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Abstract: This study involves the fabrication and measurement of a flexible thermoelectric generator
(FTG) using micromachining and electroplating processes. The area of the FTG is 46 × 17 mm2, and
it is composed of 39 thermocouples in series. The thermoelectric materials that are used for the
FTG are copper and nickel. The fabrication process involves patterning a silver seed layer on the
polymethyl methacrylate (PMMA) substrate using a computer numerical control (CNC) micro-milling
machine. Thermoelectric materials, copper and nickel, are deposited on the PMMA substrate using
an electroplating process. An epoxy polymer is then coated onto the PMMA substrate. Acetone
solution is then used to etch the PMMA substrate and to transfer the thermocouples to the flexible
epoxy film. The FTG generates an output voltage (OV) as the thermocouples have a temperature
difference (∆T) between the cold and hot parts. The experiments show that the OV of the FTG is
4.2 mV at ∆T of 5.3 K and the output power is 429 nW at ∆T of 5.3 K. The FTG has a voltage factor of
1 µV/mm2K and a power factor of 19.5 pW/mm2K2. The FTG reaches a curvature of 20 m−1.
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1. Introduction

Many recent studies have focused on the development of thermoelectric generators [1–8].
Thermoelectric generators are used to convert waste heat into electrical power, which is a green
energy. It is difficult to use a non-flexible thermoelectric generator for a heat source with a curved
surface because it does not fit the curved surface. However, a flexible thermoelectric generator
can be used for a heat source with a curved surface and has more applications than a non-flexible
thermoelectric generator. Flexible thermoelectric generators can be used as a wearable device to fit the
curves of human skin.

Various fabrication methods were used for thermoelectric generators. For instance, Lee [9] used a
screen printing method to produce a thermoelectric generator using the thermoelectric materials, ZnSb
and CoSb3, on an alumina substrate. The output voltage (OV) for the thermoelectric generator was
10 mV at ∆T of 50 K, and its output power per unit area was 1.7 µW/mm2 at temperature difference
(∆T) of 50 K. The power factor of the thermoelectric generator was 0.68 pW/mm2K2. Phaga [10]
developed a thermoelectric generator that had 31 thermocouples in series. The thermocouple
materials were p-Ca3Co4O9 and n-CaMnO3 that were deposited by the solid state reaction method.
The area of the thermoelectric generator was 6.45 cm2. The OV for the thermoelectric generator
was 121.7 mV at ∆T of 140 K and the output power was 1.47 µW at ∆T of 140 K. The voltage factor
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for the thermoelectric generator was 1.35 µV/mm2K and the power factor was 0.16 pW/mm2K2.
Big-Alabo [11] produced a thermoelectric generator using low pressure chemical vapor deposition and
a micro-fabrication process [12]. Ge and SiGe were the thermoelectric materials. The thermoelectric
generator had an estimated power density of 111 nW/cm2 and a power factor of 0.0035 µW/cm2K2.
Itoigawa [13] proposed a flexible thermoelectric generator that was fabricated on a polyimide substrate
using a micro-fabrication process. The thermoelectric materials for the generator were copper and
nickel. The generator contained 380 thermocouples in series, and its area was about 50 × 50 mm2.
The generator had a bending radius of curvature of 9 mm. The OV and output power were 16 µV/K
per thermocouple and 4.1 pW/K2 per thermocouple, respectively. Therefore, the thermoelectric
generator had a voltage factor of 2.43 µV/mm2K and a power factor of 0.64 pW/mm2K2. A flexible
thermoelectric generator, developed by Lu [14], was fabricated using physical mixing and drop casting
processes. The thermoelectric materials for the generator were Te/poly(3,4-ethylenedioxythiophene)
and poly(styrenesulfonate) /Cu7Te4 ternary composite films. The flexible thermoelectric generator
(FTG) consisted of eight thermopiles with Ag paste and the area was about 25 × 40 mm2. The OV
for the generator was 31.2 mV at ∆T of 39 K and the maximum output power was 94.7 nW at ∆T of
39 K. The FTG had a power factor of 112.3 µW/mK2. Ding [15] manufactured a flexible thermoelectric
generator on a nylon membrane. The thermoelectric material of the generator was n-type Ag2Se.
The FTG contained four legs of the Ag2Se film that were connected with Ag paste on a nylon substrate
and the area of the FTG was about 20 × 20 mm2. The OV and the maximum output power for
the FTG were 18 mV and 460 nW, respectively, at ∆T of 30 K. The voltage factor, the FTG was
1.5 µV/mm2K and the power factor was 1.2 pW/mm2K2. Selvan [16] manufactured a thermoelectric
generator on a polyimide substrate using a microfabrication process. Cobalt and copper were used
as negative and positive thermoelectric materials for the thermoelectric generator. The generator
was a flexible sandwiched planar structure. The power factor for the thermoelectric generator was
6.6 × 10−3 µW/cm2K2 at ∆T of 44.2 K. A flexible thermoelectric generator, presented by Jo [17], was
made on a polydimethylsiloxane substrate to harvest heat energy from a human body. The materials
for the thermocouples in the generator were n-type and p-type Bi2Te3, which were manufactured
using dispenser printing. The area of the thermoelectric generator was 50 × 50 mm2. The OV for the
generator was 7 mV at ∆T of 19 K and the output power was 2.1 µW at ∆T of 19 K. The thermoelectric
generator had a voltage factor of 0.15 µV/mm2K and an output power of 2.33 pW/mm2K2. Oh [18]
proposed a flexible thermoelectric generator for self-powered wearable electronics. The materials for
the FTG were p-type NbSe2 and n-type WS2 nanosheet films. The flexible thermoelectric generator
produced an output power of 38 nW at the ∆T of 60 K and the performance was stable after 100 bending
cycles and 100 stretching cycles at a 50% strain. Kim [19] used an optimized composite film with
tungsten disulfide nanosheets and single wall carbon nanotubes to fabricate a flexible thermoelectric
generator on a rubber substrate with pre-strain. The FTG kept its performance after 10,000 stretching
cycles at a 30% strain. These thermoelectric generators [13–17] are flexible and have more applications
than non-flexible thermoelectric generators [9–11]. This study uses a low cost electroplating process
that allows easy fabrication to manufacture a flexible thermoelectric generator on an epoxy substrate.
The power factor for the FTG exceeds that for the FTG’s that were developed by Itoigawa [13], Lu [14],
Ding [15], and Jo [17].

