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Abstract: The deformability of a red blood cell (RBC) is one of the most important biological
parameters affecting blood flow, both in large arteries and in the microcirculation, and hence it can
be used to quantify the cell state. Despite numerous studies on the mechanical properties of RBCs,
including cell rigidity, much is still unknown about the relationship between deformability and
the configuration of flowing cells, especially in a confined rectangular channel. Recent computer
simulation techniques have successfully been used to investigate the detailed behavior of RBCs
in a channel, but the dynamics of a translating RBC in a narrow rectangular microchannel have
not yet been fully understood. In this study, we numerically investigated the behavior of RBCs
flowing at different velocities in a narrow rectangular microchannel that mimicked a microfluidic
device. The problem is characterized by the capillary number Ca, which is the ratio between the
fluid viscous force and the membrane elastic force. We found that confined RBCs in a narrow
rectangular microchannel maintained a nearly unchanged biconcave shape at low Ca, then assumed
an asymmetrical slipper shape at moderate Ca, and finally attained a symmetrical parachute shape
at high Ca. Once a RBC deformed into one of these shapes, it was maintained as the final stable
configurations. Since the slipper shape was only found at moderate Ca, measuring configurations of
flowing cells will be helpful to quantify the cell state.

Keywords: red blood cells; Lattice–Boltzmann method; finite element method; immersed boundary
method; narrow rectangular microchannel; computational biomechanics

1. Introduction

It is well known that many blood-related diseases are associated with alterations in the geometry
and membrane properties of red blood cells (RBCs) that result in reduced functionality [1]. For instance,
RBCs in patients with diabetes mellitus exhibit impaired cell deformability [2], as do those in patients
with sepsis [3]. As another example, malaria-infected RBCs demonstrate membrane stiffening as well as
shape distortion [4–6]. Hence, cell deformability may be an important indicator of cell state, and might
be used to diagnoses relevant blood diseases. To date, various experimental techniques have been
proposed to evaluate RBC deformability, e.g., optical tweezers and atomic force microscopy, but they
usually suffer from low throughput. Recently, several microfluidic techniques that are capable of
high-throughput measurement have been developed [7–11]. For instance, Ito et al. (2017) successfully
developed a novel high-throughput assay to quantify the mechanical response of RBCs after spatial
constriction, and found a characteristic mechanical response to long-term deformation that may have
been related to chemical energy content [9].
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Along with these experimental studies, recent computer simulation techniques have successfully
been used to investigate aspects of cell dynamics such as stresses, velocities, and deformations,
and have been shown to reproduce single-cell dynamics [12–14]. Mokbel et al. (2017) quantitatively
related cell deformation to mechanical parameters in an experiment involving microfluidic flow
through a square channel [13]. To elucidate patient-specific blood rheology, RBCs in diabetes
mellitus and sickle-cell anemia were modeled in terms of cell rigidity and membrane viscosity,
and their hydrodynamic interactions were quantified [15,16]. Since such numerical models allow us
to investigate cell behavior in large parameter spaces, the coupling of experimental and numerical
approaches may constitute a usefull bioengineering strategy to quantify the cell state.

Despite the studies referred to above, much is still unknown about the behavior of flowing
RBCs, especially in a confined microchannel or between two closely spaced parallel plates
(i.e., Hele-Shaw cell). Since the deformation of a RBC in a narrow rectangular microchannel
is limited to an almost two-dimensional space, it is relatively easy to quantify the deformed
configuration [17,18]. Although a number of studies using microfluidic devices have reported
cellular-scale dynamics [19–24] as well as numerical studies [20,25–28], the dynamics of a translating
RBC in a narrow rectangular microchannel have not yet been fully investigated. Recent our developed
on-chip feedback manipulation system allowed us to investigate the two-dimensionally projected
shape profile of RBCs, and showed RBC heterogeneity in a narrow rectangular microchannel [17,18].
However, a precise deformation especially in thickness direction of RBCs cannot be captured by means
of the experimental observation.

