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Abstract: Recently, graphene has gained a lot of attention in the electronic industry due to its unique
properties and has paved the way for realizing novel devices in the field of electronics. For the
development of new device applications, it is necessary to grow large wafer-sized monolayer graphene
samples. Among the methods to synthesize large graphene films, chemical vapor deposition (CVD) is
one of the promising and common techniques. However, during the growth and transfer of the CVD
graphene monolayer, defects such as wrinkles, cracks, and holes appear on the graphene surface.
These defects can influence the electrical properties and it is of interest to know the quality of graphene
samples non-destructively. Electrical impedance tomography (EIT) can be applied as an alternate
method to determine conductivity distribution non-destructively. The EIT inverse problem of
reconstructing conductivity is highly non-linear and is heavily dependent on measurement accuracy
and modeling errors related to an accurate knowledge of electrode location, contact resistances,
the exact outer boundary of the graphene wafer, etc. In practical situations, it is difficult to eliminate
these modeling errors as complete knowledge of the electrode contact impedance and outer domain
boundary is not fully available, and this leads to an undesirable solution. In this paper, a difference
imaging approach is proposed to estimate the conductivity change of graphene with respect to
the reference distribution from the data sets collected before and after the change. The estimated
conductivity change can be used to locate the defects on the graphene surface caused due to the CVD
transfer process or environment interaction. Numerical and experimental results with graphene
sample of size 2.5 × 2.5 cm are performed to determine the change in conductivity distribution and
the results show that the proposed difference imaging approach handles the modeling errors and
estimates the conductivity distribution with good accuracy.

Keywords: graphene; electrical conductivity; electrical impedance tomography; difference imaging;
inverse problem

1. Introduction

Graphene, which is an allotrope of carbon, is a two-dimensional (2D) material made of a single
atomic layer with carbon atoms arranged in a hexagonal honeycomb lattice and has special unique
properties [1]. Graphene has remarkable electronic [2], mechanical [3], physical, and chemical
properties [4]. For instance, at room temperature the carrier mobility is very high (>250,000 cm2V−1S−1),
thermal conductivity (3000–5000 Wm−1K−1), high modulus (~1 TPa) despite small thickness (~3.4 Å),
and high transparency nature [2–5]. The above properties make graphene ideal material for novel
future device applications involving nanoelectronics, thin-film transistors, and transparent conductive
electrodes for flexible and printable optoelectronics, and photovoltaic devices [6–8] to name a few.
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The significance of graphene for the development of these applications is the high electrical conductivity
of the material.

Graphene properties are dependent on the number and thickness of the graphene layers [9].
Moreover, it is difficult to grow graphene 2D crystals beyond small sizes as with increasing the lateral
size the 2D crystallites bend into the third dimension. It is observed that interactions with 3D structures
can stabilize the growth of 2D crystals therefore graphene can be grown or placed between two
substrates or placed over the top of the bulk 3D structure [10]. Therefore, to develop graphene-based
devices, it is necessary to grow large-area single-layer graphene on a suitable substrate and be able
to control the process to achieve continuous production. Several methods are developed for the
fabrication of graphene and are mainly classified as exfoliation, epitaxial growth, colloidal suspension,
and unconventional methods [11]. Mechanical, thermal, or chemical energy is used to separate the
stacked graphene layers from the bulk graphite in exfoliation [1,11–13]. In the epitaxial synthesis
method, graphene is grown on the metallic or insulator substrate using physical or chemical vapor
deposition. The colloidal suspension of graphene sheets is produced with initial raw material such as
pristine graphite sheets or graphene oxide mixed with an aqueous or organic solvent.

Among the developed methods, micromechanical cleavage produces high-quality graphene, but it
can yield very small flakes of order few microns. For the device applications, large grown wafer-sized
graphene samples are necessary. Among the different methods to obtain large graphene films,
chemical vapor deposition (CVD) is a particularly promising technique [14,15]. However, during the
growth and transfer process of CVD graphene films produces inhomogeneities such as cracks [16,17],
wrinkles [18,19], and domain boundaries and affects the sheet resistance that can influence the electrical
transport properties [16,18]. Therefore there is a need to map the local conductivity profile and
characterize graphene film at a sub-micrometer resolution to associate graphene film and the various
kinds of local defects for electrical characterization.

