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Abstract: Plant-derived compounds limiting mycotoxin contamination are currently of major interest
in food and feed production. However, their potential application requires an evaluation of their
effects on fungal secondary metabolism and membrane effects. In this study, different strains of
Fusarium culmorum and F. graminearum sensu stricto were exposed to trans-cinnamic and chlorogenic
acids on solid YES media. Fusaria produced phenolic acids, whose accumulation was lowered by
exogenous phenolic compounds. In addition, fungi reduced exogenous phenolic acids, leading either
to their conversion or degradation. trans-Cinnamic acid was converted to caffeic and ferulic acids,
while chlorogenic acid was degraded to caffeic acid. The latter underwent further degradation to
protocatechuic acid. Fungal-derived trans-cinnamic acid, as the first intermediate of the shikimate
pathway, increased after chlorogenic acid treatment, presumably due to the further inhibition of
the conversion of trans-cinnamic acid. Exogenous trans-cinnamic and chlorogenic acid displayed
the inhibition of mycotoxin production by Fusaria, which appeared to be largely dependent on
the phenolic compound and its concentration and the assayed strain. Exogenous phenolic acids
showed different effects on ergosterol biosynthesis by fungi. It was found that the production of
this membrane sterol was stimulated by trans-cinnamic acid, while chlorogenic acid negatively
impacted ergosterol biosynthesis, suggesting that phenolic acids with stronger antifungal activities
may upregulate ergosterol biosynthesis by Fusaria. This paper reports on the production of phenolic
acids by Fusaria for the first time.

Keywords: Fusarium culmorum; Fusarium graminearum sensu stricto; trichothecenes; phenolic acids;
trans-cinnamic acid; chlorogenic acid; ergosterol

1. Introduction

Fusarium head blight (FHB) of small grain cereals and Fusarium Ear Rot (FER) of maize remain
among the most important diseases affecting cereals worldwide. Among the predominating fungi
causing both diseases are Fusarium graminearum sensu stricto (s.s.) and F. culmorum [1,2]. Besides yield
losses, they also cause quality decline by contamination of the grain with type B trichothecenes. This group
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of mycotoxins includes deoxynivalenol (DON) and nivalenol (NIV), and their acetylated derivatives:
3-acetyldeoxynivalenol (3ADON), 15-acetyldeoxynivalenol (15ADON), and 4-acetylnivalenol (4ANIV,
syn. fusarenone X), which have been found to differ in their toxicity towards eukaryote cells [3,4].

Currently, fungicide treatment offers the best protection of crops against fungal pathogens,
including Fusaria [5]. However, chemical control may not be fully effective in reducing mycotoxin
contamination [6], which underlines the continuous need for the development of novel fungicides.
Today, however, the need for safer antifungals with a lower environmental impact has become a major
public concern [7]. To respond to this demand, a wide range of natural products with a special emphasis
on cinnamic-derived phenolic acids have been evaluated for their potential use as alternatives to the
current fungicides [7–9]. Cinnamic-derived phenolic acids are a group of plant secondary metabolites
contributing to disease resistance in plants, mainly as cell wall reinforcers and antifungals [7,10–12].
The production of these compounds is regulated by phenylalanine ammonia-lyase (PAL), which begins
their formation with the transformation of phenylalanine into trans-cinnamic acid. This phenolic acid
undergoes other enzymatic transformations, yielding a diversity of related phenylpropanoids [13].
Some of the core biochemical pathways of major phenolic acid are depicted in Figure 1.

The potential of cereal cultivars to induce phenolic acid accumulation appears to play a primary
role in restricting fungal infection [14]. For example, Atanasova-Penichon et al. [15] showed that maize
genotypes with enhanced resistance against Fusaria can generate close to 2200 µg/g of chlorogenic
acid in developing kernels, which is at least 44-fold more than in susceptible genotypes. However,
the current interest in phenolic acids arises not only from their antifungal properties, but rather
from their potential inhibitory effects on mycotoxin production resulting from their antioxidant and
antiradical properties [14]. The latter contribute to their potential of scavenging reactive oxygen
species (ROS), which have been found to induce mycotoxin production by Fusaria both in vitro and
in planta [16,17].