One of the pioneering theoretical works about the behavior of the cell membrane in a confined
channel was reported by Secomb & Skalak (1982) [29]. More recently, Tahiri et al. (2013) systematically
investigated the shape transition of confined RBCs modeled as vesicles, and showed a phase diagram
of the mode of RBCs [28]. Since these works were limited to the two-dimensional behavior of RBCs,
it is unknown whether their insights are applicable to estimating the three-dimensional deformation
of a RBC in a narrow rectangular microchannel. Fedosov et al. (2014) systematically investigated the
behavior of a single RBC in cylindrical microchannels for a wide range of channel confinements
(2a/D, being the radius of the RBC a and the channel diameter D) using a three-dimensional
dissipative particle dynamics model [30]. However, their microchannels (2a/D < 0.8) had relatively
large cross-sectional area comparing to a narrow rectangular microchannel represented in [17,18,31].
Zhu et al. (2016) numerically investigated the behavior of a droplet in a Hele-Shaw cell, and identified
characteristic flow structures that were induced by the translating droplet [31]. Since forces acting on
an interface depend on the constitutive law, it is expected that the hydrodynamic interaction between
the fluid and cell membrane will differ from that observed in the droplet model.

The objective in this study, therefore, is to clarify the detailed behavior of translating RBCs in a
narrow rectangular microchannel. The RBCs was modeled as a biconcave capsules, whose membranes
followed the Skalak constitutive law [32]. We quantified the stable configuration of deformed RBCs in
a narrow rectangular microchannel, mimicking a microfluidic device [17], for different values of the
capillary number Ca, which is the ratio between the fluid viscous force and the membrane elastic force.
We also investigated the effect on this configuration of altering parameters such as bending rigidity
and viscosity ratio. To accelerate numerical simulations, we resorted to computing with a graphics
processing unit (GPU), using the Lattice–Boltzmann method (LBM) for the inner and outer fluids and the
finite element method to follow the deformation of the RBC membrane. These models were previously
successfully applied to the analysis of cellular hydrodynamic interactions in channel flows [12,33–35].

2. Materials and Methods

2.1. Flow and RBC Model

We considered a cellular flow consisting of an external/internal fluid and a RBC membrane
with radius a in a rectangular box representing a microfluidic device with 10 µm × 3.5 µm along
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the wall-normal and span-wise directions (Figure A1a). Representative images of a flowing RBC
in a microfluidic device (Figure A1b,c) are shown in Figure A1d. The stream-wise distance for the
computational domain was set to be 50 µm (Figure 1). Each RBC was modeled as a biconcave
capsule, or a Newtonian fluid enclosed by a thin elastic membrane, with a major diameter 8 µm (=2a)
and maximum thickness 2 µm (= a/2 = tR). The flow was driven by a pressure gradient. Periodic
boundary conditions were imposed on the inlet and outlet. To reproduce in vivo human RBC condition
experimentally, the cytoplasmic viscosity was taken to be µ1 = 6.0 × 10−3 Pa·s, which is five times
higher than the external fluid viscosity, µ0 = 1.2 × 10−3 Pa·s. Hence, the viscosity ratio λ (=µ1/µ0) was
set to be 5. The computational domain and the initial state or steady deformed state of the RBC are
shown in Figure 1. The problem was characterized by the capillary number (Ca),

Ca =
µ0γ̇a

Gs
, (1)

where Gs is the surface shear elastic modulus, and γ̇ (=U∞
m /H) is the shear rate defined by the mean

velocity of the external fluid without cell U∞
m and channel height H (=10 µm). Since the inertial effect

can be negligible in the microfluidic device, we set Re as small enough to assume the Stokes flow.
To reduce the computational costs, we set Re = ρU∞H/µ0 = 0.2, where ρ is the external fluid density
and U∞ is the maximum velocity of the external fluid with no cell. This value accurately represents
the capsule dynamics solved by the boundary integral method in Stokes flow [12,33].

Figure 1. Computational domain to reproduce a translating red blood cell (RBC) in the narrow
rectangular microchannel. The domain mimicked a microfluidic device as shown in Figure A1.
The domain cross-section was 10 µm × 3.5 µm along the wall-normal and span-wise directions,
respectively, and the stream-wise distance was set to be 50 µm. Flow direction is from left to right.

