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Abstract: The main challenge for tunnel field-effect transistors (TFETs) is achieving high on-current
(ION) and low subthreshold swing (SS) with reasonable ambipolar characteristics. In order to address
these challenges, Ge-channel heterostructure TFET with Si source and drain region is proposed,
and its electrical characteristics are compared to other TFET structures. From two-dimensional (2-D)
device simulation results, it is confirmed that the Si/Ge heterostructure source junction improves ION

and SS characteristics by using the direct band-to-band tunneling current. Furthermore, the proposed
structure shows suppressed ambipolar behavior since the Ge/Si heterostructure is used at the
drain junction.
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1. Introduction

Metal-oxide-semiconductor field-effect transistors (MOSFETs) have been consistently scaled
down to the nanoscale, and power consumption (i.e., power density) is becoming an important
concern to maintain Moore’s Law [1]. However, it is increasingly difficult to reduce operating voltage
(VDD) while maintaining high ON-OFF current ratio (ION/IOFF), since there is a fundamental limit of
60 mV/dec subthreshold swing (SS) at room temperature for MOSFETs [2,3]. This is due in part to
gate-to-channel coupling limits, which cannot exceed unity due to voltage drop in the gate dielectric,
as well as to the carrier injection mechanism, i.e., thermionic emission, which inevitably depends on
the Boltzmann statistic [4]. Strategies to achieve SS < 60 mV/dec can be categorized in two ways.
For example, negative capacitance field-effect transistor (NCFET) [5–7], resistive gate FET (ReFET) [8]
and nano-electro mechanical FET (NEMFET) [9,10] mainly focus on the way to improve gate-to-channel
coupling (decrease body factor (m) less than 1) with the help of novel gate stacks, while positive
feedback FETs [11,12], impact ionization metal-oxide-semiconductor (I-MOS) [13,14] and tunnel FET
(TFET) [15–18] try to change carrier injection mechanism by adopting novel operation methods.
Among them, TFETs have received extensive research attention due to their high complementary MOS
(CMOS) compatibility and scalability [19,20]. Although TFETs have raised the possibilities that they
could succeed MOSFETs, they suffer various technical problems, such as low ION and disappointing
SS. Heterojunction structures, which enable narrower local band-to-band tunneling (BTBT) barrier
width (WTUN) by adopting narrow bandgap material like Ge, have been regarded as a powerful
solution to address both problems simultaneously [21–26]. To the best of our knowledge, all previous
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heterostructure TFET used Ge at the source region. However, ION remains significantly behind the
requirement for state-of-the-art technology and such device fabrication is not under consideration.

This paper proposes a novel Ge channel heterostructure TFET and shows that the device achieves
higher ION, lower SS, and reasonable ambipolar current (IAMB) using technology computer-aided
design (TCAD) simulations. The proposed approach is straightforward: The Si-Ge heterojunction
TFET differs from previous proposed systems by adopting Ge at channel not for source. Starting with
systematic comparison among other heterojunction and homojunction TFETs’ current-voltage (I-V)
characteristics, the proposed TFET’s operation mechanism is rigorously investigated to analyze its
superior performance compared to others.

Since the proposed approach is based on the change of channel material, a double gate structure
which is highly compatible to the current logic device is used for an analysis (Figure 1). The detailed
parameters used in this paper are listed below. In order to exclude short channel effect, physical
gate length (LG) and body thickness (TB) between two gates are set at 100 and 20 nm, respectively.
For the gate stack, gate oxide with 2 nm equivalent oxide thickness (EOT) and gate contact with 4.05 eV
work function (WFN) are used, corresponding to highly doped n-type polysilicon. Source and channel
doping concentrations are p-type 1020 cm−3 and undoped, respectively, to improve BTBT efficiency
by suppressing degeneracy effect [27] while n-type 1018 cm−3 is used for draining to suppress an
ambipolar behavior [28]. The feasibility of proposed TFET for high Ion and steep SS is compared with
other TFETs by changing source/channel/drain material combinations, as summarized in Table 1.
Considering a simple fabrication process using self-aligned epitaxy, a symmetric device structure is
preferred. Therefore, the same materials are selected for the source and drain regions.
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Figure 1. Basic schematic of tunnel field-effect transistor (TFET) structure in this study. In order to
analyze the performance and the characteristics of the TFETs with two-dimensional device simulation,
this kind of double gate structure is used representing the cross-section of the horizontal fin field-effect
transistor (FinFET) structure.