In terms of electrical characterization for graphene, there is not much advancement in
manufacturing methods to develop good throughput and quality. The popular way to evaluate
the suitability of graphene films for a specific application is the four-point probe method or Hall
effect measurements [16,18,20]. This is generally slow and inefficient and results in the destruction
of the graphene film. Also, microscopic techniques such as Kelvin probe force microscopy [19–21],
and conductive atomic force microscopy (AFM) [22], scanning tunneling microscopy (STM) [23,24]
are used for studying the electrical properties of graphene locally at the nanoscale spatial resolution.
Although they provide accurate characterization locally, to have the mapping of conductivity over
a large area of graphene it is cumbersome and difficult to evaluate the sample quality in a given time
frame. As a result, fast accurate method for a large area, high-density electrical property mapping is
required for quality control, process optimization.

Non-contact methods for characterizing the electrical properties of graphene sheets covering a large
area such as Terahertz domain spectroscopy (TDS) mapping [25,26], Infrared (IR) thermography [27,28],
Lock-in thermography [29] are studied. However, it is sometimes difficult to identify local defects on
a graphene sheet due to the low spatial resolution of TDS which is under a hundred micrometers to
under a millimeter. Moreover, TDS measurement is obtained in a current-off condition, which does not
indicate the true electrical properties of devices. Infrared (IR) thermography images large areas of
graphene sample by the heat radiated from the biased sample. IR imaging can identify the carrier
distribution and the electrical failures across the sample but due to the heat stored in the substrate that
supports the graphene sample, the thermal radiation spot gets widened thus making it hard to locate
defects at micrometer resolution. Electrical impedance tomography (EIT) which is a nonintrusive
method can be used as an alternate method to determine conductivity mapping across the graphene
surface. EIT is applied to several other applications in the area of process tomography [30–33] and
biomedical applications [34–36]. For more information about EIT applications, see [37,38]. Defects such
as cracks, holes, and wrinkles have different electrical properties as compared to the background region.
This difference in electrical properties in the graphene sample can be identified using EIT by injecting
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currents and measuring voltages on electrodes that contact with the boundary of the graphene sample
on the substrate. EIT hardware contains electronic components mainly fast multiplexers and analog
to digital converters that have millisecond measurement time thus can be able to achieve real-time
conductivity imaging of graphene samples.

Recently, electrical impedance tomography (EIT) is applied as an alternate nondestructive method
to map the conductivity distribution of graphene assuming point electrodes [39]. Point electrodes use
the average gap model as a mathematical model which is not that accurate in real situations. For large
size wafers point electrodes are not feasible and electrodes with width can be preferred. Moreover,
the image is reconstructed using the Gauss–Newton method which is an absolute imaging method.
In absolute imaging (ABI), the exact information regarding model parameters such as electrode location,
contact impedance, and domain boundary is necessary to have a desirable solution with the absolute
imaging approach [40,41]. However, in practical conditions, the knowledge about model parameters is
uncertain and not complete. For example, the graphene sample that is transferred to the substrate has
an outer boundary that is not uniform. The modeling errors and measurement noise can lead to severe
errors in absolute reconstructions [42,43]. Difference imaging estimates the change in conductivity from
the initial or reference distribution from the data that is measured before and after the conductivity
change. Difference imaging uses data collected from the same geometry. Therefore, the modeling
errors are compensated to some extent [44,45]. In this study difference imaging approach is applied
to reconstruct the conductivity changes on the monolayer graphene sample using EIT. The forward
problem is solved using the finite element method using boundary conditions applying a complete
electrode model. The one step Gauss–Newton algorithm, which is a one-step algorithm, is used to
compute the change in conductivity distribution. The change in conductivity can be used to locate the
defects if present and provide information about the doping concentration which is useful in electrical
characterization. Numerical and experimental studies are performed using the proposed method on
large-area graphene of size 2.5 cm × 2.5 cm for conductivity estimation and the results are compared
with the absolute imaging approach.