2. Design for the Thermoelectric Generator

Figure 1 shows the schematic structure of the flexible thermoelectric generator. The FTG is
composed of 39 thermocouples in series. Each of the thermocouple is made of copper and nickel.
The thermocouples have a hot part and a cold part. Each thermocouple is 7 mm long, 0.5 mm wide,
and 0.1 mm thick. The area of the FTG is 46 × 17 mm2. The FTG uses the Seebeck effect to generate an
output voltage if the hot and cold parts of the thermocouples have different temperatures. The output
voltage for the FTG is given by [20],

U0 = m(αc − αn)∆T (1)
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where U0 represents the OV for the FTG, m is the number of thermocouples in the FTG, αc is the Seebeck
coefficient for copper, αn is the Seebeck coefficient for nickel and ∆T is temperature difference between
the hot part and cold parts of the thermocouples. Equation (1) shows that that the OV for the FTG is
proportional to the number of thermocouples (m), the difference in the Seebeck coefficients (αc − αn)
for the thermocouple materials, and ∆T for the thermocouples [21]. If there is an increase in the three
parameters, m, αc − αn and ∆T, the OV for the FTG increases. To increase the temperature difference
between the hot and cold parts of thermocouples, the length of the thermocouples is extended to 7 mm.
In the design, thermocouple materials are copper and nickel. The Seebeck coefficient of copper is
1.83 µV/K, and the Seebeck coefficient of nickel is −19.5 µV/K [22]. The thermocouple number of the
FTG is 39. The values m = 39 and αc − αn = 21.33 µV/K are substituted into Equation (1), the relation
between the OV and ∆T of the FTG is obtained. Figure 2 shows the simulated OV of the FTG. In this
computation, the temperature difference of thermocouples changes from zero to 5.5 K. As shown in
Figure 2, the change between the OV and ∆T was linear relation. The simulated OV of the FTG was
4.6 mV at ∆T of 5.5 K.
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The output power of the FTG depends on the internal resistance and the external load. When the
internal resistance of the FTG equals its external load, the FTG has a maximum output power.
The maximum output power of the FTG is given by [23],