The efficient inhibitory activities of phenolic acids towards mycotoxin production were
demonstrated against strains of F. culmorum and F. graminearum s.s. [9,18–20]. However, despite
a large body of evidence on their protective role against Fusaria, not all studies provide clear evidence
on the inhibitory effect of phenolic acids on trichothecene production. For example, caffeic and ferulic
acids are known to inhibit mycotoxin production [9,19,21]. However, studies by Ponts et al. [22]
and Etzerodt et al. [23] supported opposite results, indicating a stimulative effect on trichothecene
biosynthesis. It has been indicated that different in vitro conditions could result in contradicting
data [23,24]. Therefore, special attention should be paid to ensure the stability of phenolic compounds
in in vitro systems. In addition, another aspect considered in such studies should aim at studying the
potential transformation of exogenously applied phenolic acids by fungi [21], especially due to their
ability to form phenolic-derived degradation products. Finally, since the discovery of the PAL gene
in F. verticillioides (accession number XP_018747958) [25], further studies are required to confirm the
production of phenylpropanoids by fungi. The shikimate pathway is highly conserved, being present
in plants, algae, fungi, and even in some prokaryotes [26], although the production of phenolic acids
has only been detected in a few fungal species [27–29].

The present study reports on the production of phenolic acids by Fusaria for the first time and
analyzes whether treatment with trans-cinnamic and chlorogenic acids could impact fungal secondary
metabolic profiles. The compounds included in the study are formed in different steps of the metabolic
route of the shikimate pathway (Figure 1), which was the main criterion based on which they were
chosen. It was found that treatment with both trans-cinnamic and chlorogenic acids affected changes
in fungal phenolic acid profiles, which appeared to be compound-dependent and linked to the ability
of Fusaria to either reduce or convert exogenous phenolic acids.
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Figure 1. Schematic representation of some of the core biochemical pathways of major phenolic acids 
(based on Kaushik et al. [30–42]) with an indication of the routes of the conversion and degradation 
of phenolic acids by fungi. Red arrows indicate the routes of either the conversion or degradation of 
phenolic acids by fungi. The numbers near the red arrows indicate the literature from which the data 
originates. 

The doses of phenolic acids used in the in vitro experiments are in the range of chlorogenic acid 
accumulated in different maize genotypes in the response of fungal infection [15]. An evaluation was 
also made for the impact of exogenous phenolic acids on both trichothecene accumulation in the 
media and the expression of Tri genes (Tri4, Tri5, and Tri10) responsible for trichothecene 
biosynthesis. Finally, it was found that exogenous phenolic acids may impact the biosynthesis of 

Figure 1. Schematic representation of some of the core biochemical pathways of major phenolic acids
(based on Kaushik et al. [30–42]) with an indication of the routes of the conversion and degradation
of phenolic acids by fungi. Red arrows indicate the routes of either the conversion or degradation
of phenolic acids by fungi. The numbers near the red arrows indicate the literature from which the
data originates.

The doses of phenolic acids used in the in vitro experiments are in the range of chlorogenic acid
accumulated in different maize genotypes in the response of fungal infection [15]. An evaluation was
also made for the impact of exogenous phenolic acids on both trichothecene accumulation in the media
and the expression of Tri genes (Tri4, Tri5, and Tri10) responsible for trichothecene biosynthesis. Finally,
it was found that exogenous phenolic acids may impact the biosynthesis of ergosterol by either the
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stimulation or inhibition of the production of this membrane sterol. The results presented in this paper
provide new data on the response of Fusaria to phenolic acids, which may have important implications
in developing strategies aimed at limiting mycotoxin levels in food and feed.

2. Results and Discussion

2.1. Production of Phenolic Acids by F. culmorum and F. graminearum s.s.

Chemical analyses of fungal cultures incubated on YES medium (YES + fungal controls) showed
an increased accumulation of phenolic acids, compared to the YES-only control (Supplementary File 1).
trans-Cinnamic acid, as the precursor of the other phenylpropanoids, comprised 7–11% of the phenolic
acids produced by Fusaria.

Among the cinnamic-derived acids, ferulic acid was quantified at the highest levels, comprising
nearly 21.5–24% of the phenolic acids. p-Coumaric acid, which in plants gets converted into ferulic
acid by the hydroxylation and methylation reaction [43,44], was quantified at slightly lower levels than
ferulic acid, comprising 19–22.5% of the phenolic acids. Caffeic acid, as an intermediate metabolite
between p-coumaric and ferulic acid, reached 7–8% of the phenolic compounds. Fungal cultures
accumulated considerable amounts of sinapic acid, which has been shown to be transformed in plants
from ferulic acid [44]. The sinapic acid concentration in fungal cultures yielded 13–15% of the phenolic
acids. Fungi also produced syringic acid at levels comprising 7% of the phenolic acids, presumably
due to the transformation of sinapic to syringic acid, which appears to be common in filamentous
fungi [36]. Among the cinnamic-derived acids, chlorogenic acid was quantified at the lowest levels,
comprising nearly 5–6% of the phenolic acids.