The membrane was modeled as an isotropic and hyperelastic material that followed the Skalak
constitutive (SK) law [32]. The strain energy w and principal tensions in the membrane T1 and T2

(T1 ≥ T2) of the SK law are given by

w =
Gs

4

(
I2
1 + 2I1 − 2I2 + CI2

2

)
, (2)

and
T1 =

Gsλ1

λ2

[
λ2

1 − 1 + Cλ2
2

(
λ2

1λ2
2 − 1

)]
, (likewise for T2), (3)

where C is a coefficient representing the area incompressibility, I1(=λ2
1 + λ2

2 − 2) and I2 (= λ2
1λ2

2 −
1 = J2

s − 1) are the first and second invariants of the strain tensor, λ1, λ2 are the two principal in-plane
stretch ratios, and Js = λ1λ2 is the Jacobian, which expresses the ratio of the deformed to reference
surface areas. If I2 equals zero (i.e., Js = 1), the membrane satisfies perfect incompressibility. In this
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study, the surface shear elastic modulus and area incompressibility coefficient of RBCs were determined
to be Gs = 4.0 µN/m and C = 102, respectively [6,33]. The bending resistance kb was also considered [36],
with a bending modulus kb = 1.2 × 10−19 J, according to the order of the value of kb [37].

2.2. Numerical Simulation

We used the LBM [38] coupled with the finite element method (FEM) [39]. The membrane
mechanics were solved by the FEM, and are given by∫

S
û · qdS =

∫
S

ε̂ : TdS, (4)

where T is the Cauchy stress tensor, q is the load on the membrane, û is the virtual displacement,
and ε̂ = (∇sû + ∇sûT)/2 is the virtual strain tensor. The fluid mechanics were solved by the
LBM [38] as,

fi (x + ci∆t, t + ∆t)− fi (x, t) = − 1
τ

[
fi (x, t)− f eq

i (x, t)
]
+ Fi∆t, (5)

where fi is the particle distribution function for ideal particles with velocity ci at position x, ∆t is the
time step size, f eq

i is the equilibrium distribution, τ is the nondimensional relaxation time, and Fi is
the external force term. Subscript i represents the distribution direction of an ideal particle (i = 0–18).
The D3Q19 LBM was used. FEM and LBM were coupled by the immersed boundary method [40].
All procedures were fully implemented on a GPU to accelerate the numerical simulation [41].
Our coupling method has been successfully applied to numerical analyses of cellular flow [33–35] and
cell adhesion [12]. The solid and fluid mesh sizes were set to be 125 nm (an unstructured mesh with
20,480 elements was used for the RBC membrane). This resolution has been shown to successfully
represent single-cell dynamics in a channel [12]. The results of cell deformation did not change with
twice the fluid-mesh resolution (Figure 2b).(a)
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Figure 2. (a) Typical snapshots of a deformed RBC subjected to Ca = 0.15 at the initial state (left) and
steady state (right). Two views, from the span-wise and stream-wise directions, are shown above and
below, respectively. The markers represent node points. (b) Superposition of the fully deformed RBC
projected on the x-z plane at Ca = 0.15 . The two lines obtained with ∆x = 125 nm (black) and 62.5 nm
(red), respectively. The membrane position is normalized by the reference radius a.

3. Results

3.1. Deformation of a Translating RBC in a Narrow Rectangular Microchannel

We performed numerical simulations to reproduce a translating RBC in a narrow rectangular
microchannel, as shown in Figure A1d, and found that the RBC demonstrated an asymmetrical shape,
the so-called slipper shape [42], which was also observed in the experiment as shown in Figure A2
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(see also Videos S1 and S2). A typical asymmetrical shape of a deformed RBC subjected to Ca = 0.15 is
shown in Figure 2a, where the markers represent membrane node points. The result clearly shows that
the membrane does not rotate; in other words, the RBC stably translates without a tank-treading motion.
The outlines of the deformed RBC at different fluid mesh resolutions are shown in Figure 2b, projected
on the z-x plane. The result remains the same with twice the fluid mesh resolution (∆x = 62.5 nm).
Therefore, the present resolution (∆x = 125 nm) successfully reproduces the fluid dynamics between
the membrane and wall, and will be used in this study.