Table 1. Material combinations of the devices analyzed in this study.

Case Source
(p-type 1020 cm−3)

Channel
(Undoped)

Drain
(n-type 1018 cm−3)

Case1 Si Si Si
Case2 Ge Ge Ge
Case3 Ge Si Ge
Case4 Si Ge Si

In order to analyze the electrical characteristics of the TFETs, two-dimensional (2-D) device
simulations are carried out using Synopsys SentaurusTM (Ver. K-2015.06-SP1, Synopsys, Mountain
View, CA, USA) [29]. Fermi–Dirac statistics, drift-diffusion carrier transport, Shockley–Read–Hall
(SRH) recombination, modified local density approximation (MLDA), and dynamic non-local BTBT
models are applied to accurately define device characteristics. Gate leakage current is neglected.
The bandgap narrowing model is employed, since the source region is highly doped. Minimum
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conduction bands of Γ-valley and L-valley of Si and Ge are considered simultaneously. In case of the
heterostructure, defects at Si and Ge interfaces are difficult to avoid and can significantly degrade
device performance. However, in this research, these defects are neglected since the focus of this
manuscript is mainly to optimize the TFET material combination under ideal conditions. For the
calculation of BTBT generation rate (G) per unit volume in uniform electric field, Kane’s model is used
as follows:

G = A(
F
F0
)

P
exp(−B

F
) (1)

where F is electric field, and F0 = 1 V/cm; P = 2 and 2.5 for the direct and indirect tunneling, respectively.
Pre-factor A and exponential factor B parameters for Si and Ge are calibrated by referring [30].
Although Kane’s model has some limitations, such as incorrectness in the presence of nonuniform
fields and overestimation of the direct tunneling current [31–33], this model remains extensively used
for TFET simulations.

2. Result and Discussion

Simulated transfer characteristics for Case1–Case4 with 0.5 V or 0.95 V-drain voltage (VDS) are
shown in Figure 2a,b. The drain voltage conditions were selected since they have been widely used in
previous TFET studies [24,25,34]. The output characteristics of Case1–Case4 with 0.5 V V-gate voltage
(VGS) are shown in Figure 2c. As shown in these figures, Si homojunction TFET (Case1) exhibited
poor Ion and SS characteristics, attributed in part to the large tunneling resistance due to the relatively
large bandgap (~1.12 eV for Si), and in part to poor BTBT efficiency since Si has an indirect bandgap.
In contrast, Ge homojunction TFET (Case2) showed significant Ion and SS improvement, due to the
narrower Ge bandgap (~0.67 eV). In addition, Krichnamohan et al. [24] previously showed that Ge can
be regarded as having a pseudo-direct bandgap since its conduction band minimum at Γ-valley was
only ~0.13 eV higher than that for the L-valley, as shown in Figure 3d. Consequently, BTBT probability
is significantly increased and results in up to several hundred µA/µm-Ion. However, Case2 suffered
from an increased IAMB since the BTBT resistance at the drain junction was also reduced.

Ge/Si/(Ge) heterojunction (Case3) has been regarded as one of the most promising structures
to compromise ION and IOFF. However, ION <1 µA/µm requires further improvement to provide
reasonable operating speed and IAMB should be significantly reduced. Although Case3 can operate
as much as Case2, adopting Ge channel-to-gate overlap region, it requires advanced process
capability [28,35].
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Figure 2. Simulated transfer characteristics ((a) VDS = 0.5 V, (b) VDS = 0.95 V) and output characteristics
((c) VGS = 0.5 V) of Cases1–4.

Proposed TFET (i.e., Case4: Si source and Ge channel) showed better Ion and SS characteristics
than Case3 (Ge source and Si channel) structure, as can be seen in Figure 2a,b. It was thoroughly
deviated from the general expectations as both WTUN and the tunnel window (i.e., difference between
valence band maximum at source and conduction band minimum at channel) of Case4 were larger and
smaller than that for Case3, respectively (Figure 3a). On the other hand, Case4 showed similar Ion and
SS characteristics to Case2 having Ge homojunction between the source and the channel region. To the
best of our knowledge, this is the first report regarding this characteristic for Case4 type structures.