Besides cinnamic-derived acids, Fusaria produced benzoic acids, among which gallic acid
accumulated at the highest levels, comprising 5–8% of the phenolic acids. Other benzoic acid
derivatives, such as gentisic and p-hydroxybenzoic acids, were quantified at much lower amounts,
yielding 2–4% of the phenolic acids. Among the benzoic acids, protocatechuic acid was produced at
the lowest levels, yielding 0.2–0.4% of the phenolic acids.

The biosynthesis of phenylpropanoids is encoded by the PAL gene family, which has been
well-characterized in plants, including angiosperms and gymnosperms [45]. The protein sequence
of phenylalanine ammonia-lyase from F. verticillioides can be found in the GenBank database under
accession number XP_018747958 [25]. The conducted BLASTP search of its 723-amino acid sequence
showed a high (83–95%) identity to hypothetical proteins from the lyase I-class-like superfamily
containing histidine ammonia-lyase and phenylalanine ammonia-lyase in the range of Fusarium
species including F. graminearum s.s. (100% query cover, E value 0.0). Thus, it can be predicted that the
production of phenylpropanoids is common in the genus Fusarium, which should receive considerable
attention in the future, especially due to the prominent and diverse roles they play, especially with
respect to stress protection and cellular signaling [45,46].

2.2. Exogenously Applied trans-Cinnamic and Chlorogenic Acids Contribute to Changes in the Production of
Phenolic Acids in Fungal Cultures of F. culmorum and F. graminearum s.s.

Yeast extract-sucrose (YES) agar medium was supplemented with 100, 400, and 800 µg/g
of trans-cinnamic and chlorogenic acids to study the effect of these compounds on phenolic acid
production by fungi. These concentrations were selected to correspond to <25%, <100%, and <200%
of the sum of the phenolic acids produced by fungi, respectively. In both YES + trans-cinnamic acid
and YES + chlorogenic acid controls, the amount of (initially dissolved in ethanol) phenolic acid was
unaffected after the incubation period (Supplementary File 1). This can be considered an advantage
over liquid medium where chlorogenic acid, as previously shown, undergoes isomerization [21,47].
Other tested phenolic acids were present in phenolic-acid-treated controls at levels close to that found
in the YES-only control.
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Fungi exposed to either 100 or 400 µg/g trans-cinnamic acid reduced this phenolic compound
by 88–90% and 85–88%, respectively. The conversion of a higher concentration (400 µg/g) of
trans-cinnamic acid led to the formation of caffeic and ferulic acid, whose concentrations increased by
4–5 and 1.5–2-fold, respectively, as compared to the YES + fungal controls.

All other phenolic acids, as well as the sum of the phenolic acids, decreased after treatment
with either 100 or 400 µg/g trans-cinnamic acid, which suggests an inhibition of PAL activity by
exogenous trans-cinnamic acid. However, it is not clear why the conversion of exogenously applied
trans-cinnamic acid was only limited to the formation of caffeic and ferulic acid—the first intermediates
of the shikimate pathway. A possible explanation may be that the incubation period of fungi was too
short for their further transformation.

Fungi exposed to either 100, 400, or 800 µg/g chlorogenic acid reduced this phenolic compound
by 50–58%, 65–69%, and 58–62%, respectively. Chlorogenic acid can be hydrolyzed into caffeic acid by
chlorogenic acid hydrolases [21]. In addition, caffeic acid can be further converted into protocatechuic
acid through enzymatic oxidation followed by the decarboxylation of caffeic acid [21,38]. Compared
to the YES + fungal controls, caffeic acid increased by 2.5–3 and 3–3.5-fold after treatment with 400 and
800 µg/g chlorogenic acid, respectively. An increase of caffeic acid was not evident in cultures exposed
to 100 µg/g chlorogenic acid, probably due to the efficient degradation of caffeic acid to protocatechuic
acid, which dramatically increased by 11–24-fold, compared to the YES + fungal controls. A more
efficient degradation of chlorogenic acid to protocatechuic acid was evident in fungal cultures exposed
to 400 and 800 µg/g of chlorogenic acid.

Interestingly, a dramatic accumulation of trans-cinnamic acid was identified, which increased
by 1–1.5, 4–6.5, and 6–9-fold after treatment with 100, 400, and 800 µg/g chlorogenic acid,
respectively. Other trans-cinnamic acid derivatives (ferulic, p-coumaric, sinapic, syringic, gallic,
gentisic, and p-hydroxybenzoic acid) decreased, which may suggest suppression in converting the
trans-cinnamic acid further. It is hypothesized that this dramatic increase of trans-cinnamic acid might
be linked to the over-accumulation of caffeic acid, which was not efficiently converted to the other
phenolic acids due to its late formation. Importantly, the sum of phenolic acids was significantly lower
in chlorogenic-acid-treated cultures than in corresponding YES + fungal controls, which indicates the
inhibition of PAL expression by chlorogenic acid.