Figure 3a shows snapshots of a stable RBC configuration for different Ca at fully developed
flow. The RBC demonstrated an almost unchanged (symmetrical) biconcave shape at small Ca = 10−3,
then shifted to an asymmetrical slipper shape as Ca increased (see also Video S3 for Ca = 0.1), and finally
attained a symmetrical parachute shape at Ca ≥ 0.35 (see also Video S4 for Ca = 0.5). To quantify
the symmetry of the stable configuration of the deformed RBC, we propose a symmetry index IDsym,
which is defined by the volume ratio of two volumes that are divided by a plane parallel to the flow
direction at the midline of the channel, as shown in Figure 3b. Using volume 1 (Vol1) and volume 2
(Vol2), IDsym is given as

IDsym =
MIN (Vol1, Vol2)
MAX (Vol1, Vol2)

. (6)

A complete symmetrical shape is expressed as IDsym = 1. We show the results of IDsym as a
function of Ca in Figure 3c. An asymmetrical parachute shape abruptly appeared for Ca ≥ 0.01,
but it gradually recovered and finally reached IDsym = 1 for Ca ≥ 0.35. These results suggest that there
exists the following specific range of Ca that allows a RBC to deform into an asymmetrical slipper
shape: 5 × 10−3 < Ca < 0.35.
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Figure 3. (a) Snapshots of a fully deformed RBC for different Ca. (b) Typical snapshots of a RBC
at Ca = 0.01, where the blue plane denotes the center of the x-z-plane parallel to the flow direction,
dividing the cell into the volume 1 (Vol1) and volume 2 (Vol2). (c) The symmetry index IDsym as a
function of Ca. The insets represent snapshots of deformed RBCs at specific Ca.
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Figure 4a shows one example of the temporal history of the RBC centroid velocity Vc at Ca = 0.01,
where Vc is normalized by the characteristic (maximum) fluid velocity without cell U∞. The centroid
velocity of RBC is calculated as a volume-averaged velocity, and is given by,

Vc =
1
V

∫
V

v(xm)dV =
1
V

∫
V
∇ · (v⊗ r) dV =

1
V

∫
S

n · (v⊗ r) dS, (7)

and
V =

∫
V

dV =
1
3

∫
V
∇ · rdV =

1
3

∫
S

n · rdS, (8)

where v(xm) is the interfacial velocity of the membrane at the membrane node point xm, r is the
membrane position relative to the center of the RBC, n is the surface normal vector, V the volume of
the RBC, and S is the surface area of the membrane. The velocity slightly (∼3%) decreased when the
RBC shape changed from a symmetrical to asymmetrical shapes at Ca = 0.01 (Figure 4a). Because the
membrane of a slipper-shaped RBC is dragged by the fluid near the wall, Vc is slower than that of a
symmetrically shaped RBC. Once the membrane deformed into an asymmetrical shape, that shape
persisted. In this study, we defined the “steady state” as the condition wherein the centroid velocity
reached a plateau (this time is hereafter referred to as γ̇t = 0), and used data after γ̇t = 0 to reduce the
influence of the initial conditions. A time average was performed for the period γ̇t ≥ 100 after γ̇t = 0.
Figure 4b shows the time average of centroid velocity Vc and total fluid velocity Vtotal for different Ca,
where those values are normalized by characteristic velocity U∞. The tendency that Vc/U∞ slightly
decreases as Ca increases (Figure 4b) agrees with previous numerical results of a spherical capsule in
a square channel [43] and constricted channel [44]. Note that the dimensional cell velocity basically
increases as Ca increases, for instance, Vc ∼ 0.12 µm/s for the lowest Ca (=10−4) and Vc ∼ 1200 µm/s
for the highest Ca (=0.5).
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Figure 4. (a) Time history of the RBC centroid velocity (Vc) at Ca = 0.01, where Vc = 24.7 µm/s at
γ̇t = 200 corresponding to t = 12 s. The images represent snapshots of the deformed RBC at γ̇t = 70
(t = 4.2 s) and 200 (t = 12 s), respectively. The blue line denotes the center axis of the channel. (b) Time
average of the RBC centroid velocity Vc and total fluid velocity Vtotal as a function of Ca. The velocity
Vi is normalized by the characteristic fluid velocity without cell U∞, where Vi represents Vc and Vtotal
by the index i = “c” or “total”.

