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Abstract: The tibialis posterior muscle is a frequent target for injection of botulinum toxin during
the management of spastic equinovarus foot in adults with post-stroke spasticity. Although it
is deep-seated, the needle insertion into the tibialis posterior muscle is usually performed using
anatomical landmarks and safety information obtained from healthy subjects and cadavers. Our aim
was to evaluate the botulinum toxin injection site for the medial approach to the tibialis posterior
muscle in chronic stroke patients with spastic equinovarus foot. Forty-six patients were evaluated
at the affected middle lower leg medial surface with ultrasonography according to the following
parameters: tibialis posterior muscle depth, thickness, and echo intensity. As to the spastic tibialis
posterior, we found a mean muscle depth of 26.5 mm and a mean muscle thickness of 10.1 mm.
Furthermore we observed a median tibialis posterior muscle echo intensity of 3.00 on the Heckmatt
scale. The tibialis posterior muscle thickness was found to be inversely associated with its depth
(p < 0.001) and echo intensity (p = 0.006). Furthermore, tibialis posterior muscle depth was found to
be directly associated with its echo intensity (p = 0.004). Our findings may usefully inform manual
needle placement into the tibialis posterior for the botulinum toxin treatment of spastic equinovarus
foot in chronic stroke patients.

Keywords: muscle spasticity; rehabilitation; ultrasonography

1. Introduction

Stroke is a main cause of adult disability [1]. Damage to the descending tracts and sensory-motor
networks may lead to the upper motor neuron syndrome (UMNS) [2–4]. Spasticity is a positive feature
of the UMNS that has been found to involve both the upper and lower limbs in 27.0% and the lower
limb only in 7.1% of stroke patients at 6 months since onset [5]. It has been defined as follows: “a state
of increased muscle tone with exaggerated reflexes characterized by a velocity-dependent increase in
the resistance to passive movement” [6]. Spastic paresis due to the UMNS may interfere with motor
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function, leading to the need for clinical interventions, such as drugs administration, physical therapy
or other rehabilitation procedures [7–9].

Botulinum toxin type A (BoNT-A) has been established as safe and effective for the reduction
of focal spasticity [7]. In adults with post-stroke spasticity, the pattern most commonly treated with
BoNT-A at the affected lower limb is the equinovarus/equinus foot [10], which is a condition that
frequently complicates functional recovery, interferes with walking ability, and limits the activities
of daily living [11]. The main muscles involved in the equinovarus foot pattern are the gastrocsoleus
complex, and tibialis posterior (TP) muscle [12]. In particular, the TP muscle, which represents the
main foot invertor and may assist in powerful plantar flexion, is frequently targeted for BoNT-A
injection in order to treat the equinovarus deformity by reducing muscle hypertonia [11,13].

The major causes for the loss of BoNT-A response in adults with focal spasticity are the
following: inaccurate muscle selection and identification for injection, insufficient drug dosages,
inadequate injection technique, development of changes in the muscle, and formation of neutralizing
antibodies [14]. Concerning the muscles involved in the equinovarus foot pattern [12], accuracy of
needle insertion is crucial for the treatment of gastrocnemius muscle spasticity with BoNT-A, according
to the currently available literature, which has reported that neither manual needle placement (MNP)
nor electrical stimulation guidance are fully accurate in adult patients with spastic equinus after
stroke [15–17].

As to the TP muscle, although it is deep-seated within the lower leg and not easily accessible for
needle placement, the needle insertion into it is usually performed with the guidance of anatomical
landmarks [13,14]. Previous research into TP muscle injection in adults has suggested safety windows
for needle placement based on the evaluation of healthy volunteers and cadavers [13,18–21]. On these
bases, and considering that MNP is actually the most commonly used BoNT-A injection technique
for the treatment of spasticity in adults [22], there is a lack of information about the BoNT-A injection
site for spastic TP muscle in adult patients. Thus, the aim of this study was to evaluate, by means of
ultrasonography, the BoNT-A injection site for the medial approach to TP muscle in chronic stroke
patients with spastic equinovarus foot.

2. Results

Forty-six chronic stroke patients were recruited from among 136 consecutive outpatients.
The enrolment period was from October 2016 to May 2017. Table 1 presents the patients’ demographic
and clinical features.

Table 1. Patients’ demographic and clinical features.