2.3. Exogenous trans-Cinnamic and Chlorogenic Acids Lowers Trichothecene Accumulation in the Media

The fungal strains used in this study co-produced trichothecene compounds in different amounts.
DON chemotypes co-produced DON and acetyl derivatives of DON, while NIV and/or 4ANIV were
produced by NIV chemotypes (Table 1). The majority of tested strains co-produced trichothecenes that
were not characteristic for their chemotypes in slight amounts, which is typical when solid media is
used [48,49] (data not shown).
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Table 1. Trichothecene accumulation and RQ (relative quantification) of Tri transcripts of fungal strains incubated with different concentrations of trans-cinnamic and
chlorogenic acids after a 21-day incubation period.

Phenolic Acid
Concentration

Strain Tri
Genotype

Trichothecene Levels (mg/kg) (n = 3 in Each Condition) RQ (n = 6 in Each Condition)

DON 3ADON 15ADON NIV 4ANIV Sum of
Trichothecenes Tri4 Tri5 Tri10

YES + fungal
controls

MUCL 53469 3ADON 17.5 ± 0.4 (a) 23.1 ± 0.9 (a) 40.6
CBS 173.31 3ADON 63.7 ± 3.8 (b) 9.9 ± 0.4 (a) 73.6
CBS 139512 NIV 79.2 ± 3.2 (a) 96.4 ± 4.8 (a) 175.6
CBS 119173 3ADON 49.6 ± 3.6 (a) 12.2 ± 0.8 (a) 61.8
CBS 138561 15ADON 1.5 ± 0.7 (a) 1.5 ± 0.7 (a) 3

MUCL 53455 NIV 4.4 ± 0.2 (a) 4.4

trans-cinnamic
acid 0.7 mM
(100 µg/g)

MUCL 53469 3ADON 4.62 ± 0.14 (c) 16.41 ± 0.33 (b) 21.03 0.21 (0.12–0.38) 0.26 (0.14–0.46) NS
CBS 173.31 3ADON 52.48 ± 1.57 (b) 9.9 ± 0.22 (a) 62.38 0.13 (0.11–0.16) 0.19 (0.16–0.23) NS
CBS 139512 NIV 68.63 ± 1.37 (b) 15.45 ± 0.62 (b) 84.08 0.14 (0.07–0.28) 0.17 (0.12–0.26) NS
CBS 119173 3ADON 2.7 ± 0.2 (b) 0.5 ± 0.03 (b) 3.2 NS NS NS
CBS 138561 15ADON 0.34 ± 0.01 (b) 0.005 ± 0.0002 (b) 0.35 NS NS NS

MUCL 53455 NIV 2.07 ± 0.12 (b) 2.07 NS NS NS

trans-cinnamic
acid 2.7 mM
(400 µg/g)

MUCL 53469 3ADON 8 ± 0.2 (b) 17.5 ± 0.5 (b) 25.5 0.02 (0.006–0.038) 0.03 (0.02–0.07) 0.15 (0.1–0.26)
CBS 173.31 3ADON 44.01 ± 0.88 (c) 7.47 ± 0.37 (c) 51.48 0.02 (0.007–0.055) 0.02 (0.01–0.046) 0.18 (0.1–0.36)
CBS 139512 NIV 37.26 ± 2.23 (c) 14.12 ± 0.57 (c) 51.38 0.046 (0.044–0.047) 0.023 (0.02–0.03) NS
CBS 119173 3ADON 1.8 ± 0.1 (b) 1.3 ± 0.05 (b) 3.1 0.15 (0.089–0.255) 0.21 (0.083–0.541) NS
CBS 138561 15ADON 0.22 ± 0.01 (b) 0.003 ± 0.0001 (b) 0.22 0.086 (0.058–0.212) 0.039 (0.028–0.076) NS

MUCL 53455 NIV 0.59 ± 0.01 (c) 0.59 0.023 (0.019–0.023) 0.022 (0.02–0.024) NS

chlorogenic
acid 0.3 mM
(100 µg/g)

MUCL 53469 3ADON 9.62 ± 0.57 (b) 21.51 ± 0.43 (ab) 31.13 NS NS NS
CBS 173.31 3ADON 84.13 ± 3.37 (a) 11.52 ± 0.46 (a) 95.65 NS NS NS
CBS 139512 NIV 32.3 ± 1.9 (d) 10.3 ± 0.4 (c) 42.6 NS NS NS
CBS 119173 3ADON 3.2 ± 0.2 (b) 1.0 ± 0.1 (b) 4.2 NS NS NS
CBS 138561 15ADON 1.88 ± 0.11 (a) 0.12 ± 0.01 (b) 2 NS NS NS

