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Abstract: This paper provides an overview of how molecule-sensitive, spatially-resolved technologies
can be applied for monitoring and measuring in microchannels. The principles of elastic light
scattering, fluorescence, near-infrared, mid-infrared, and Raman imaging, as well as combination
techniques, are briefly presented, and their advantages and disadvantages are explained. With optical
methods, images can be acquired both scanning and simultaneously as a complete image. Scanning
technologies require more acquisition time, and fast moving processes are not easily observable.
On the other hand, molecular selectivity is very high, especially in Raman and mid-infrared (MIR)
scanning. For near-infrared (NIR) images, the entire measuring range can be simultaneously recorded
with indium gallium arsenide (InGaAs) cameras. However, in this wavelength range, water is the
dominant molecule, so it is sometimes necessary to use complex learning algorithms that increase the
preparation effort before the actual measurement. These technologies excite molecular vibrations in a
variety of ways, making these methods suitable for specific products. Besides measurements of the
fluid composition, technologies for particle detection are of additional importance. With scattered
light techniques and evaluation according to the Mie theory, particles in the range of 0.2-1 pm can
be detected, and fast growth processes can be observed. Local multispectral measurements can
also be carried out with fiber optic-coupled systems through small probe heads of approximately
1 mm diameter.

Keywords: surface scanning optics; Raman; near infrared; middle infrared imaging; scanning;
multimodal spectroscopy; local reaction control techniques; microchannel

1. Introduction

In this article, we focus on remote control techniques that may or may not yet be widespread.
Most of the presented measurements were carried out at the Center for Mass Spectrometry and
Optical Spectroscopy—CeMOS, an interfaculty institution of the University of Applied Sciences in
Mannheim, Germany.

Optical time and space resolved measuring technologies in the UV- and visible range are used for
the better understanding of flows, mixing processes, and the control of reactions in microchannels.
Common image analysis results in two-dimensional images that are measured in reflecting, or if the
microchannel has been specially adapted and manufactured, transmitting arrangements. For transmitted
light, both the bottom and the lid of the microchannel must be transparent.

Obtaining an increase of contrast is possible in several ways, e.g., by restricting the depth of
field from classic image analysis. Only a narrow, defined detection plane results in a sharp image.
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In transmission, the obtained concentration values are the mean values for the respective vertical axis
intercept. Complex tomographic 3D-scanning instruments suppress this effect but require more time
to capture the necessarily high number of images.

Classical methods of microscopy and image analysis allow for insights into the spatial distribution
of gases and fluids, as well as their temporal development. Contrasting the moving phases greatly
improves the optical contrast. Fluorescence marking is common in this context, as it requires low
concentrations of markers. The main disadvantage of this technique is the influence of the marker
on fluidics and the lack of selectivity. Self-fluorescence detection is only possible in very few cases.
These techniques cannot detect the local, time-resolved, concentration-controlled identification of
molecular species and a possible tracking of mixtures, inhomogeneity, reactions or deviations in reaction
behavior, nor the occurrence of by-products. Therefore, fluid science is in need of measuring systems
that combine a high spatial and temporal resolution with molecular selectivity and no disturbance
of fluidics. For optical technologies, the measurement range is, depending on the detector used,
not limited by the range of perception of the human eye. All known approaches have advantages and
disadvantages, and the current state-of-the-art approaches are explained in following article.

2. Materials and Methods

In this paper, an overview of how optical measurement techniques can be used to quantify effects
in microchannels is given. To illustrate this, the interaction of light with a specific target or matter in
general is explained. Light, in this case, extends from the ultraviolet range via the visually visible range
via near-infrared to mid-infrared and should not—as in common speech—be limited to the visible
range only.

Light interacts with the product, both elastically and inelastically. Elastic light scattering means
that the incoming photon does not cause a molecular change of the energy states and leaves the
medium with the same wavelength. Inelastic light scattering means that vibrations or rotations of the
molecules, as well as the lattice vibration phonons of the solid bodies, are excited [1,2]. Electronically
excited states can also be achieved, in particular by irradiating with ultraviolet light [3].