Age (years)
mean (SD) 62.3 (10.7)

Gender
male/female 32/14

Time since stroke onset (years)
mean (SD) 5.3 (3.6)

Equinovarus spasticity (AS 0–4)
median (IQR) 3.0 (2.0; 3.0)

Tibialis posterior muscle depth (mm)
mean (SD) 26.5 (5.0)

Tibialis posterior muscle thickness (mm)
mean (SD) 10.1 (2.8)

Tibialis posterior muscle echo intensity (Heckmatt
grade)

median (IQR)
3.0 (2.0; 3.0)

Abbreviations: SD, standard deviation; AS, Ashworth scale; mm, millimeters; IQR, InterQuartile Range.
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As to the correlation analysis, TP muscle thickness was found inversely associated with its depth
(p < 0.001; ρ = −0.541) and echo intensity (p = 0.006; ρ = −0.403). Furthermore, TP muscle depth was
found to be directly associated with its echo intensity (p = 0.004; ρ = 0.416). Table 2 reports the results
of the Spearman rank correlation test.

Table 2. Correlation matrix for study variables (Spearman ρ).

PARAMETER Age Time Since
Onset

Equinovarus
Spasticity (AS)

TP Muscle
Depth

TP Muscle
Thickness

TP Muscle
Echo Intensity

Age 1.000
Time since onset 0.533 1.000

Equinovarus foot
spasticity (AS) 0.778 0.067 1.000

TP muscle depth 0.808 0.184 0.573 1.000
TP muscle thickness 0.610 0.131 0.952 −0.541 * 1.000

TP muscle echo intensity 0.671 0.672 0.651 0.416 * −0.403 * 1.000

Abbreviations: AS, Ashworth Scale; TP, Tibialis Posterior. * Significant correlation (p < 0.05).

3. Discussion

Consistent with the ultrasonographic evaluation of the affected middle lower leg medial surface
performed on a sample of adult chronic stroke patients with spastic equinovarus, our findings
evidenced a mean TP muscle depth of 26.5 mm and a mean TP muscle thickness of 10.1 mm.
Furthermore, in our patients, we observed a median spastic TP muscle echo intensity of 3 on the
Heckmatt scale [23–25].

Patients with UMNS are disabled by paresis (impaired voluntary recruitment of skeletal
motor units), contracture of soft tissues, and muscle overactivity (reduced ability to relax
muscles) [26,27]. Muscle contracture includes atrophy (loss of muscle mass), shortening (loss of
sarcomeres), myotendinous junction modifications, increased intramuscular connective tissue and
fat infiltration [26]. Progressive changes in the spastic muscle may account for the loss of response to
BoNT-A treatment [24], which is considered a first-line treatment for patients with focal spasticity [7,28].

In routine practice, needle insertion into the spastic TP muscle is usually performed on the base
of anatomic surface landmarks [13,22]. Three methods are used for placing the needle into the TP
muscle: the anterior, medial and posterior approaches [13,29]. According to previous studies based
on ultrasonography evaluation of healthy volunteers, access to the TP muscle for needle insertion
is safer at the tibia midpoint (midpoint of the length from the tibial tubercle to the bimalleolar line)
for the posterior approach, and at the upper third of the tibia (junction between the proximal and
middle thirds from the tibial tubercle to the bimalleolar line) for the anterior approach, because of the
larger safety windows for needle insertion [13,18,19]. This is further confirmed by studies on cadavers,
which report that the anterior approach to TP muscle is safer than the posterior one for needle insertion
into the upper third of the leg [20,21]. Interestingly, the safety of insertion into the midpoint of the leg
was found not to be significantly different in the safety window between the anterior and posterior
approaches for needle insertion into the TP muscle of cadavers [20].