To investigate the reasons of the remarkable transfer characteristics in Case4 structure, tunneling
currents in Case3 and Case4 were divided into indirect and direct components, as shown in Figure 3b.
For Case3, indirect BTBT dominated total ID and the direct component was negligible when gate
voltage (VGS) was higher than 0 V. In contrast, the transfer characteristic of Case4 showed quite a
different trend from that of Case3 structure. When VGS = 0 V, the indirect tunneling current was much
higher than the direct one. However, as VGS increased, direct BTBT exceeded indirect and total ID,
and SS characteristics for Case4 were mainly determined by the direct tunneling current. These results
can be further analyzed by the energy band structure at the junction between source and channel.
Schematic energy band diagrams of Si and Ge are shown in Figure 3c,d, respectively. When on-current
flows in Case3, electrons from the valence band of the Ge source are injected into the conduction band
of the Si channel. In contrast, in on-state, electrons in Case4 transfer from the valence band of the Si
source to the conduction band of the Ge channel. Therefore, direct BTBT for Case3 barely occurs since
the energy level of the Γ valley is 2.28 eV higher than the ∆ valley at the conduction band of Si. On the
other hand, in case of Si to Ge tunneling junction of Case4 structure, the energy difference between the
Γ valley and the L valley at the conduction band of Ge is only 0.14 eV. Hence direct BTBT current can
significantly contribute to total ID as VGS increases.
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As well as improved ION and SS characteristics, Case4 (Ge channel and Si drain) structure
also exhibited superior ambipolar characteristics compared to Case2 (Ge homojunction) and Case3
structures, as shown in Figure 2. The energy band diagrams for Case2–Case4 structures at off-state
(VGS = −0.4 V and VDS = 0.95 V) are shown in Figure 4a, to identify the reason for reduced IAMB in
Case4 structure. Interestingly, Case4 structure had minimum WTUN, in contrast to the smallest IAMB in
Figure 3b. The main reason for these improved ambipolar characteristics was the effective suppression
of direct BTBT components. Direct tunneling leakage of Case4 structure was negligible, confirming
Case4 structure’s significantly improved ambipolar characteristics, as seen in Figure 4b.
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VDS = 0.95 V). (b) Indirect tunneling, direct tunneling and total drain current of Case2 and
Case4 structures.

The electrical characteristics of Case1–Case4 structures are summarized in Table 2. The SS
was extracted at 0.95 V-VDS and 0 V-VGS. The ION and IOFF were defined as ID with 0.95 V-VDS at
1.5 V-VGS and 0 V-VGS, respectively. As discussed above, Case4 exhibited superior ION/IOFF among
the simulated structures, achieving the highest ION due to direct tunneling at the source junction,
and effectively suppressing ambipolar characteristics by reducing direct tunneling leakage current at
the drain region. However, the advantages of Case4 structure are limited to n-type TFETs, with p-type
TFET exhibiting dominant indirect tunneling with the Ge/Si heterostructure at the source junction.

To fabricate the Si/Ge heterostructure, the Ge layer should be grown by epitaxial processes [23].
Since Ge is confined in the channel region for Case4 structure, this layer can be easily fabricated using
self-aligned epitaxial process during the replacement-metal-gate (RMG) process [36]. Ge condensation
technique can be applied to implement the high Ge content SiGe channel close to pure Ge [37].
After SiGe layer growth around the channel layer in the RMG process step, the enriched Ge channel
layer can be formed by selective Si oxidation and Ge diffusion from the initial grown SiGe layer.
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In addition, since Si is used for the source region, it is relatively easy to achieve high doping compared
to when using Ge.

Table 2. Comparison of the electrical characteristics of Case1–Case4 structures.

Case Subthreshold Swing (SS)
[mV/dec] Ion [µA/µm] Ioff [pA/µm] Ion/Ioff

Case1 40.5 0.1 0.001 1.0 × 108

Case2 45.3 294.5 0.666 4.4 × 108

Case3 68.4 1.5 0.602 2.5 × 106

Case4 35.8 115.1 0.095 1.2 × 109

3. Summary

In this research, the appropriate material combination for source/channel/drain regions in TFET
was investigated to improve electrical characteristics. From the device simulation results, it was
verified that the Si/Ge/Si combination exhibits outstanding ION and SS characteristics, using direct
BTBT of the Si/Ge heterostructure at the source junction. Additionally, ambipolar effect, one of the
critical disadvantages of TFETs, could be suppressed by increasing tunneling resistance at the drain
junction with the Ge/Si heterostructure. From the perspective of process complexity, the proposed
structure can be easily fabricated using simple self-aligned epitaxy as the same material (Si) is used for
the source and drain region.
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