MUCL 53455 NIV 2.41 ± 0.15 (c) 2.41 NS NS NS

chlorogenic
acid 1.1 mM
(400 µg/g)

MUCL 53469 3ADON 7.93 ± 0.32 (c) 15.66 ± 0.47 (c) 23.59 NS NS NS
CBS 173.31 3ADON 54.88 ± 1.31 (b) 4.27 ± 0.02 (a) 59.15 0.68 (0.65–0.71) NS NS
CBS 139512 NIV 49.6 ± 3 (c) 22.1 ± 1.3 (b) 71.7 NS NS NS
CBS 119173 3ADON 5 ± 0.3 (b) 1.7 ± 0.1 (b) 6.7 0.43 (0,36–0,5) 0.59 (0.55–0.65) 0.89 (0.85–0.93)
CBS 138561 15ADON 0.29 ± 0,01 (b) 0.07 ± 0.01 (b) 0.36 NS NS NS

MUCL 53455 NIV 3.14 ± 0.1 (b) 3.14 NS NS NS

chlorogenic
acid 2.3 mM
(800 µg/g)

MUCL 53469 3ADON 7.42 ± 0.37 (c) 20.3 ± 0.81 (b) 27.72 NS NS NS
CBS 173.31 3ADON 41.97 ± 1.68 (c) 2.6 ± 0.16 (b) 44.57 0.05 (0.04–0.05) 0.12 (0.11–0.14) 0.17 (0.15–0.2)
CBS 139512 NIV 57 ± 1.1 (b) 16.5 ± 0.8 (bc) 73.5 NS NS NS
CBS 119173 3ADON 4.9 ± 0.3 (b) 1.8 ± 0.1 (b) 6.7 0.47 (0.45–0.49) 0.71 (0.65–0.71) 0.82 (0.77–0.86)
CBS 138561 15ADON 1.16 ± 0.07 (ab) 0.05 ± 0.002 (b) 1.21 NS NS NS

MUCL 53455 NIV 1.85 ± 0.1 (d) 1.85 NS NS NS
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The effect of both trans-cinnamic and chlorogenic acids on mycotoxin accumulation appears to be
largely dependent on the phenolic compound and its concentration and the assayed strain (Table 1).

Fungi kept at 0.7 mM (100 µg/g) trans-cinnamic acid displayed a reduction in mycotoxin content
of 15–95%. Higher doses of trans-cinnamic acid (2.7 mM, 400 µg/g) reduced mycotoxin levels by
30–95%. The results of the current study support the previous study of Gauthier et al. [21], showing
that mycotoxin accumulation in the media can either be increased or decreased by chlorogenic acid,
which underlines the risk associated with the enhancement of mycotoxin production by low levels of
chlorogenic acid. Four of six strains showed a 23–93% decrease of the sum of mycotoxin accumulation
at 0.3 mM (100 µg/g) chlorogenic acid. Higher levels of chlorogenic acid (1.1 mM, 400 µg/g) in
the media caused a decrease in mycotoxin content in all six fungal cultures by 20–89%. Similarly,
all tested strains incubated in 2.3 mM (800 µg/g) of chlorogenic acid showed a reduction of mycotoxin
accumulation by 32–89%.

2.4. Gene Expression Studies Reveal Stronger Inhibitory Effect of trans-Cinnamic than Chlorogenic Acid on the
Activity of Tri Genes Involved in Trichothecene Biosynthesis

The effect of both trans-cinnamic and chlorogenic acids on gene expression was evaluated by
the quantification of Tri transcripts of Tri4, Tri5, and Tri10 genes on day three of incubation (Table 1).
The highest abundance of transcripts was observed for Tri4, followed by Tri5 and Tri10 genes for all
examined strains (data not shown), which is in agreement with the previously examined expression
patterns of Tri genes [50–52]. Tri5 encodes a terpene cyclase which converts farnesyl pyrophosphate to
trichodiene, the hydrocarbon precursor of trichothecenes. Trichodiene is oxygenated by cytochrome
P450 monooxygenase encoded by Tri4. The expression of both of them is regulated by Tri10 [52,53].
trans-Cinnamic acid showed a more efficient inhibition of Tri gene activity than chlorogenic acid.
The decrease in Tri transcript levels was revealed in most trans-cinnamic acid treated cultures, with the
exception of F. graminearum s.s. strains, whose fold-change values (P(H1) = 0.001) in trans-cinnamic acid
treated cultures (0.7 mM, 100 µg/g) were not significant. In general, the higher dose of trans-cinnamic
acid assayed, the greater the decrease in Tri transcript levels. The decrease in Tri transcript levels was
revealed in only two cultures (CBS 173.31 and CBS 119173) treated with 1.1 mM (400 µg/g) and 2.3 mM
(800 µg/g) chlorogenic acid. The fold-change values (P(H1) = 0.001) for the remaining chlorogenic
acid treated samples were not significantly altered.

