythrocytes in the presence of P2X-receptor antagonists. In a first approach, we analyzed the
effect of PPADS on the overall binding of fluorescently labeled Hla to erythrocytes by fluorescence
microscopy. As shown in Figure 4, the fluorescence intensity of the erythrocytes is reduced if PPADS
was present. Thus, this indicates that in the presence of PPADS, less Hla is located on the erythrocytes.
The effect is very clear in case of human erythrocytes, while in the case of rabbit erythrocytes it
is rather subtle. Secondly, we incubated rabbit erythrocytes with Hla in the presence or absence
of antagonists and analyzed the formation of sodium dodecyl sulfate (SDS)-stable oligomers by
SDS-PAGE. Although Hla-oligomer formation on erythrocyte membranes was not affected by BBG,
both, PPADS and MRS2159 had a significant effect, providing an explanation for the reduction of
Hla-dependent hemolysis by these compounds (Figure 5).
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Figure 4. PPADS reduces binding of Hla to erythrocytes. Erythrocytes were treated with 2.5 µM
fluorescently labeled Hla in presence or absence of 500 µM PPADS. After 2–3 h of incubation,
cell-bound Hla was observed under the microscope. Under these conditions, all of the erythrocytes are
lysed. The level of binding can be estimated by comparison of the background fluorescence with the
fluorescence of cell-bound Hla. Scale bars indicate 5 µm.
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2.4. P2X-Receptor-Antagonists Inhibit Hla-Dependent Calcein Release from Liposomes and Formation of Oligomers

In order to exclude that antagonists might directly affect the interaction of Hla with a pure
lipid membrane, we studied calcein efflux from unilamellar liposomes. Liposomes containing
40% cholesterol, 20% eSM (egg yolk N-acyl-D-sphingosine-1-phosphocholine), 20% ePE (egg yolk
1,2-diacyl-sn-glycero-3-phosphoethanolamine) and 20% bPS (1,2 diacyl-sn-glycero-3-phospho-L-serine
from bovine brain) were generated and filled with self-quenching concentrations of calcein.
Hla-dependent efflux of the dye was detected by means of increasing fluorescence due to de-quenching
upon release from the liposomes. Strikingly, PPADS, MRS2159 and BBG all inhibited Hla-dependent
calcein efflux (Figure 6). In the case of PPADS, the concentration required was similar to the one found
for hemolysis of rabbit erythrocytes, differing not more than a factor of two; in the case of MRS2159,
the required dose was slightly higher, whereas, for BBG, the effective concentration was about 5-fold
of the inhibitory dose. Importantly, none of the three antagonists caused calcein efflux in the absence
of Hla (data not shown). Gel-electrophoresis of multilamellar liposomes (MLVs) incubated with Hla
in the absence or presence of PPADS or MRS2159 revealed that reduced lysis nicely correlates with a
reduction of oligomer-formation (Figure 7).
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Figure 6. P2XR-antagonists reduce Hla-dependent efflux of calcein from liposomes. Efflux of
calcein from liposomes was measured after 30 min at 37 ◦C. The concentration of Hla is about
250 nM; antagonist concentration is as indicated. Panel (A): PPADS (pyridoxal phosphate-6-azo
benzene-2,4-disulfonic acid) and PPADS derived inhibitor MRS2159. Panel (B): BBG (Brilliant Blue G);
here the efflux in presence of BBG is normalized to the value in absence of BBG. Data are triplicates each.
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Figure 7. Direct influence of P2XR-inhibitors on Hla-oligomer formation on liposomes.
SDS-gel electrophoresis was performed to estimate the amount of oligomerised Hla, which runs
as high-molecular weight bands in absence of sample heating and reduced SDS-concentration.
The white arrows indicate the position of Hla-monomers, the black bracket SDS-stable Hla-oligomers.
Overall oligomer formation on multilamellar liposomes (MLVs) is reduced from 59% (without inhibitor
treatment) to 29% in case of PPADS and 11% for MRS, respectively. The Hla concentration is 2.5 µM in
each sample.