The deformation of each axis in a steady-state membrane is quantified by the deformation index
Li/Lre f

i , which is the ratio between each axis length of a deformed RBC Li and each reference axis

length Lre f
i (i.e., without flow), where subscript i represents the maximum, middle and minimum

axes (i.e., i = “max”, “mid”, and “min”). The results of Li/Lre f
i are shown in Figure 5a. We found that

only the minimum axis (i.e., thickness) increases as Ca increases, while the maximum and middle
axes decrease.
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Figure 5. (a) Time average of the deformation index Li/Lre f
i as a function of Ca, where the maximum,

middle, and minimum axis lengths (Lmax, Lmin, and Lmid, respectively) are normalized by each reference
length Lre f

i (i.e., no flow condition), where the reference major and minor axis lengths are d0 and t0

(thickness), respectively. (b) Averaged first and second invariants Ii (i = 1 and 2) as a function of Ca.
(c) Averaged maximum and isotropic tensions; Tmax and Tiso, respectively. These values are normalized
by the shear elastic modulus Gs. (d) The average of these tensions, Ti, as a function of the deformation
index Lmin/t0, which is the ratio between the minimum axis length of the deformed RBC (thickness)
and the reference thickness.

To quantify the strain of an isotropic elastic membrane, the first and second invariants of the
strain tensor Ii (i = 1 and 2) are calculated, and are given in Figure 5b. These are averaged by the total
number of membrane meshes and the analysis duration, i.e.,

Ii =
1

T S

∫
t

∫
S

Ii(xg, t)dSdt (i = 1 and 2), (9)

where T is the period of analysis duration, and xg is the centroid of the triangle element of the
membrane. According to Figure 5b, the second invariant I2 is almost zero for Ca ≤ 0.1, and only
slightly increases for Ca > 0.1. Therefore, the membrane incompressibility is well maintained
even after the membrane demonstrates the slipper/parachute shape. The first invariant I1, on
the other hand, starts to increase from Ca ≥ 0.01 and grows rapidly compared to I2. Therefore,
the symmetrical parachute-like deformation results from greater membrane extension than the
asymmetrical slipper-like deformation.

We also investigated the maximum in-plane principal tension Tmax (T1 ≥ T2) and the isotropic
tension Tiso(=T1 + T2)/2 in the deformed RBC, and show the results in Figure 5c. We calculated the
average value of those tensions as Tmax and Tiso by using Equation (9). As expected, both tensions
start to increase simultaneously when I1 increases (i.e., Ca = 0.01). The isotropic tension Tiso is always
lower than the maximum principal tension Tmax. To demonstrate the relationship between tension and
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deformation, Ti is described as a function of the deformation index Lmin/t0 in Figure 5d. The result
clearly shows the strain-hardening behavior of the RBC due to the nonlinearity of the SK law.

3.2. Effects of Perturbations on Stable Membrane Configuration

To clarify the reproducibility of the stable configuration of a deformed RBC in the narrow
rectangular microchannel, we investigated the effects of potential perturbations, e.g., the initial centroid
position x0, bending rigidity kb, and viscosity ratio λ. Figure 6 shows the centroid velocity Vc of a
RBC subjected to low Ca (= 5 × 10−3) and maximum Ca (= 0.5) for different initial centroid positions
along the span-wise direction of the channel. When the centroid of the RBC was initially placed two
fluid meshes away from the midline of the channel (i.e., x0 = −2∆x), the RBC started to flow with an
asymmetrical slipper shape, but gradually migrated to the channel axis due to the lift forces induced
by the wall and shear gradient, and finally attained a symmetrical shape for both Ca values with the
same velocity as that obtained with x0 = 0 (Figure 4; see also Videos S5 and S6). Therefore, the stable
configuration of the deformed RBC is insensitive to the initial position. Note that although the RBC
subjected to low Ca (= 5.0 × 10−3) did not perfectly orient parallel to the flow direction (Figure 6a) and
suffered from decreasing the cell velocity, the symmetry index IDsym remained the same (Figure 7a).