The safety window for needle insertion into a muscle is closely related to its volume [15,20,30].
A small limb volume is associated with a small safety zone [20]. Spasticity may affect limb anatomy,
causing disruption of the normal muscle architecture, which can lead to a reduction of muscle thickness
and an increase in muscle echo intensity [18,24,25]. Thus, in the case of a patient with spasticity,
the safety window for needle insertion may be smaller than in healthy subjects or cadavers. This is in
keeping with our findings about the inverse correlation found between TP muscle thickness and its
depth as a consequence of muscle fibrosis due to spasticity (see also the direct association observed
between TP muscle depth and its echo intensity, as well as the inverse association found between TP
muscle thickness and its echo intensity) [24,25]. This is because muscle fibrosis lead to atrophy and
reduction of muscle volume, with a consequent increase in the distance of the TP muscle superficial
aponeurosis from the skin. In this sense, our findings may usefully inform MNP into the TP muscle for
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the BoNT-A treatment of spastic equinovarus foot in chronic stroke patients. In particular, clinicians
may use our observations in order to choose the needle length and guide the medial approach to TP
muscle BoNT-A injection.

This study has several limitations. First, we did not compare the ultrasonographic features of TP
muscle between legs (affected vs. healthy) within the same individual. This was because the main
aim of this study was not to evaluate modifications of TP muscle due to spasticity, but to give some
information about its treatment with BoNT-A in daily clinical practice. Second, we did not evaluate
the thickness of subcutaneous tissue, or soleus and flexor digitorum longus muscles, which rely upon
the TP muscle. Third, we did not perform ultrasonographic evaluation of other BoNT-A injection site
for the anterior and posterior approach to TP muscle. Fourth, we did not compare the accuracy and the
effects of BoNT-A injection into the TP performed with MNP, electrical stimulation and ultrasonography
guidance. Fifth, no sonoelastographic evaluation of spastic TP muscle tissue elasticity was done [31].

To further validate our findings, larger-scale studies have to be carried out, taking into account
the several limitations of this study reported above. In particular, future anatomical studies should aim
to compare affected vs. healthy lower limbs in order to evaluate modifications of spastic TP muscle
over time. Another future area of focus would be ultrasonographic evaluation of BoNT-A injection
site for the medial approach to TP muscle in adult patients with spastic equinovarus foot due to other
etiologies, considering that the same pattern of spasticity has been found to have features that differ
according to its cause [32].

4. Materials and Methods

This was a multicenter observational study. Inclusion criteria were as follows: age greater than
18 years; spastic equinovarus foot resulting from chronic stroke with muscle tone ≥2 on the Ashworth
Scale (AS) [33]; time since the onset of stroke ≥ 6 months; time since last BoNT-A treatment ≥6 months.
Exclusion criteria were as follows: involvement in other trials; intake of systemic pharmacological
treatment for spasticity; presence of fixed contractures (muscle tone = 4 on the AS); presence of bony
deformities at the affected lower limb; previous treatment of spastic equinovarus foot with neurolytic
procedures; previous surgical treatment of spastic equinovarus foot; other neurological conditions
involving the affected lower limb; other orthopedic conditions at the affected lower limb. All participants
were outpatients, and gave their written informed consent for participation in the study, which was
carried out according to the Declaration of Helsinki and approved by the local Ethics Committees.

All patients performed real-time B-mode ultrasonography by means of a MyLab 70 XVision system
(Esaote SpA, Genoa, Italy) interfaced with a linear probe (scanning frequency 13 MHz), which was
positioned in the transverse view over the marked injection site (see below), and perpendicular to the
affected lower limb surface. We placed the probe gently over the skin using water-soluble transmission
gel in order to avoid pressure alterations of the muscle tissue. Surface identification of the TP muscle
was performed according to the Fheodoroff and Schurch’s atlas suggestions [27]. The site of injection
was marked at about 50% of the distance from the medial femoral condyle to the medial malleolus,
behind the posterior border of the tibia [27]. The following ultrasonographic features were evaluated:
TP muscle depth (distance from the skin to superficial aponeurosis), TP muscle thickness (distance
from the superficial to deep aponeurosis) and TP muscle echo intensity, which was graded on the
Heckmatt scale (grade 1 = normal; grade 2 = increase of muscle echo intensity; grade 3 = marked
increase of muscle echo intensity; grade 4 = very high muscle echo intensity) [23–25]. The whole
procedure was carried out with patients in the supine position and legs outstretched.

Statistical analysis was carried out by means of the Statistical Package for Social Science for
Macintosh, version 20.0 (IBM SPSS Inc., Armonk, NY, USA). Descriptive statistics were used for all the
items considered. The Spearman rank correlation test was performed to assess the association between
the ultrasonographic and clinical features of the spastic TP muscle. The alpha level for significance
was set at p < 0.05.
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