2. Electrical Impedance Tomography

Mathematical Model of Electrical Impedance Tomography (EIT)

In EIT to obtain the conductivity distribution of the graphene sheet, an array of L electrodes
el (l = 1, 2, · · · , L) is placed on the boundary of the graphene sample ∂Ω. An alternating current of
small magnitude Il is injected through the electrodes on the graphene sample and the resultant voltages
generated are measured across the electrodes. Using the measured voltages on the graphene and the
associated injected currents, the conductivity distribution across the surface is determined (Figure 1).
Reconstruction of conductivity using EIT is obtained by solving the forward and inverse problem
iteratively until the desired solution is achieved. The forward problem of EIT here is to calculate the
measured voltages from injected currents and given conductivity distribution σ(x, y) of the graphene
sheet by solving the governing equation derived from Maxwell’s equation given by

∇ · (σ∇u) = 0, in Ω (1)

and boundary conditions that are defined based on the complete electrode model (CEM) given as [46]

u + zlσ
∂u
∂n

= Vl, (x, y) ∈ el, l = 1, 2, · · · , L, (2)∫
el

σ
∂u
∂n

dS = Il, (x, y) ∈ el, l = 1, 2, · · · , L (3)

σ
∂u
∂n

= 0, (x, y) ∈ ∂Ω\
L
∪

l=1
el (4)
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where zl is the contact resistance of lth electrode, Vl is the boundary voltage measured on lth electrode,
n is the outward unit normal. Further, to have a unique solution, additional constraints are used
for injected currents (Kirchoff current law) and measured voltages, i.e., fixing the reference potential
level [47]

L∑
l=1

Il = 0,
L∑

l=1

V = 0 (5)
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A numerical solution based on the finite element method is used to solve the forward problem.
In the 2D finite element formulation, the computation domain i.e., graphene layer surface is discretized
into triangular elements where within each element the resistivity distribution is assumed to constant.
For the complete details about 2D finite element formulation for the EIT forward solution see [41].
Here it is discussed briefly again to have a better understanding of the inverse solution. Discretizing the
computation domain Ω, the potential distribution is approximated as

u ≈ uh(x, y, z) =
N∑

i=1

αiϕi(x, y, z) (6)

And the corresponding boundary voltages on electrodes are described as

Uh =
L−1∑
j=1

β jn j (7)

where αi, β j are the nodal potential and boundary voltages. Further, ϕi, N are basis functions and the
number of finite element nodes considered, respectively. In Equation (7), n j are the measurement bases
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considered such that the constraint for voltage Equation (5) is satisfied. The boundary voltages UL on
the electrode are calculated with the help of Equation (5) as

U1 =
L−1∑
l=1

βl

U2 = −β1

U3 = −β2
...

UL = −βL−1

(8)

Using Equations (6) and (7) and the boundary conditions Equations (2)–(5), the FEM solution
results in a set of algebraic equations and is represented in a matrix form

Ab =
∼

I (9)

where A is the system matrix, b =

(
α

β

)
is the unknown node potentials in the domain and boundary

voltages on the electrode,
∼

I =

(
0
ζ

)
is the data vector with 0 ∈ <N, ζ = (I1 − I2, I1 − I3, . . . , I1 − IL)

T
∈

<
(L−1). The FEM approximation of boundary voltages is represented as U(ρ) and the noise associated

with the instrument during measurement (e) is considered to be white Gaussian, the EIT observation
equation can be formulated as

V = U(ρ) + e (10)

To obtain the solution for the forward problem, Equation (9) is solved as b = A−1
_
I .

3. Inverse Problem

For the conductivity estimation, let us consider the domain is discretized into small pixels as
Ω = ∪N

n=1Ωn and the conductivity distribution inside graphene sheet is assumed to be a pixel-wise
constant such that

σ(x) =
N∑

n=1

σnχΩn(x), (11)

where the conductivity vector σ = [σ1, σ2, · · · , σN]
T
∈ <

N×1 is the unknown to be estimated by
minimizing the cost function that is the sum of squares of the voltage difference.

3.1. Absolute Imaging

In EIT the inverse problem is ill-posed i.e., the number of voltage data (M) measured on the
boundary is less than the number of unknowns (conductivity of each pixel N). Also, the Hessian matrix
is ill-conditioned as the change in voltage due to conductivity in a given pixel is non-uniform. Hence,
to have a stable solution, quite often regularization methods are used to reduce the ill-conditioned
and ill-posedness of the EIT inverse problem. The regularized cost functional is therefore expressed
as [40,41]