2.5. Evidence for Direct Hla-PPADS Interaction

Next, we investigated whether PPADS can directly interact with Hla. Indeed, binding
of PPADS to Hla could be readily detected by isothermal titration calorimetry (ITC, Figure 8).
The affinity determined in four experiments at 20 ◦C was 3700 ± 1200 M−1, with a binding
enthalpy of −150 ± 30 kJ/mol. Two curves measured at 37 ◦C yielded similar binding constants
(3200 and 4200 M−1) and a somewhat lower binding enthalpy (−39 and −46 kJ/mol). For the analysis,
a stoichiometry of n = 1 was assumed since the low affinity does not allow to determine this
value independently.Toxins 2017, 9, 332 8 of 14 
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In order to prove that Hla-binding to PPADS contributes to the inhibitory effect of the antagonist;
toxin was incubated with PPADS at high concentrations (2.5 µM Hla and 1 mM PPADS) for 15 and
60 min, and diluted for use in the standard hemolysis assay. The final concentration of PPADS in the
assay was about 1 µM, a level at which the substance is not inhibitory any more (Figure 2). A clear
inhibition was observed despite the low PPADS concentration, and the effect increases upon increasing
incubation time (Figure 9). Thus, binding of PPADS reduces the active fraction of Hla, possibly in an
irreversible manner.
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Figure 9. Residual inhibition of rabbit erythrocyte hemolysis by Hla pre-treated with PPADS.
Hla (2.5 µM) and PPADS (1 mM) were incubated for 15 and 60 min on ice. Then, the solutions
were diluted 1000-fold for use in the standard hemolysis assay. Hemolysis level is shown relative
to the control, which received the same treatment with buffer instead of PPADS. Despite the low
concentration of PPADS in the assay, a considerable inhibition is observed, indicating that PPADS
indeed interacts with Hla.

3. Discussion

Previous observations that P2XR-antagonists inhibit hemolysis caused by several pore forming
proteins, including Hla [5,6,8,9,13,14], led to the now widely accepted idea that P2XRs are critical for
pore-forming toxin-dependent hemolysis [4]. This role has been discussed as one of the main functions
of these receptors in erythrocytes [15]. In this context, it is upheld that a few small toxin pores are
insufficient to directly cause hemolysis, whereas the release of ATP, and the subsequent activation of
P2XRs would trigger substantial ion fluxes, colloid-osmotic swelling of cells, and would ultimately
lead to hemolysis.

This hypothesis is based on the reduction of hemolysis in the presence of ATP-converting enzymes
or P2XR-antagonists, and knock-down experiments [5,6,8,9]. Interestingly, data reporting an increase
of toxin-induced hemolysis due to presence of ATP can only be found for Hla and LTX [6,8] and not
for other agonists of P2XR. In absence of toxins activation of P2XR-receptors by the addition of ATP to
the extracellular medium leads to flux of monovalent ions and to PS-exposure, but not to significant
levels of hemolysis at the time scale of typical hemolysis experiments, namely up to 60 min [16]. Thus,
P2XR-receptor activation alone does not lead to hemolysis, indicating that the toxin pores themselves
must fulfill a significant part in destabilizing membrane stability and ion homeostasis. In case of Hla,
the increase in hemolysis due to presence of 3 mM ATP occurred exclusively at very early points in time
(2.5 min): here, the hemolysis level increased from 4% to 6%. Later on, a decrease in hemolysis was
observed [8]. In contrast, an about 3-fold increase of hemolysis at 1 mM ATP after 60 min incubation
was reported for human erythrocytes exposed to LTX. To sum up, a general effect of extracellular ATP
on PFT-dependent hemolysis has not been unequivocally documented.

The fact that our data with rabbit erythrocytes deviate in some aspects from an earlier study might
in part be related to the different purity levels of the Hla-preparations used: whereas, our preparations
from cultures of S. aureus contain very low amounts of contaminants (see Figure 5, last lane shows Hla
without erythrocytes), Hla from a commercial source consists of merely ~60% protein (according to the
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manufacturer). Moreover, only part of said protein content appears to be intact Hla [17]; in the same
study, it was shown that even heat-inactivated S. aureus preparations—thus, being devoid of functional
Hla-amplify the response to Hla-treatment in monocytes. Some variation in modulation of hemolytic
activity has also been observed for HlyA, when crude and pure preparations are compared [5].

The results presented here cast doubt on the proposed role of P2XR-activation in enhancing
hemolysis of erythrocytes by Hla. Previous results thought to support this concept could actually
be explained by non-canonical effects of inhibitors. First, PPADS and MRS2159 do not only
block Hla-dependent hemolysis, but markedly reduce calcein release from liposomes. Second,
the oligomerisation of Hla is drastically reduced by PPADS, as shown on nucleated cells, erythrocytes,
and liposomes. Finally, a direct interaction between Hla and PPADS could be revealed by ITC. Notably,
reduction of the inhibitory action on Hla persisted after dilution of PPADS following treatment.