First, it is necessary to note which basic beam paths geometries, like transmission, backscattering,
or remission into other angles, can be applied for the measurement techniques to be described. Figure 1
headlights the different types of possible interactions between light and a particle.
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Figure 1. Types of interaction between light and a particle [4].
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Based on the different interaction types, a variety of measurement techniques are possible. One of
the most commonly used techniques is the transmission setup. A change of the outgoing light in
transmission can take place through the absorption of certain wavelengths by particles, other disperse
substances such as drops, aerosols, or through the molecular absorption of fluids or gases [2,5].

In fluids, the dissolved substances are often referred to as molecularly-disperse in order
to distinguish them from macroscopically disperse substances like particles [6]. For solutions,
i.e., molecularly-disperse dissolved substances, transmission is one of the most frequently used
application areas [3]. Absorbed light can be described with the Lambert—Beer law according to the
following formula in which E stands for extinction or absorption, I is the emitted, I is the transmitted
light, ¢ is the extinction coefficient, c is molar concentration, and d is the layer thickness: [3]

Ex =logyo Ip/I) =e-c-d 1

The decisive factors here are the molar concentration ¢ and the extinction coefficient ¢ of the
irradiated wavelength. Usually, the experimental setup defines the layer thickness d. For disperse
materials, leaving the primary optical axis for measuring the absorption in combination with scattering
is possible.

Backscattering, side scattering, and forward scattering are common angular possibilities [3].
The basic theory for disperse materials is accumulated in almost all literature in the application of the
Mie scattered light theory and simplifications of the range of small particles or large particles. In the
range of small particles, the Rayleigh approximation is often used, as it is applicable when the light is
smaller than about a quarter of the irradiated wavelength. For large particles, Fraunhofer diffraction
is commonly used. Here, the particles have to be larger than about five times the wavelength of the
exciting light. All these theories imply that the particles are round spheres. Theories for non-round
particles are almost unheard of [7-12].

By using transmission, the extinction coefficient can be determined from the intensity loss,
which includes the phenomena of absorption and scattering [3]. Applied to the geometries of
microchannels, a measurement setup based on transmission has the decisive disadvantage of the
need to be able to illuminate through the microchannel. This requires two transparent side surfaces.
Some applications may need temperature control. With this setup, temperature control is usually more
problematic than using non-transparent metallic boundaries. In transparent designs, the heat transfer
coefficient is a further limitation. Therefore, the pure transmission arrangement is usually not suitable
for microchannel applications.

Another geometry is the so-called attenuated total reflection technique (ATR). A light beam,
irradiated laterally at a certain angle, is reflected at the boundary between the crystal or optical material
of the sensor and the fluid. With the corresponding theory, the quantum-mechanically explainable
evanescent wave penetrates a few wavelengths into the medium and is potentially absorbed there.
The ATR technique is relevant when high concentrations and high extinction coefficients simultaneously
occur. This effect can be found in the ultraviolet range below the wavelength of 320 nm, i.e., UV-B
or UV-C systems. With dyes, the effect also take place in the visible range. Mostly, the ATR setup is
used in the mid-infrared range, because the excitation of the ground states of vibration at this point is
accompanied by high extinction coefficients [3].

Light scattering measurements are used for dispersed-phased products or if a change in the
disperse phase is a suitable control or quality parameter for such processes. Precipitation reactions,
for instance, with particles precipitating from a molecularly-dissolved starting material that reaches
supersaturation or grows in a particular way such that scattering is increased, are also suitable
for scattering measurements. Optical scattering correlates in the same way as transmission via the
Mie scattering theory or via Rayleigh or Fraunhofer diffraction by using the same mathematical
equations. The scattered light measurements can be separated into geometrical subdomains. A decisive
technological question and boundary condition is the arrangement regarding the angle of the scattered
light. In a laboratory environment, 90° scattering is common, but this scattering angle is difficult to
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adapt when applied to microchannels [7-10]. Target process variables are mostly local concentrations.
In microchannels, for example, local particle concentrations and the velocities of particle size and
concentration changes are relevant variables. The determination of kinetic parameters using these
process variables is possible.