The stronger inhibitory effect of trans-cinnamic than chlorogenic acid on the activity of Tri genes
may be linked to the increased antioxidant and antiradical properties of trans-cinnamic acid (Table 2).
The antioxidant and antiradical activities of phenolic acids have been suggested to play a key role in
inhibiting trichothecene production by Fusaria [14].

Table 2. Antioxidant capacity (VCEAC/L), radical scavenging activity (ABTS), and retention times
(min) of the trans-cinnamic and chlorogenic acids analyzed in this study.

Phenolic Acid VCEAC/L ABTS
(µmol TROLOX/100 g s.m.) Retention Times (min) *

trans-Cinnamic acid 812.3 314.9 9.6
Chlorogenic acid 12.3 57.1 2.6

* From Labronici Bertin et al. [54].

2.5. trans-Cinnamic and Chlorogenic Acids Exhibit Different Effects on Ergosterol Biosynthesis by F. culmorum
and F. graminearum s.s.

Ergosterol is the predominant component of the fungal cell membrane that is often used to
estimate the fungal biomass in different environmental samples [55]. It regulates membrane fluidity
and plasma membrane biogenesis and function [56], although no studies on the effect of phenolic acids
on ergosterol biosynthesis have yet been conducted.
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Supplementary File 1 shows the effect of both trans-cinnamic and chlorogenic acids on the
biosynthesis of ergosterol by Fusaria. It was found that the production of this membrane sterol
was stimulated in trans-cinnamic acid treated cultures, while chlorogenic acid negatively impacted
ergosterol biosynthesis. Changes in ergosterol biosynthesis might be explained by the different
antifungal activities of phenolic acids. trans-Cinnamic acid exhibits remarkably stronger antifungal
activity than chlorogenic acid, which, as demonstrated by Ponts et al. [22], can be attributed to the
differences in their lipophilicity, scored using retention times (Table 2). The different effects of phenolic
acids might also arise from their molecule specific mechanisms of action towards membrane integrity,
although there is no data available to support this hypothesis.

3. Conclusions

Fusaria produce phenolic acids. Treatment with either trans-cinnamic or chlorogenic acid inhibits
the production of phenolic acids and trichothecenes by fungi. Fungal strains reduce exogenous
phenolic acids, leading to either their conversion or degradation. Exogenous trans-cinnamic acid
can be converted to caffeic and ferulic acids. Chlorogenic acids can be degraded to caffeic acid and
protocatechuic acids. Fungal-derived trans-cinnamic acid, as the first intermediate of the shikimate
pathway, increases after chlorogenic acid treatment, presumably due to the inhibition of the further
conversion of trans-cinnamic acid. Exogenous trans-cinnamic and chlorogenic acid display the
inhibition of mycotoxin production by Fusaria, which appears to be largely dependent on the phenolic
compound and its concentration and the assayed strain. The production of ergosterol is stimulated by
trans-cinnamic acid, while chlorogenic acid negatively impacts ergosterol biosynthesis. Changes in
ergosterol biosynthesis might be explained by the different antifungal activities of phenolic acids.

4. Materials and methods

4.1. Fungal Strains

Six fungal strains were used in this study (Table 3). They have been maintained in the international
fungal collections: Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; MUCL—MUCL
Mycothèque de l’Université catholique de Louvain, Louvain-la-Neuve, Belgium; and ARS Culture
Collection, USDA, Peoria, IL, US. The detailed description of the fungal strains is given in the ToxGen
database [49].

Table 3. List of fungal isolates used in this study.