Our collective results suggest an interference of PPADS and MRS2159 with Hla binding and
oligomer formation, apparently due to the competition between PPADS and membrane constituents
for Hla. This nicely fits to the observation that binding of Hla to human erythrocytes—which have an
overall lower affinity for Hla—is much more affected by PPADS than binding to rabbit erythrocytes,
which carry binding sites of higher affinity [10]. Inhibition by BBG seems to operate by a different
mechanism. The minor effect observed due to the presence of oxATP is not necessarily related to
P2XR-inactivation; as it has been shown to be not a specific inhibitor of P2XRs [18,19] and the effects
might be due to the inhibition of other targets.

To our knowledge, the impact of P2-receptor antagonists on pore formation on pure lipid
membranes has only been tested thus far on black lipid membranes; and merely RTX-toxins were
studied [13]. In that work, membrane perforation appeared to not be altered. Yet, the applied
concentrations of PPADS might have been simply too low, since under these conditions hemolysis was
inhibited by merely 50%. Also, the mode of pore formation by RTX-toxins is likely to be quite different
from pore formation by Hla. It is well possible that antagonists do not interact with RTX, but with
structurally unrelated Hla. A number of small molecular weight compounds have been identified
that seem to interfere with the oligomerisation of Hla [20–22], but we are not aware of compounds
interfering with RTX-toxin activity.

The present work sheds light on how P2XR-antagonists interfere with the function of a membrane
pore-forming toxin through non-canonical mechanisms. The data warrant a critical reassessment of
the widely accepted idea that P2XRs are general enhancers of membrane pore formation, and thus
they call for further studies in this field.

4. Materials and Methods

4.1. Chemicals

Egg yolk 1,2-diacyl-sn-glycero-3-phosphoethanolamine (ePE), 1,2 -diacyl-sn-glycero-3-phospho-
L-serine from bovine brain (bPS), egg yolk N-acyl-D-sphingosine-1-phosphocholine (eSM), and
cholesterol (Chol) were from Sigma Aldrich (Deisenhofen, Germany). N-(9Z-octadecenoyl)-sphing-
4-enine-1-phosphocholine (OSM) was purchased from Avanti Polar Lipids (Alabaster, AL, USA).
All of the lipids were already dissolved in chloroform except for cholesterol, which was obtained as
powder and dissolved in chloroform for use. All of the chemicals for gel-electrophoresis and buffer
solutions were purchased from Roth GmbH (Karlsruhe, Germany). Hexokinase, PPADS (pyridoxal
phosphate-6-azophenyl-2′,4′-disulfonic acid, tetrasodium salt hydrate), calcein, oxATP, BBG (Brilliant
Blue G), and MRS2159 (a derivative of PPADS) were obtained from Sigma Aldrich (Deisenhofen,
Germany). ATP Bioluminescence Assay Kit CLSII was purchased from ROCHE (Mannheim, Germany).

4.2. Toxin (Hla)

Except for fluorescence microscopy all of the experiments were carried out with wild type Hla,
which was purified from supernatant of S. aureus cultures (Hla-deficient strain DU1090 transformed
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with Hla-encoding plasmid pAC), as previously described [23]. For fluorescence microscopy,
the mutant S3C was labeled with 5-iodoacetamidofluorescein (5-IAF, Molecular Probes, Eugene,
OR, USA) according to the protocol described earlier [23]. Internally labeled toxin (35S-Hla) was
prepared as described before [24].

4.3. ATP-Assay

Intracellular ATP levels in cells were measured as described elsewhere [11]. In brief, HaCaT-cells
were seeded at a density of 104 cells per well in 96-well tissue culture plates. The next day, treatments were
performed and ATP was measured using the ATP Bioluminescence Assay Kit CLSII from ROCHE.
The samples were analyzed with a Lumat 9705 instrument from Berthold (Bad Wildbad, Germany).