Φ(σ) =
1
2
[U(σ) −V]T[U(σ) −V] +

α
2
[R(σ− σ∗)]T[R(σ− σ∗)], (12)

where α is the smoothing or regularization parameter, R ∈ <N×N is the regularization matrix,
andσ∗ ∈ <N×1 is the available conductivity prior information. To solve the above nonlinear least-squares
cost function, the Gauss–Newton method is often used. Starting with an initial distribution σ0, the above
cost function is minimized iteratively using the Gauss–Newton algorithm as follows

σk+1 = σk −

[
JTJ + αRTR

]−1[
JT(U(σk) −V) + αRTR(σ− σ∗)

]
(13)
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where J is the Jacobian defined as J(σk) =
∂U(σk )

∂σk
. The conductivity reconstructed using Equation (13)

can be termed as absolute imaging which gives the conductivity distribution at each pixel for the data
set measured at a given time.

3.2. Difference Imaging

In absolute imaging, the solution is highly dependent on the accuracy of forward solution and
measured voltages. Apart from the measurement noise, there are uncertainties due to modeling errors
associated with imprecise knowledge of electrodes position, the unknown shape of outer boundary,
and contact impedances of electrodes [43]. The most often and commonly used method is the linear
difference imaging (LDI) approach which is robust to modeling errors to an extent. Difference imaging
estimates the conductivity change δσ based on the measurements V1 and V2 that relate to the data
before and after the conductivity change at different time intervals

Vi = U(σi) + ei, i = 1, 2, (14)

where ei is the Gaussian distributed measurement noise. Linearizing (14) and then subtracting, we have
the expression for difference voltage data as

V2 −V1 = δV = Jδσ+ δe, (15)

where δV = V2 −V1, U(σ2) −U(σ1) � J(σ2 − σ1) = Jδσ, and δe = e2 − e1. The resistivity change from
difference voltage data can be estimated by minimizing the cost function [44,45]

Φ(σ) = argmin
{
‖δV− Jδσ‖2 + α‖Rδσ‖2

}
, (16)

and assuming no prior knowledge about the conductivity, the solution for conductivity change is
obtained as

δσ =
(
JTJ + αRTR

)−1
JTδV (17)

4. Results

This section presents the numerical and experimental studies to reconstruct the conductivity
change across the graphene sample. The graphene sample used for the experimental and numerical
case has the same geometry and the preparation of CVD graphene is described below

4.1. Simulation Studies

Numerical simulations are carried out using a graphene sample that is square-shaped and has the
same geometry as the graphene sample used for the experiment. Fine mesh with 20,440 triangular
elements is used to generate true data and coarse mesh with 5110 elements is used to estimate the
conductivity distribution across the graphene (Figure 2). Here, two different meshes for forward
and inverse computation are used so that inverse crime is avoided. Linear difference imaging is
used as the inverse solution to map the conductivity profile and the results are compared with
estimates using the absolute imaging method. Two numerical cases are considered for conductivity
estimation where in the first case a homogeneous or ideal case is considered where the graphene
has homogeneous distribution with conductivity 6.7 × 104 mS/cm and data 2 contains a defect or
crack that has conductivity 5 × 10−9 mS/cm on the surface. In the second test case, it is assumed the
graphene sample has a defect that is like a wrinkle located at the bottom left side that has conductivity
2 × 103 mS/cm, and after some time due to handling or transfer process, another defect is formed that
has conductivity 5 × 10−9 mS/cm. The generated voltage data corresponding to data for the two cases
is contaminated with 0.5% relative noise to account for instrument and numerical modeling errors.
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Numerical Results

The results for conductivity estimation for numerical test case 1 are shown in Figure 3. The top
row has the true distribution of conductivity for the initial homogeneous condition (σ1) (Figure 3a)
and data 2 has a defect located at the bottom left side (Figure 3b). The estimate of conductivities for
σ1 and σ2 with conventional absolute imaging (ABI) is shown in Figure 3d,e. With ABI, it is noticed
that estimates of σ1 and σ2 contain many artefacts. Especially, if we look at the estimated result σ2,
the low conductive region is seen at the bottom left side. However, estimates of ABI are affected
due to measurement noise, and the size, location of the defect is not estimated with good accuracy.
In this study, we are mainly interested to reconstruct the conductivity changes δσ. Solving the ABI
estimates σ1 and σ2 separately and subtracting we can have the conductivity change, i.e., δσ = σ2 − σ1