2.1. Particle Detection

The relevant particle size for many products is about one micron. For theoretical description,
the Mie theory, postulated by Gustav Mie, suits best. Currently, several programs are available for
the calculation of diffraction patterns; these include the free-to-use algorithm by Wiscombe et al. [12].
An example for such diffraction patterns is the angle dependence of scatter light intensities. Mostly,
a logarithm scale best suits the matching of a wide illumination distribution for different angles.
This requires special detectors to suit the whole intensity distribution. For different particle sizes,
the angle dependence, which is a special boundary condition in Mie theory, differs. Mie back scattering
is shown for 180° in Figure 2 [7,10].
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Figure 2. Mie back scattering intensity at 180° vs. particle size and wavelength [7].

In addition, the quotient of the wavelength and particle size correlate with angle dependence.
This means that the particle growth can be determined by using several different wavelengths in the
visible area. Usually, two wavelengths are sufficient. Different wavelength bands can be obtained by
using different light-emitting diodes (LEDs) instead of a halogen lamp or by using different optical
filters in front of the detector [11]. Broadband detectors accumulate all irradiated light. By using
different LEDs, simultaneous measurements are, out of the box, not possible. Optical filters are needed
or the LEDs have to be used in an alternating fashion. The oscillating intensity quotient, obtained from
those two wavelengths, correlates with the actual particle size and matches the theoretical calculations
following Mie, as shown in Figures 3 and 4.
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Figure 3. Detection setup with different bandpass filters [4].
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Figure 4. Oscillating intensity from two wavelengths [4].

Several limitations may apply, but particle size can, in most cases, be determined with an
acquisition rate of over 1000 Hz. Limitations may be the particle size itself. Only in the Mie area is
the quotient oscillating. If particles are smaller 100 nm, this effect cannot be observed. The presented
technique is also not applicable for particles in the Rayleigh area. Growing monodisperse particles can
be measured up to about 2 um. For bigger particles, the oscillation is too frequent to be separated for
each particle. Mistakes and mix-ups presumably increase with ascending particle size. This method
may be limited to a specific particle size range, but it performs well with small component size and
the measurement frequency [8,10,11]. Furthermore, probes for scattered-light measurements can be
extremely small. For example, manufacturing backscatter probes even in a blunt cannula with an inner
diameter of 1.1 mm is possible [13].

In such a blunt cannula (Figure 5), several glass fibers can be included for different light sources
and detectors. This technology is used for measurements in micro channels to obtain particle size,
concentration, and growth [13].

The method is certainly special and is limited to the specified particle size range, but, compared
to all other measuring methods, it has the huge advantage of being small, i.e., miniaturized, and of
high-speed detection. For the questions posed here, scattering at an angle of 180°, i.e., backscattering,
is often a more suitable arrangement. Additionally, 45° backscattering— or 135° from the point of view
of angle geometry—is a popular arrangement. The 135° scattering angle has particularly established
itself in the field of color pigment monitoring [8,10,11]. The entire optical arrangement of the emitter
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and the detector can be realized in one stable, steady instrument as an easy-to-use setup with a small
physical gap between the transmitter and the receiver. This leads to reduced surface contamination
effects in the measurement signal—bypassing the Tyndall effect (Figure 6).

Figure 5. Cannula sterican 19G, 30° bevel [4].

Figure 6. Tyndall effect, 10 ppm fluorescein sodium in water [4].

In addition to elastic light scattering, spectroscopic methods like molecular excitations are
relevant, especially for the quantification of molecule concentrations. Here, the whole range of spectral
technologies is available and is explained in the following sections with regard to their theoretical
explanations and these technologies’ possible applications.