Pmax =
U0

2

4Rg
(2)
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where Pmax is the maximum output power for the FTG, U0 is the OV for the FTG, and Rg is the internal
resistance of the FTG. Equation (2) shows that the maximum output power of the FTG is proportional
to the square of the OV and is inversely proportional to the internal resistance [24]. If the OV for
the FTG is increased and the internal resistance is decreased, the maximum output power increases.
The maximum output power for the FTG is calculated. The internal resistance of the FTG is assumed
to be 10.3 Ω. The value Rg = 10.3 Ω and the simulated OV in Figure 2 are substituted into Equation (2).
The maximum output power for the FTG is calculated and the simulated results are shown in Figure 3.
The temperature difference for the thermocouples changes from zero to 5.5 K. Figure 3 shows that the
relationship between the output power and temperature difference is nonlinear. The simulated output
power for the FTG is 508 nW at ∆T of 5.5 K.
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3. Fabrication of the Thermoelectric Generator

The flexible thermoelectric generators were fabricated on an epoxy substrate using an electroplating
technique. The structure of the FTG consisted of thermocouples in series. The materials for the
thermocouples were copper and nickel. Figure 4 illustrates the process flow for the FTG.
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Figure 4. Process flow for a flexible thermoelectric generator: (a) Defining a silver seed layer; (b)
electroplating copper; (c) electroplating nickel; (d) coating epoxy polymer; (e) etching polymethyl
methacrylate substrate; (f) painting silver; (g) packaging.

Figure 4a shows a seed layer of silver on the PMMA substrate. The silver seed layer was coated
onto the PMMA substrate, and the silver layer was patterned using a computer numerical control
(CNC) micro-milling machine. Figure 5 shows an image of the silver layer pattern that is defined by
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the CNC micro-milling machine. Figure 4b shows that a copper layer is deposited onto the silver
layer. An electroplating process with CuSO4 solution and a current density of 4 A/dm2 for 45 min
was utilized to deposit the copper layer onto the silver layer. The thickness of the copper layer was
100 µm. Figure 4c shows that a nickel layer is electroplated onto the silver layer. An electroplating
process with NiSO4 solution and a current density of 4 A/dm2 for 45 min was employed to deposit
the nickel layer onto the silver layer. The thickness of the nickel layer was 100 µm. Figure 4d shows
that an epoxy is coated onto the PMMA substrate. Epoxy is used because the PMMA substrate is not
flexible so epoxy is used to replace the PMMA substrate. Figure 4e shows etching the PMMA substrate.
The FTG was immersed in an acetone solution for 30 min to etch the PMMA substrate and structure of
the thermocouples was transferred to the epoxy substrate. Figure 4f shows that silver paint connects
the nickel and the copper to form the thermocouples in series. Figure 4g shows that a thin epoxy
layer is coated onto the FTG to protect the thermocouples. This layer prevents damage from dust and
steam. Figure 6 shows an image of the flexible thermoelectric generator. Figure 7 shows that the FTG
is flexible.
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4. Results and Discussion

A heater, a cooler, a power supply, an infrared thermometer and a digital multimeter were used to
test the OV for the FTG. The heater was placed at the hot part of the thermocouples and the cooler was
placed at the cold part of the thermocouples. The power supply provided power to the heater and
cooler. The heater acted as a heat source for the hot part of the thermocouples and the cooler acted as a
heat sink for the cold part of the thermocouples. An infrared thermometer was used to measure the
temperature difference between the hot and cold parts of the thermocouples. A digital multimeter
recorded the OV for the FTG.

Figure 8 shows the measured OV for the flexible thermoelectric generator. The temperature
difference of the thermocouples in the FTG was varied between zero and 5.3 K. The results show that
the OV for the FTG is 2.6 mV at ∆T of 5.3 K. The internal resistance was measured using a digital
multimeter. The value was 10.3 Ω. Equation (2) is used to calculate the maximum output power for
the FTG. The internal resistance Rg = 10.3 Ω and the measured results for the FTG OV in Figure 8 are
substituted into Equation (2) to calculate the maximum output power. Figure 9 shows the measured
maximum output power for the flexible thermoelectric generator. The measured maximum output
power for the FTG was 165 nW at ∆T of 5.3 K.
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As shown in Figures 2 and 8, the simulated OV for the FTG is 4.3 mV at ∆T of 5.3 K and the
measured OV is 2.6 mV at ∆T of 5.3 K. A comparison of the simulated and measured results shows that
the OV for the FTG has an error percentage of 40%. As shown in Figures 3 and 9, this error results in a
large difference between the simulated and the measured maximum output power. The thermoelectric