is computed and showed in Figure 3f. Conductivity change with ABI as similar to the estimated
result σ2 has an oversized low conductive region. Linear difference imaging (LDI) that estimates the
conductivity change (δσ) using Equation (17) for case 1 is shown in Figure 3g. It is seen that the defect
region with a low conductivity value is estimated with good accuracy. The location and size of the
defect are estimated well with LDI however it is seen that the estimated shape of the defect is different
from the true shape. This is due to the regularization method and the FEM approximation that is
used in the forward solution to estimate the conductivity. To have a better estimation of defect shape,
parametric methods that describe the shape of an object can be used, which is not within the scope of
this work.
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Figure 3. Numerical simulation of graphene conductivity estimation for test case 1 with 0.5% relative
noise. (a–c) The top row is the true conductivity distribution while the second row (d–f), third row (g)
are estimated conductivities of initial distribution (σ1), final distribution (σ2), and conductivity change
(δσ) using absolute imaging (ABI) and linear difference imaging (LDI).

Numerical results for conductivity estimation of case 2 with noise are shown in Figure 4. The true
conductivity distribution is shown in the top row (Figure 4a–c). The initial state σ1 has a small wrinkle
defect located at the bottom left side of Figure 4a and the distribution σ2 has two defects on the
graphene surface Figure 4b. The conductivity estimates for σ1, σ2 and δσ with ABI and LDI is given
in Figure 4d–g. It is seen that the small wrinkle defect is not identified with ABI in the estimates of
σ1 and σ2 Figure 4d,e. Moreover, the background has many artefacts and does not give desirable
information about the conductivity distribution. The conductivity change estimate δσ obtained by
solving for σ1 and σ2 separately and then subtracting (σ2 − σ1) is shown in Figure 4f. It is found that
the ABI estimate of conductivity change could locate the defect with a slightly bigger size. The estimate
with the proposed LDI method is shown in Figure 4g and it could locate the defect and estimate
the conductivity change with good accuracy. In the numerical simulation, it is assumed that contact
resistances are assumed to be known however the measurement noise has a significant effect on ABI
estimates, and with LDI the modeling errors are compensated to some extent.
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4.2. Experimental Studies

4.2.1. Graphene Sample Preparation

For experiment purposes, the single-layer graphene synthesized on copper foil using the CVD
process was purchased from Graphene Square Inc. As a mechanical supporter during the transfer
process, poly(methyl-methacrylate) PMMA (950 PMMA A4, MicroChem Co., Westborough, MA, USA,
was spin-coated on the graphene-synthesized Cu foil with the condition of spin speed of 3000 rpm for
30 s, and annealed on a hot plate at 100 ◦C for 5 min. Thereafter, PMMA/Graphene/Cu-foil was moved
onto ammonium persulfate solution to dissolve the copper foil. After removing the whole copper foil,
the PMMA/Graphene was cleaned using de-ionized water. Next, the PMMA/Graphene was transferred
onto SiO2/Si wafer, target substrate. Finally, acetone was used to dissolve the PMMA. The graphene
sample is now ready to use for experimental purposes. In this study, we have used a graphene sample
of size 2.5 × 2.5 cm for examining the conductivity distribution using EIT. The graphene sample is then
coated with copper electrodes using sputtering with a mask designed with the electrode location and
shape. In Figure 5a, the graphene sample with copper electrodes used in the experiment is shown
below. The graphene with copper electrodes is then connected to the EIT measurement setup with the
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help of gold wires as shown in Figure 5b. At both ends of gold wires, silver paste is used as an adhesive
to connect copper electrodes on the graphene surface and copper wire terminals to connect to the EIT
measurement setup.
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Figure 5. Graphene sample that is used in experimental studies for the conductivity profile. (a) copper
electrodes coated on graphene surface (b) gold wires are used to connect the copper electrodes with
copper wire terminals for EIT measurement setup.

To check the graphene sample, at four different locations as shown in Figure 6a Raman scanning
is performed by exciting 532-nm laser. The spectra obtained at the four different data points are shown
in Figure 6b–e. From the spectra, it can be seen that the G-band and 2D-band have a sharp band and
the intensity ratio of the 2D-band to G-band is greater than 1. This can validate that the sample used is
monolayer graphene.
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Figure 6. Raman spectra of monolayer graphene used for experimental studies (a) Locations of data
points on graphene sample used for Raman scanning (b–e) Measured spectra for the locations of
data points.