We also tested different values for bending rigidity kb, where the value of kb was set to a quarter
of the original bending resistance (kb = 3.0 × 10−20), and twice the original bending resistance
(kb = 2.4 × 10−19). As shown in Figure 7a, the symmetry index IDsym remained same regardless
of the value of kb. Therefore, bending rigidity does not affect the stable configuration of the translating
RBC in the narrow rectangular microchannel, at least within the parameter space that we investigated,
namely 3.0 × 10−20 ≤ kb ≤ 2.4 × 10−19.
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Figure 6. Time history of the RBC centroid velocity (Vc) at (a) low Ca = 5 × 10−3, and (b) high Ca = 0.5
for different initial positions along the span-wise direction x0, where one RBC is initially placed at the
midline of the channel (x0 = 0, dashed line) and the other RBC is placed two fluid meshes away from
the midline (x0 = −2∆x, red line). The images represent snapshots of the RBC with x0 = −2∆x at the
indicated times (see also Videos S5 and S6). Note that Vc = 12.7 µm/s for Ca = 5 × 10−3 at γ̇t = 500
(t = 60 s), and Vc = 1180 µm/s for Ca = 0.5 at γ̇t = 500 (t = 0.6 s).

However, DIsym was affected by the viscosity ratio λ. When λ decreased to unity (i.e., λ = 1),
the membrane tended to assume a symmetrical shape even at relatively low Ca = 0.01. The most
asymmetrical shape was found at at λ = 5, and the minimum DIsym|λ=1 shifted to larger Ca ≈ 0.1
(Figure 7a). The value of DIsym at λ = 1 started to recover beginning at Ca = 0.1, and finally almost
reached 1 at Ca = 0.3. To see the effect of λ, we compared the centroid velocity Vc and membrane
tension Ti between different λ (= 1 and 5). Vc at λ = 1 tended to be larger, and was approximately
4% greater than that obtained with λ = 5 (Figure 7b). The results of Ti, on the other hand, tended to
decrease as λ decreased (Figure 7c).

Figure 7d shows the membrane tensions as a function of the deformation index Lmin/t0.
When Lmin/t0 was invariant, the tensions acting on the membrane Ti tended to be lower as λ decreased.
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This tendency was inconsistent with the previous numerical results of the RBC in simple shear
flow [45]. Compared with the previous results in [45], the similarities or discrepancies in the values
of Ti (Figure 7c,d) for different λ would arise from different flow modes and confined geometries.
Even though tensions acting on the membrane and deformation depend on λ, the RBC in the narrow
rectangular microchannel underwent the same history of deformation as a function of Ca; the almost
original biconcave shape at low Ca, and an asymmetrical slipper shape at low/moderate Ca, and finally
a symmetrical parachute shape at high Ca. These results suggest that the stable configuration of the
translating RBC in the narrow rectangular microchannel was reproducible independently of any
perturbations that we investigated.
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Figure 7. (a) The symmetry index IDsym as a function of Ca for different values of bending modulus
kb = 3.0 × 10−20 J (square), 1.2 × 10−19 J (triangle), and 2.4 × 10−19 J (inverted triangle). The results
obtained with a viscosity ratio of unity (i.e., λ = 1) are also displayed (diamond). The circular dot
represents the result of x0 = −2∆x at low Ca (= 5 × 10−3) and high Ca (= 0.5) and λ = 5. These results
were obtained with kb = 1.2 × 10−19 J. (b) Time average of the RBC centroid velocity (Vc) as a function
of Ca for different viscosity ratios (λ = 1 and 5). (c) Averaged maximum and isotropic tensions, Tmax

and Tiso, respectively. (d) Averaged tension Ti as a function of the deformation index Lmin/t0.