4.4. Oligomerisation of Hla on HaCaT-Cells

The basic procedure was as described elsewhere [3]. To assess the impact of PPADS on binding
and oligomerisation of Hla on nucleated cells, we used HaCaT-cells, human non-virally transformed
keratinocytes [25]. The cell line, obtained from Deutsche Sammlung von Mikroorganismen und
Zellkulturen (DSMZ, Braunschweig, Germany), was free of mycoplasma. Cells were plated on tissue
culture dishes 24 h before start of the experiment. After the addition of 1 mM PPADS, plates were
incubated at 37 ◦C for 30 min. Then, the plates were placed on ice and 35S-Hla (~30 nM) was added.
After 40 min incubation on ice, cells were briefly washed. Directly after washing (0 min) or after
15 min of incubation at 37 ◦C, bound toxin was determined. Cell surface protein labeling (CSPL)
with biotin and subsequent precipitation via Neutravidin-pull-down was employed to detect Hla
on the cell surface, while immunoprecipitation (IP) with Hla-antibody was used to detect total Hla,
i.e., toxin associated with both cell surface and cytosol. Neutravidin-precipitates were separated
by SDS-PAGE and 35S-Hla-containing bands, representing monomers and SDS-stable oligomers,
were visualized by fluorography. Samples for SDS-PAGE were heated to 60 ◦C for 10 min prior
to loading.

4.5. Erythrocytes and Hemolysis Assay

Rabbit erythrocytes were purchased from Fiebig Nährstofftechnik (Idstein, Germany).
Human erythrocytes were collected from leucocyte-enriched buffy coats of healthy donors (Transfusion
Center Mainz, Germany) and were kindly provided by Dr. Iris Bellinghausen (Department of
Dermatology, University Medical Center Mainz, Germany). Informed consent was obtained from all
of the donors. All of the experiments with erythrocytes were performed in a buffer containing 14 mM
Hepes, 0.8 mM MgSO2, 1.8 mM CaCl2, 5.3 mM KCl, 124 mM NaCl, 5.6 mM glucose, titrated with
NaOH to obtain a pH of 7.2 at 37 ◦C. Erythrocytes were washed by centrifugation (4 ◦C, 500 g) in
this buffer until the supernatant was clear. For the hemolysis assay, the erythrocytes were diluted
to about 2.5% yielding an OD of ~0.8 at 415 nm and 1 mm path-length for fully lysed samples.
The components of the assay were mixed directly before starting the experiment. The erythrocytes
were added at the end at a sufficiently large volume to avoid local concentration effects. Samples were
shaken at 200 rpm for 60 min at 37 ◦C, transferred to ice, centrifuged (4 ◦C, 500 g) and extracellular
hemoglobin in the supernatant was quantified by absorption spectroscopy (NanoDrop ND-1000
Spectrophotometer, peqLab, VWR International, LLC). Hemolysis was determined based on the
concentration of hemoglobin measured at 415 nm. At this wavelength, absorption of BBG at the
concentrations used is negligible. In the case of PPADS and MRS2159 there is a measurable contribution
at this wavelength, but in the concentrations used the contribution it is not very high and could be
subtracted by preparing appropriate controls. Additionally, the results were checked by comparison
with determination of hemoglobin concentration at 576 nm. Erythrocytes incubated in absence of Hla
served as negative control (0% hemolysis), while erythrocytes osmotically lysed by dilution with water
served as positive control (100% hemolysis) at the corresponding wavelength. Due to the lack of effect
upon the addition of hexokinase, the activity of hexokinase was checked and found to be about 60%
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of the level reported by the supplier. The buffer for the experiments in the presence of hexokinase
contained increased levels of glucose (10 mM) and MgSO4 (2.5 mM). In order to maintain osmolarity,
the concentration of NaCl was adjusted accordingly. For the experiments addressing the residual
activity of PPADS after dilution to non-active concentrations, PPADS (1 mM) and Hla (2.5 µM) were
incubated on ice for the time given. Then, the solution was diluted quickly 1000-fold in two steps,
and the diluted solution was incubated with erythrocytes and was prepared for determination of free
hemoglobin, as described above. Hla (2.5 µM) incubated in buffer and treated exactly the same way as
the PPADS-containing sample served as reference.

4.6. Hla-Oligomerisation on Pure Lipid Membranes (MLVs) and Erythrocytes

MLV preparation was adapted from the thin-film method [26]. A “pseudo ternary” lipid
mixture [27] made of 40% cholesterol, 20% OSM, 20% ePE, and 20% bPS with a total lipid amount
of 1mg was prepared in chloroform. After chloroform evaporation under nitrogen, the lipid film
was dried for 3 h under vacuum. The lipid film was then rehydrated by addition of 1 mL 70 mM
sodium-phosphate-buffer (pH 7.2). 20 µL of this MLV-solution were mixed with 20 µL solution
containing 2.5 µM Hla in absence or presence of 500 µM MRS or PPADS, respectively. After 30 min
of incubation at room temperature, the samples were subjected to SDS-gel-electrophoresis [28] with
some modification: the samples were not heated prior to loading, the loading buffer does not contain
SDS, and the running buffer contained only 0.1% SDS. Under these conditions, monomeric Hla runs
true in the gel, but Hla-heptamers (pores and presumably also some types of pre-pores) retain their
oligomeric structure and lead to characteristic high molecular bands. Finally, the gels were stained
according to [29].