4.2.2. EIT Measurement Setup

Laboratory experiments are performed using the EIT experiment setup that consists of Agilent
4284A precision LCR meter used as a constant current source and the national instrument system (NI
PXI-1042Q National Instruments Corporation, Austin, TX, USA) is used as a data acquisition system
to measure the resultant voltages. A total of 16 electrodes, four on each side of the graphene sample
with electrodes placed equidistant on the boundary with a gap of 0.5 cm between them. As a current
injection method, the adjacent method is used where neighboring electrodes are used for current
injection and the resultant voltages across the other electrodes are measured. For a 16-electrode setup,
with 0.1 mA injected current across the neighboring electrodes, there are 256 measurements for each
data frame.

4.2.3. Experimental Results

EIT experiments are performed with a graphene sample of size 2.5 cm × 2.5 cm. Initial or reference
data is obtained from a graphene plate without any external defects. After that on the graphene wafer,
defects are made manually using a sharp pointed knife on the surface to investigate the conductivity
distribution when the defects are present. In scenario 1 (Figure 7), we have the initial data (σ1) and
after change data (σ2) with a single defect located near electrode 7 at the right side. The photograph of
true experimental scenario is shown in Figure 7a,b. The ABI estimates for initial and with a single
defect are shown in Figure 7c,d. The conductivity change estimate δσ for ABI which is shown in
Figure 7e is obtained by subtracting the estimates (σ2) and (σ1). From Figure 7c,d, it is noticed that
the ABI estimates for (σ1) and (σ2) has low conductivity distribution on the left side of the graphene
sample and higher conductivity on the right side. The defect that was present with data (σ2) was not
detected with ABI. The estimated conductivity change δσ has lower conductivity distribution on the
right side of the graphene sample but it failed to identify the location of the defect (Figure 7e). In the
experiment case, the contact impedance at each electrode is not the same and is unknown and the outer
domain boundary of the graphene wafer is not exactly square. Due to this, the modeling errors in
the experiment case are more as compared to the numerical case and have a significant effect on the
estimates of ABI. The estimate of conductivity change with linear difference imaging (LDI) is shown in
the third row and it is noticed that the low conductive region is estimated near electrode 7 which can
be identified as a defect (Figure 7f). In LDI, modeling errors are compensated to some extent as the
measurements obtained using the same domain are used in image reconstruction.
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Figure 7. Conductivity estimation of real graphene wafer of size 2.5 × 2.5 cm. (a,b) The top row is the
true condition of the real graphene sheet without defects and with a single defect used during the
experiment. (c–e) The second row, (f) third row are the estimated conductivities of initial distribution
(σ1), final distribution (σ2), and conductivity change (δσ) using ABI and LDI.

The experiment results for scenario 2 that has initial data and after change data with two defects
are shown in Figure 8. The true experiment condition is displayed in the images in Figure 8a,b.
ABI estimates could not identify the defects as noticed from the estimates shown in Figure 8c,d.
Also, the estimate of conductivity change with ABI does not provide any information about the defects
(Figure 8e). On the contrary, the estimates of LDI could identify and locate the two defects with good
accuracy (Figure 8f).
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Figure 8. Conductivity estimation of real graphene wafer of size 2.5 × 2.5 cm. (a,b) The top row is
the true condition of the real graphene sheet without defects and with two defects used during the
experiment. (c–e) The second row, (f) third rows are the estimated conductivities of initial distribution
(σ1), final distribution (σ2), and conductivity change (δσ) using ABI and LDI.

The results for scenario 3 with initial and after change data containing three defects are shown in
Figure 9. Figure 9a,b contains the true image of the experiment situation with initial data without defects
and after change data with three defects on the graphene surface. In Figure 9c–e, the conductivity
estimates of ABI for σ1, σ2, and δσ are shown. There is not much difference in the estimated conductivity
for σ1 and σ2 using ABI, and defects are not identified. The LDI estimate (δσ) is shown in Figure 9f and
it could identify all three defects. Thus, the estimated conductivity profile with ABI does not provide
useful information about the conductivity behavior on the graphene surface if modeling errors are
not compensated. LDI is seen to produce estimates that are close to true conditions and is tolerant of
modeling errors to some extent. Therefore, in situations where initial or reference data is available
LDI can be used to determine the conductivity changes that indicate the doping concentration on the
graphene sheet.