Micromachines 2019, 10, 660 7 of 10

properties of the copper and nickel in the thermocouples depend on the current density during
the electroplating process. To reduce the error and improve the thermoelectric properties of the
thermocouples, this study uses different values of current density to electroplate the copper and nickel
for the FTG and measures the OV. Figure 10 shows the measured OV for the flexible thermoelectric
generator for different electroplating current densities. Four current densities are used to electroplate
the copper and nickel onto the FTG: 0.5 A/dm2, 1 A/dm2, 2 A/dm2 and 4 A/dm2. The results show
that the OV for the FTG increases as the current density that is used for electroplating is decreased.
As shown in Figure 10, the FTG produces the greatest OV at a current density of 0.5 A/dm2. The results
(0.5 A/dm2) are in agreement with the simulation results. At a current density of 0.5 A/dm2, the FTG
produces an OV of 4.2 mV for a value of ∆T of 5.3 K. The voltage factor for the FTG was 1 µV/mm2K.
The values U0 = 4.2 mV, ∆T = 5.3 K and m = 39 are substituted into Equation (1) to evaluate the
difference in the Seebeck coefficient for the thermocouple materials. The result shows that the difference
in the Seebeck coefficients (αc − αn) for the thermocouple materials is 20.3 µV/K.
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The results in Figure 10 are substituted into Equation (2) to calculate the maximum output power
for the FTG. Figure 11 shows the maximum output power for the flexible thermoelectric generator for
various values of current density for electroplating. The results show that the maximum output power
for the FTG increases as the current density of electroplating is decreased. As shown in Figure 11, the
FTG produces the greatest output power at a current density of 0.5 A/dm2. The results (0.5 A/dm2)
are in agreement with the simulation results. At a current density of 0.5 A/dm2, the FTG produces an
output power of 429 nW for a value of ∆T of 5.3 K. The power factor for the FTG was 19.5 pW/mm2K2.Micromachines 2019, 10, x 8 of 10 
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The relationship between the curvature and resistance of the FTG is used to characterize the
flexibility of the FTG. A digital multimeter was used to record the change in the resistance of the FTG
when a force is applied to change its curvature. Figure 12 shows the relationship between the curvature
and the resistance of the FTG. For a curvature of less than 10 m−1, the resistance of the FTG remains
constant at 10.3 Ω. The resistance of the FTG increases from 10.3 to 330 Ω as the curvature of the FTG
increase from 10 to 20 m−1. The limit of curvature for the FTG is 20 m−1, which corresponds to a radius
of curvature that is 50 mm.
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Table 1 lists the performance for various thermoelectric generators. These thermoelectric generators,
which were fabricated by Itoigawa [13], Lu [14], Ding [15], Selvan [16], and Jo [17], were flexible.
As shown in Table 1, the power factor for the FTG that was produced by Selvan [16] is 66 pW/mm2K2

which is the greatest power factor. The power factor for the FTG that was produced by Lu [14] is
0.064 pW/mm2K2, which is the lowest power factor. The power factor for the FTG that is produced by
this study is 19.5 pW/mm2K2, which is a higher figure than that for the FTG’s that were produced by
Itoigawa [13], Lu [14], Ding [15], and Jo [17].

Table 1. Performances of various thermoelectric generators.

Authors Flexibility Voltage Factor (µV/mm2K) Power Factor (pW/mm2K2)

Lee [9] No - 0.68
Phaga [10] No 1.35 0.16

Big-Alabo [11] No - 35
Itoigawa [13] Yes 2.43 0.64

Lu [14] Yes 0.8 0.064
Ding [15] Yes 1.5 1.2

Selvan [16] Yes - 66
Jo [17] Yes 0.15 2.33

This work Yes 1 19.5

The internal resistance of the thermoelectric generator that was fabricated by Peng [21] was 8 kΩ,
and the internal resistance of the thermoelectric generator that was produced by Yang [23] was 8 kΩ.
The thermoelectric generator that was produced by Kao [24] had an internal resistance of 2.45 kΩ.
The internal resistance of the FTG that is produced by this study is 10.3 kΩ, which is a lower figure
than those for the thermoelectric generators that were produced by Peng [21], Yang [23], and Kao [24].

5. Conclusions

A flexible thermoelectric generator was fabricated on an epoxy substrate using an electroplating
process. The FTG contained 39 thermocouples in series. These thermocouples were composed of
the thermoelectric materials, copper, and nickel. The electroplating process, which is low cost and
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allows easy processing, was used to deposit the copper and the nickel. The FTG is quite flexible, with a
maximum curvature of 20 m−1. The experiments showed that the OV and maximum output power for
the FTG were 4.2 mV and 429 nW, respectively, for a value of ∆T of 5.3 K. The FTG had a voltage factor
of 1 µV/mm2K and a power factor of 19.5 pW/mm2K2.
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