4. Discussion

The asymmetric slipper shape of RBCs has been found in capillaries [42], and the motion has been
systematically investigated both in experiments [19–23] and in numerical simulations [20,26,28,30].
An experiment using microfluidic devices showed that RBCs undergo a transition from a symmetrical
parachute shape to an asymmetrical slipper shape as cell velocity increased [23]. Other experimental
results showed that viscous shear stresses controlled this transition, and confinement was not necessary
for the slipper shape [19]. The results reported in [19] are consistent with the numerical results obtained
using a two-dimensional (2D) droplet model [26]. The numerical studies reported in [26] clearly
showed that the shape transition in an unbounded Piseuille flow occurred when a dimensionless
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vesicle deflation number, representing shape stability, fell below a certain value. Other numerical
results reported in [28] demonstrated that 2D droplets also assumed the slipper shape, not only in an
unbounded Piseuille flow but also in a confined channel. These numerical studies also clarified the
effect of the viscosity ratio λ on stable configuration, showing specifically that a droplet with λ = 1
transitioned from a parachute shape to a slipper shape as the flow strength decreased [26], while a
droplet with λ ≈ 5 made this same transition as the flow strength increased [28]; these findings were
consistent with the experimental results reported in [23]. Since the above numerical analyses were
performed using a 2D droplet model, it is uncertain whether their results are applicable to the dynamics
of a translating three-dimensional (3D) RBC in a confined rectangular channel when taking membrane
elasticity into account. Fedosov et al. (2014) systematically investigated the behavior of single RBC in
cylindrical microchannels for a wide range of channel confinements (2a/D, being a channel diameter D)
using a 3D dissipative particle dynamics model [30], but the cross-sectional area of the microchannels
were relatively large (2a/D < 0.8) comparing to a narrow rectangular microchannel represented
in [17], where the channel confinement is characterized as 2a/H = 0.8 and 2a/W ∼ 2.29 using the
wall-normal length H and span-wise length W (Figure A1a–c). We thus numerically investigated
the behavior of translating RBCs in a narrow rectangular microchannel that mimicked a microfluidic
device (Figure A1) [17] with different Ca. Our numerical results demonstrated that the confined RBCs
maintained a nearly unchanged, biconcave shape at low Ca, then shifted to an asymmetrical slipper
shape at low/moderate Ca, and finally attained a symmetrical parachute shape at high Ca. Such
asymmetrical slipper shape was also observed in the experiment (Figure A2). The finding that RBCs
tended to show a symmetrical shape with increasing Ca contradicted previous experimental results [23]
as well as numerical results obtained using a 2D-droplet model with λ ≈ 5 [28]. This discrepancy
may have been caused by the effects of three-dimensional flow structures in a confined channel and
by the membrane constitutive law. Our numerical results of the transition from slipper to parachute
shapes qualitatively agree with those obtained in cylindrical microchannels for 2a/D < 0.8 [30].
To the best of our knowledge, such shape transition in a narrow rectangular microchannel that was
presented here is the first of its kind. We also showed that the stable configuration of the translating
RBC in the narrow rectangular microchannel was reproducible independently of any perturbations
that we investigated such as the initial centroid position, bending rigidity, and viscosity ratio. If the
fully deformed configuration or the transition mode is related to membrane shear elasticity, which is
characterized by Ca, these insights will help us identify the cell state. Since different motions of
individual RBCs may affect the bulk suspension rheology [46], identifying a stable mode of RBCs in a
channel will be also helpful to evaluate the blood rheology.

In our experiment using microfluidic devices, we observed a slipper-shaped RBC whose velocity
was almost 1.2 mm/s (Figure A2), while the numerical results showed that a velocity this high resulted
in a RBC with a symmetrical parachute shape (Figure 3c). This discrepancy may have been due
to the duration of the observation. Since experimental observation periods are limited to 0.1 s or
less, the slipper-shaped RBC in the microfluidic device may have been in the transition. According
to our numerical results shown in Figure 6, the transition from slipper shape to parachute shape
takes at least γ̇t ∼ 300, corresponding to ∼0.3 s for Ca = 0.5 (Vc ∼ 1.2 mm/s). Another possible
reason may have been due to RBC heterogeneity as reported in our previous experiments [17,18].
The experimental observations of an asymmetrical slipper shape in a microfluidic device are required
for precise statistical analysis, which will be addressed in future study.

We are not sure what perturbations are needed to destroy the stable symmetrical shape. Thermal
energy is unlikely to be affecting the state: indeed, although the RBC membrane usually demonstrates
Brownian motion in the free state, the Peclet number (Pe = γ̇a/Dp, being a radius of the RBC a and a
diffusion coefficient Dp) is estimated as approximately O(Pe) = 101, even at Ca = 10−4, by using the
Stokes–Einstein equation, and thus the Brownian diffusion (thermal fluctuations) should have little
effect. Although the membrane bending rigidity did not affect the stable membrane configuration at
least for 3 × 10−20 J ≤ Ca ≤ 2.4 × 10−19 J, further investigation will be required for larger parameter
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spaces. In this study, we defined the initial shape of RBCs as a biconcave disc. Since some recent
numerical studies have debated the stress-free shape of RBCs [47–49], it will be interesting to study
how the reference shape (biconcave, oblate spheroid, and sphere) affects the stable configuration of
translating RBCs in a narrow rectangular microchannel.