Micromachines 2020, 11, 1074 14 of 17
Micromachines 2020, 11, x 14 of 17 

 

 

Figure 9. Conductivity estimation of real graphene wafer of size 2.5 × 2.5 cm. (a,b) the top row is the 

true condition of the real graphene sheet without defects and with three defects used during the 

experiment. (c–e) the second row, (f) the third row is the estimated conductivities of initial 

distribution 1)(σ , final distribution 2)(σ , and conductivity change ( )  using ABI and LDI. 

5. Conclusions 

In this paper, we present electrical impedance tomography (EIT) based non-destructive 

electrical characterization method to determine the conductivity distribution of large-area 

monolayer graphene. Electrodes are placed on the boundary of the graphene outer boundary and by 

using the current-voltage relationship. The conductivity distribution can be reconstructed by solving 

the EIT forward and inverse solution. In practical situations, the exact knowledge about the 

electrode locations, contact impedances, and the outer boundary of the graphene is not known 

accurately. The associated modeling errors and measurement noise can affect the estimates of 

absolute imaging. Therefore, in this paper, a difference imaging-based approach is proposed to 

estimate the conductivity change based on the data corresponding initial and after the change. 

Difference imaging uses the data corresponding same geometry therefore the modeling errors are 

compensated to some extent and are useful to determine the conductivity profile of graphene. From 

the numerical and experimental studies with graphene wafer of size 2.5 × 2.5 cm it is found that LDI 

based conductivity estimates could identify the conductivity change and locate the defects with 

good accuracy as compared to ABI based solution that is affected due to modeling errors.  

Figure 9. Conductivity estimation of real graphene wafer of size 2.5 × 2.5 cm. (a,b) the top row is
the true condition of the real graphene sheet without defects and with three defects used during the
experiment. (c–e) the second row, (f) the third row is the estimated conductivities of initial distribution
(σ1), final distribution (σ2), and conductivity change (δσ) using ABI and LDI.

5. Conclusions

In this paper, we present electrical impedance tomography (EIT) based non-destructive electrical
characterization method to determine the conductivity distribution of large-area monolayer graphene.
Electrodes are placed on the boundary of the graphene outer boundary and by using the current-voltage
relationship. The conductivity distribution can be reconstructed by solving the EIT forward and inverse
solution. In practical situations, the exact knowledge about the electrode locations, contact impedances,
and the outer boundary of the graphene is not known accurately. The associated modeling errors
and measurement noise can affect the estimates of absolute imaging. Therefore, in this paper,
a difference imaging-based approach is proposed to estimate the conductivity change based on the
data corresponding initial and after the change. Difference imaging uses the data corresponding same
geometry therefore the modeling errors are compensated to some extent and are useful to determine the
conductivity profile of graphene. From the numerical and experimental studies with graphene wafer
of size 2.5 × 2.5 cm it is found that LDI based conductivity estimates could identify the conductivity
change and locate the defects with good accuracy as compared to ABI based solution that is affected
due to modeling errors.
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LDI provides improved results and is computationally efficient as it is one-step and does not need
any iterations however the solution is dependent on nominal or reference value and for situations
where conductivity change is not very high. Absolute imaging of the conductivity profile is more
practically useful for assessing the electrical properties and quality. However, the modeling errors
have to be compensated. The simultaneous estimation of model parameters along with conductivity
and use of the approximation error method can reduce the modeling errors in absolute imaging of the
graphene conductivity profile, which will be studied in the future.

Author Contributions: Conceptualization, A.K.K., W.Y.K. and K.Y.K.; methodology, A.K.K. and S.A.R.; software,
A.K.K. and S.K.S.; validation, A.K.K. and S.A.R.; analysis, A.K.K., S.A.R. and S.K.S.; investigation, A.K.K.,
S.A.R. and S.K.S.; resources, all; data curation, A.K.K. and S.A.R.; writing—original draft preparation, A.K.K.;
writing—review and editing, all; supervision, K.Y.K. and W.Y.K.; funding acquisition, K.Y.K. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Mid-career Researcher Program through the National Research
Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2020R1A2C2006463).