Species Strain Trichothecene
Genotype

Origin, Host and Year
of Isolation

F. culmorum CBS 173.31, NRRL 26853 3ADON Canada, oat, 1927
MUCL 53469 3ADON Belgium, corn, 2007
CBS 139512 NIV Poland, wheat kernel, 2003

F. graminearum s.s. CBS 119173, NRRL 38369 3ADON USA, Louisiana, wheat head, 2005
CBS 138561 15ADON Poland, wheat kernel, 2010

MUCL 53455 NIV Belgium, corn, 2007

4.2. Medium and Culture Conditions

Yeast extract-sucrose (YES) agar medium recommended for trichothecene analysis [57] was used
in this study. trans-Cinnamic acid and chlorogenic acids (Sigma-Aldrich, Saint Louis, MO, USA) were
dissolved in 10 mL of 96% ethanol and then added to YES medium to obtain the final concentrations:
100, 400, and 800 µg/g. The calculated molar concentrations of trans-cinnamic acid used in the
experiments were: 0.7, 2.7, and 5.4 mM, respectively. For chlorogenic acid, the molar concentrations
used were: 0.3, 1.1, and 2.3 mM, respectively.
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This study incorporated three different controls: a YES-only control (YES medium only), YES +
trans-cinnamic acid and YES + chlorogenic acid controls (YES media supplemented with either 100, 400
or 800 µg/g of phenolic acids), and six YES + fungal controls (fungal strains incubated on YES media).

Petri plates (Ø 80 mm) were inoculated at the center with a 5-mm agar disc from 6–8-week-old
laboratory stock cultures maintained at 4 ◦C on PDA slants and incubated at 25 ◦C (in triplicate) in
the dark. The current study included chemical and gene expression analyses. Chemical analyses
incorporated a determination of phenolic acids and trichothecenes in the media. For gene expression
analysis, plates were incubated for three days for each condition, while for chemical analyses, the
plates were incubated for 21 days. Strains incubated at the highest concentration of trans-cinnamic acid
(800 µg/g) were not subjected to any further analysis due to the complete inhibition of fungal growth.

4.3. Determination of Phenolic Acids in the Medium

To reveal the production of phenolic acids by fungi, different phenolic compounds were
determined in dried fungal cultures after a 21-day incubation period (Supplementary File 1). Fungal
biomass (0.2 g) was placed in sealed 17 mL culture test tubes, where alkaline and acid hydrolysis was
conducted. For the alkaline hydrolysis, 1 mL distilled water and 4 mL 2 M aqueous sodium hydroxide
was added to the test tubes. Tightly-sealed test tubes were heated in a water bath at 95 ◦C for 30 min.
After cooling (approx. 20 min), the test tubes were neutralized with 2 mL 6 M aqueous hydrochloric
acid solution (pH = 2). The samples were then cooled in water with ice. Phenolic acids were extracted
from the inorganic phase using diethyl ether (2 × 2 mL). The formed ether extracts were continuously
transferred to 8 mL vials and the acid hydrolysis was then conducted. For this purpose, the aqueous
phase was supplemented with 3 6 M aqueous hydrochloric acid solution. Tightly-sealed test tubes
were heated in a water bath at 95 ◦C for 30 min. After being cooled in water with ice, the samples were
extracted with diethyl ether (2 × 2 mL). The produced ether extracts were continuously transferred
to 8 mL vials, after which they were evaporated to dryness in a stream of nitrogen. Prior to analyses,
the samples were dissolved in 1 mL methanol. An analysis was performed using an ultra-performance
liquid chromatograph (Acquity, Waters, Milford MA, USA) with a Waters PDA Detector.

Chromatographic separation was performed on an Acquity UPLC Shield RP 18 1.7 um 2.1 ×
150 mm, with an acetonitrile 0.1% formic acid: 0.1% aqueous formic acid mixture used as an elution
phase (gradient). The concentrations of phenolic acids were determined using an internal standard
at wavelengths λ = 320 nm and 280 nm. Compounds were identified based on a comparison of the
retention time of the analyzed peak with the retention time of the standard, and by adding a specific
amount of the standard to the analyzed samples and a repeated analysis. The detection level was
0.1 µg/g. The retention times of the assayed acids were as follows: 52.40 min (trans-cinnamic acid),
48.0 (sinapic acid), 46.20 min (ferulic acid), 40.20 min (p-coumaric acid), 28.05 min (syringic acid), 26.19 min
(caffeic acid), 20.39 min (gentisic acid), 19.46 min (p-hydroxybenzoic acid), 14.23 min (chlorogenic acid),
11.36 min (protocatechuic acid), and 8.85 min (gallic acid). Three biological replications were prepared
for each condition.

4.4. Determination of Antioxidant Capacity (VCEAC/L) and Radical Scavenging Activity (ABTS) of
trans-Cinnamic and Chlorogenic Acids

VCEAC/L and ABTS assays of phenolic acids were performed as previously described by
Kim et al. [58] and Re et al. [59], respectively.