5. Conclusions

We numerically investigated the dynamics of translating RBCs in a narrow rectangular microchannel
for different capillary numbers (Ca). Our numerical results demonstrated that a confined RBC in a narrow
rectangular microchannel maintained a nearly unchanged, biconcave shape at low Ca, then assumed an
asymmetrical slipper shape at moderate Ca, and finally attained a symmetrical parachute shape at high
Ca. Once the RBC deformed into either of the latter two shapes, they sustained that shape as their final
stable configurations. The membrane deformation as a function of Ca remained the same even when the
viscosity ratio λ decreased from physiological relevant value (λ = 5) to unity. The final stable configuration
was insensitive to bending resistance and initial position. If these shapes are found in diseased RBCs
translating at specific velocities, the shapes will be an important indicator of cell state.

Supplementary Materials: Following materials are available at http://www.mdpi.com/2072-666X/10/3/199/s1,
Video S1: experimental result at the speed of the cell being 1200 µm/s, corresponding to Ca ≈ 0.5; Video S2:
numerical result at Ca = 0.01; Video S3: numerical result at Ca = 0.1; Video S4: numerical result at Ca = 0.5;
Videos S5 and Video S6: numerical results of initial RBC centroid position two meshes away from the midline for
Ca = 5 × 10−3 and Ca = 0.5, respectively. These numerical results were obtained with λ = 5 and kb = 1.2 × 10−19 J.
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RBC Red blood cell
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GPU Graphics processing unit

Appendix A. Sample Preparation and Observation

Adult blood was drawn from healthy donors based on the informed consent. All the experiments
and experimental protocols in microchannels were approved by the Ethical Committee of Osaka
University and performed according to the appropriate guidelines and regulations. Immediately
after the blood was drawn, it was maintained in an intact condition by dispersal at a concentration of
1% (v/v) in standard saline.

A microfluidic channel was constructed between a glass slide and poly (dimethylsiloxane)
(PDMS) that was designed and printed from a master mold made of SU-8 photoresist using

http://www.mdpi.com/2072-666X/10/3/199/s1
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standard photolithography. The cross-section of the rectangular microchannel was 10 µm × 3.5 µm
(Figure A1a,b). The experimental system was composed of a high-speed camera (IDP-Express R2000,
Photron) and microscope (IX71, Olympus) equipped with an × 40 (N.A. = 0.6) or × 50 (N.A. = 0.42)
objective lenses. Images were captured at 1000 frames/s with exposure time of 1 ms. The spatial
resolutions of captured images were 0.24 µm/pixel (Figure A1d) and 0.26 µm/pixel (Figure A2) for
× 40 and× 50 objective lenses, respectively. Flow of the solution inside the microchannel was basically
driven by a constant pressure difference between the inlet and outlet of the channel, maintained by
atmospheric pressure and gravitational force.

Figure A1. Detailed channel geometry. Magnified view of the channels with the cross-sections of
(a) 10 µm × 3.5 µm and (b) 3.5 µm × 10 µm, which were used in Figure A2 and Figure A1, respectively.
(c) Schematic view of the whole channel, whose stream-wise length was 8000 µm. (d) Representative
images of a flowing RBC in a microfluidic device. Flow direction is from left to right.

Figure A2 shows representative snapshot images of a RBC flowing at a velocity of 1200 µm/s;
imaging was performed at 1000 frames/s, perpendicular to the span-wise direction of the microchannel.
The RBC deformed into an asymmetrical shape, the so-called slipper shape [42]. Interestingly, this
configuration was also found in a numerical simulation with Ca = 0.01, where the RBC centroid velocity
was Vc ∼ 25 µm/s (Figure A2). Although we reported RBC heterogeneity in [17], the asymmetrical
shape of RBCs by means of the experimental observations is required for a precise statistical analysis,
which is however future study.

Figure A2. Representative images of the flowing RBC at frame numbers 0 (top), 20, 40 60, and 80
(bottom), respectively, where the speed of the cell is 1200 µm/s (see also Video S1). A representative
numerical result of a stable slipper-shaped RBC subjected to Ca = 0.01 (calculated centroid velocity
Vc ∼ 25 µm/s) is also displayed (see also Video S2).
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