Acknowledgments: We authors would like to thank Gaurav Khandelwal and Nagamalleswara Rao Alluri from
Nanomaterials and system lab, Jeju National University for their help and support in electrode coating and
Raman analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A.
Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [CrossRef]

2. Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.E.; Kim, P.; Stormer, H.L. Ultrahigh electron
mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [CrossRef]

3. Bunch, J.S.; Van Der Zande, A.M.; Verbridge, S.S.; Frank, I.W.; Tanenbaum, D.M.; Parpia, J.M.; Craighead, H.G.;
McEuen, P.L. Electromechanical resonators from graphene sheets. Science 2007, 315, 490–493. [CrossRef]
[PubMed]

4. Schwierz, F. Industry-compatible graphene transistors. Nature 2011, 472, 41–42. [CrossRef] [PubMed]
5. Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.;

Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [CrossRef] [PubMed]
6. Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.H.; Kim, P.; Choi, J.Y.; Hong, B.H.

Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.
[CrossRef]

7. Jo, G.; Choe, M.; Lee, S.; Park, W.; Kahng, Y.H.; Lee, T. The application of graphene as electrodes in electrical
and optical devices. Nanotechnology 2012, 23, 112001. [CrossRef]

8. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.S.; Zheng, Y.; Kim, Y.J. Roll-to-roll production of 30-inch graphene
films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578. [CrossRef]

9. Miao, F.; Wijeratne, S.; Zhang, Y.; Coskun, U.C.; Bao, W.; Lau, C.N. Phase-coherent transport in graphene
quantum billiards. Science 2007, 317, 1530–1533. [CrossRef]

10. Geim, A.K.; MacDonald, A.H. Graphene: Exploring carbon flatland. Phys. Today 2007, 60, 35–41. [CrossRef]
11. Jayasena, B.; Subbiah, S. A novel mechanical cleavage method for synthesizing few-layer graphenes.

Nanoscale Res. Lett. 2011, 6, 95. [CrossRef] [PubMed]
12. Jin, M.; Jeong, H.K. Synthesis and systematic characterization of functionalized graphene sheets generated

by thermal exfoliation at low temperature. J. Phys. D Appl. Phys. 2010, 43, 275402. [CrossRef]
13. Pu, N.W.; Wang, C.A.; Sung, Y.; Liu, Y.M.; Ger, M.D. Production of few-layer graphene by supercritical CO2

exfoliation of graphite. Mater. Lett. 2009, 63, 1987–1989. [CrossRef]
14. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Kong, J. Large area, few-layer graphene films on

arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35. [CrossRef]
15. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Banerjee, S.K. Large-area synthesis of high-quality and

uniform graphene films on copper foils. Science 2009, 324, 1312–1314. [CrossRef]
16. Liang, X.; Sperling, B.A.; Calizo, I.; Cheng, G.; Hacker, C.A.; Zhang, Q.; Zhu, X. Toward clean and crackless

transfer of graphene. ACS Nano 2011, 5, 9144–9153. [CrossRef]

http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1016/j.ssc.2008.02.024
http://dx.doi.org/10.1126/science.1136836
http://www.ncbi.nlm.nih.gov/pubmed/17255506
http://dx.doi.org/10.1038/472041a
http://www.ncbi.nlm.nih.gov/pubmed/21475186
http://dx.doi.org/10.1038/nature04969
http://www.ncbi.nlm.nih.gov/pubmed/16855586
http://dx.doi.org/10.1038/nature07719
http://dx.doi.org/10.1088/0957-4484/23/11/112001
http://dx.doi.org/10.1038/nnano.2010.132
http://dx.doi.org/10.1126/science.1144359
http://dx.doi.org/10.1063/1.2774096
http://dx.doi.org/10.1186/1556-276X-6-95
http://www.ncbi.nlm.nih.gov/pubmed/21711598
http://dx.doi.org/10.1088/0022-3727/43/27/275402
http://dx.doi.org/10.1016/j.matlet.2009.06.031
http://dx.doi.org/10.1021/nl801827v
http://dx.doi.org/10.1126/science.1171245
http://dx.doi.org/10.1021/nn203377t


Micromachines 2020, 11, 1074 16 of 17

17. Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Ruoff, R.S. Transfer of large-area graphene films for
high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363. [CrossRef]

18. Zhu, W.; Low, T.; Perebeinos, V.; Bol, A.A.; Zhu, Y.; Yan, H.; Avouris, P. Structure and electronic transport in
graphene wrinkles. Nano Lett. 2012, 12, 3431–3436. [CrossRef]
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