4.5. Analysis of Trichothecenes from Fungal Cultures

The levels of DON, 3ADON, 15ADON, NIV, and 4ANIV were determined in fungal cultures
treated and non-treated (YES + fungal controls) with different concentrations of trans-cinnamic and
chlorogenic acids by GC-MS, as previously described by Perkowski et al. [60] and Kulik et al. [61,62].
Three biological replications were prepared for each condition.
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4.6. Extraction of total RNA and preparation of cDNA

The total RNA was extracted from three-day-old fungal cultures from mycelium grown on
YES medium treated and non-treated (YES + fungal controls) with trans-cinnamic and chlorogenic
acids. Five biological replications were prepared for each condition. The extraction of RNA and
reverse-transcription were performed as previously described in Kulik et al. [61,62]. cDNA samples
were stored at −25 ◦C for transcript quantification.

4.7. RT-qPCR and Data Analyses

Two genes (Tri4 and Tri5) responsible for the first steps in the trichothecene biosynthetic pathway
were selected for RT-qPCR analysis, as previously described in Kulik et al. [61,62]. The Tri5 gene
encodes trichodiene synthase, a terpene cyclase which converts farnesyl pyrophosphate to trichodiene,
the hydrocarbon precursor of trichothecenes [53]. Trichodiene undergoes a series of oxygenations
catalyzed by a cytochrome P450 monooxygenase encoded by the Tri4 gene. The molecular analysis
also included the Tri10 gene responsible for the regulation of multiple Tri genes [50].

To design primer/probe sets for the expression of Tri10, the F. culmorum and F. graminearum
sequences of the Tri10 gene published in the NCBI database (accession numbers: KU572424 and
KU572428) were aligned with Geneious v.6.1.6 (Biomatters Ltd., Auckland, New Zealand, 2014) [63].

Due to high polymorphism within the exon-exon boundaries of the Tri10 gene, two Tri10 reverse
primers were designed for use in separate reactions: Tri10rc GCC AAT CTC CCC TGC TTA GA (specific
for F. culmorum) and Tri10rg GCC AAT CTC CCC TGC TTA GG (specific for F. graminearum). Forward
primer: Tri10f CCC TTG CTT GCA TGC TAC AG targeted a conserved binding site. Tri10 primers
and Tri10 probe (FAM-CAG TTT TGA GTC TTC G-MGB) were designed using PRIMER EXPRESS 3.0
(Applied Biosystems, Foster City, CA, USA). Probes, conjugated with an MGB group, were labeled
at the 5′-end with FAM, while the Ef1α probe was labeled at the 5′-end with VIC. Primers were
synthesized by Sigma-Aldrich (Saint Louis, MO, USA), while MGB probes were ordered from Life
Technologies Oligos, Primers, Probes, and Nucleotides Synthesis Service. Duplex RT-qPCR reaction
conditions were used for each Tri transcript, including the Ef1α reference control, as previously
described in Kulik et al. [61,62]. The amplification efficiency of the Tri10 assay was determined based
on five five-fold dilutions of the cDNA template of the strain CBS 119173. The amplification efficiency
of the Tri10 assay was 103% with R2 = 0.993 and Slope = 3235, similar to the amplification efficiencies
obtained for the remaining assays of Kulik et al. [61,62]. In this study, the relative quantification of
Tri targets was normalized to an Ef1α reference gene. The Ct values of the target Tri4, Tri5, Tri10,
and reference Ef1α gene were compared in the control and treated samples and normalized relative to
the Ct values obtained for the reference EF1α gene using the rest 2009 software [64].

4.8. Determination of Ergosterol

Ergosterol was quantified in fungal cultures treated with trans-cinnamic and chlorogenic acids and
in six different YES + fungal controls using UPLC, as described by Perkowski et al. [65]. Three biological
replications were prepared for each condition. Ergosterol was also determined in YES-only control
and in YES + trans-cinnamic and YES + chlorogenic acid controls.

4.9. Statistical Analyses

The significance of the differences among mycotoxin levels was tested using Tukey’s HSD test
(p < 0.05). The production of phenolic acids was tested by an analysis of the differences among phenolic
acid levels between YES-only and YES + fungal controls using non-parametric Kolmogorov-Smirnov
and Mann-Whitney U tests at p < 0.05. Both non-parametric statistical methods were also used to
test the impact of exogenously applied trans-cinnamic and chlorogenic acids on the accumulation of
other fungal-derived phenolic acids and ergosterol. Differences among phenolic acid/ergosterol levels
between YES + fungal controls and samples treated with either trans-cinnamic or chlorogenic acid
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were also tested. The reduction of exogenous trans-cinnamic and chlorogenic acids was tested using
a t-Student test at p < 0.05.

Supplementary Materials: The following are available online at www.mdpi.com/2072-6651/9/7/198/s1,
Supplementary file 1: Phenolic acid and ergosterol accumulation after 21 days of incubation.
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