Oligomer formation on erythrocytes was determined similarly, employing 0.5% human or
rabbit erythrocytes in phosphate buffered saline, which were incubated with 2.5 µM Hla in a final
volume of 40 µL for 30 min at room temperature in the presence or absence of P2XR-inhibitors,
as indicated. Erythrocytes were then concentrated by centrifugation with 1000 g for 15 min at 4 ◦C.
The supernatant was discarded and the erythrocyte-pellet was supplemented with SDS loading
puffer containing 2% SDS in final. The samples were loaded on 10% SDS-gels for electrophoresis,
without prior heat-denaturation.

4.7. Hla-Induced Calcein Efflux

Liposomes (LUVs, 100 nm diameter) were prepared, as described before [27], using a solution
of 50 mM calcein and 70 mM phosphate-buffer, pH 7.2 (final) as hydration buffer. Free calcein was
removed with a desalting column (PD10, Amersham Biosciences Europe GmbH, Freiburg, Germany).
Efflux experiments were performed with a lipid concentration of about 50 µM (20 mol % eSM, 40 mol %
cholesterol, 20 mol % ePE, 20 mol % bPS) and 200–300 nM Hla, with P2XR-inhibitor concentrations,
as indicated. Liposomes were added at the end into the assay mixture. Fluorescence change due to the
dequenching of calcein was followed at 515 nm (excitation 495 nm) with a Hitachi F4500 (Binninger
Analytic, Schwaebisch Gmuend, Germany) at 37 ◦C for 30 min. The level of fluorescence at full leakage
was determined by the addition of Triton-X at a final concentration of 2%. Dilution and the inner-filter
effect due to the absorbance of P2XR-antagonists was taken into account.

4.8. Fluorescence Microscopy

Fluorescence micrographs were taken with a Keyence BZ 8000K (Keyence Corporation, Osaka,
Japan). Samples were incubated in reaction tubes at room temperature before observation. The high
amount of Hla (2.5 µM) was necessary to yield a detectable fluorescence signal. Under these conditions,
both types of erythrocytes were already lysed when investigated. After the indicated times, an aliquot
of the sample was transferred to the slide, covered and observed after the erythrocytes had settled,
which takes about 5 min. From the micrographs, which contained many erythrocytes, four individual,
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representative cells were selected for presentation. In case of rabbit erythrocytes, the population was
rather heterogeneous, thus cells with different levels of fluorescence were included.

4.9. Isothermal Titration Calorimetry

Hla at a concentration between 10 and 30 µM in the cell was titrated with PPADS (2.5–5 mM) in a
250 µL syringe, both dissolved in 70 mM sodium-phosphate buffer (VP-ITC, Malvern, Worcestershire,
UK) at 20 and 37 ◦C. PPADS was injected in 3–10 µL-steps, at a stirring speed of 200 rpm, with a
reference power of 60 µJ/s, and a filter period of 2 s. Baselines were set automatically by the
software, and re-adjusted manually. Peak integration and calculation of [PPADS]/[Hla] was performed
automatically by the software. Corresponding baselines (titration of PPADS in buffer) were subtracted;
titration of buffer in protein did not yield measureable heats.

Single experiments were analyzed based on a model with one binding site for PPADS on a Hla
monomer. The error for the parameters of a single experiment is given as evaluated by the fitting
routine included in the instrument (OriginLab). Finally, the results of three experiments were averaged
and the SEM is given.

4.10. Statistics

For the hemolysis experiments, between two and five curves were averaged. The error bars
correspond to the standard error of the mean; in the case of two replicates it is the deviation of
the values from the mean. For each individual curve, the extracellular hemoglobin concentration
was measured twice. Control experiments (absence of inhibitors) were measured the same day,
mostly directly in parallel with the inhibited sample. The effect of the three inhibitors was consistently
observed in experiments employing other erythrocytes charges. Liposomal efflux experiments are the
average of three experiments with the same liposome preparation.
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