2.2. Ultraviolet/Visible (UV/VIS) Spectroscopy

Starting with UV spectroscopy, the electrons are usually excited into higher orbitals by so-called
electronic excitations. These are usually characterized by high extinction coefficients and have very
wide bands or absorption edges. Therefore, UV spectroscopy has a high sensitivity but a low selectivity.
Real process control is only possible in exceptional cases where the molecules make this possible [3,14].
Examples can be found in the conversion of nitrobenzene and sulfuric acid to nitrobenzene sulfonic
acid. In this process, the nitrobenzene band disappears, and, thus, distinguishing nitrobenzene
concentrations from the beginning to the end of the process is easily possible. In VIS spectroscopy,
the same effects occur as in UV spectroscopy, though only for substances that are usually recognizable
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as colors in the visible spectrum. Therefore, the effects occur with dyes (molecularly-disperse dissolved
dyes) or with color pigments (particulate substances containing chromophores) [4].

2.3. NIR-Spectroscopy

Near-infrared (NIR) spectroscopy uses the fact that almost all fluids in the NIR range provide
absorption bands. Thus, they are usually distinguishable. In the world of chemical monitoring, these
methods are highly established because it is easily possible to guide the light via glass fibers to
chemical reactors [3,14,15]. Miniaturized fiber optic probes are also suitable for microchannels [4].
The excitation of the second or higher harmonics of the vibrational-rotational transitions of molecules
caused by the photons is used. The fundamental oscillation of the same molecules is in the mid-infrared
range [3,14,15]. The extinction is relatively weak and only measurable at higher concentrations
(above approx. 0.1% in fluids) [4].

The photons used in near infrared spectroscopy usually excite the harmonics of present molecules.
Furthermore, excitations can occur through combination oscillations while supplying the necessary
energies. The incoming photon must therefore trigger an OH oscillation in the water molecule and
additionally excite an oscillation in the bending angle of the water molecule via the so-called banding
mode. The water molecule, in particular, is very dominant in the near infrared range. The coupling
of the electromagnetic wave of the photon is a dipole interaction, so molecules with a strong dipole
moment have high extinction coefficients in the near infrared range [16].

Due to the large number of possible combinations of oscillations and rotations, the near-infrared
spectra are complex. For the pictorial measurements discussed in this article, two possible methods
are convenient: a scanning method, which records a complete spectrum per point, or photometric
methods, where only one wavelength is recorded at a time but can be displayed over a large area
by using infrared cameras. Both methods have advantages and disadvantages. An advantage of the
spectroscopic method is that a wavelength resolution of the laboratory apparatuses that measure the
samples. The whole range of known reaction monitoring is available. A disadvantage is the time
required for the measurement. About 1 s is required per measuring point, so a flat image takes several
hours to measure. An alternative are area measurements. Broadband photo filters or light-emitting
diodes in the near-infrared range on the transmitter side are necessary. The advantage here is that an
image is quickly acquired (about 40 ms), but only one wavelength is recorded. The interpretability of
the results is therefore often limited because the installed filters or light sources do not get close to
reaching the wavelength resolution of the spectrometers. For this type of application, we later focus on
mixing processes.

2.4. Mid-Infrared Spectroscopy

The mid-infrared region is characterized by the excitation of the ground states of vibration;
the theory is sufficiently well-known in the literature. The significant advantage of mid-infrared
spectroscopy is its selectivity in combination with its high sensitivity with regard to molecules and
their detection limits on the concentration scale [3,16].

With this type of spectroscopy, fundamental oscillations of the molecules are scanned with,
in contrast to NIR spectroscopy, much higher excitation cross sections. The advantage of this is the
possibility of detecting even small concentrations down to the parts per million range. Due to the sharper
bands, the selectivity towards NIR is also greatly increased. A disadvantage is the complex technology
required, which means that a robust design of the device is difficult to realize. Existing fiber technologies
are unstable, have limited spectral range, and have no long-term stability in harsh environments.
The extremely high absorption of water also proves to be disadvantageous. Water-containing
substance systems are superimposed by water absorbance, and other substances—especially with low
concentrations—are only found with difficulty [3,16].
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2.5. Fluorescence Spectroscopy

In fluorescence spectroscopy, the incident light excites short-lived electronic states within the
molecule. After typical times in the nanosecond range, the molecules return to their ground state.
Often, however, they do not fall back to the same oscillation state of the electronic ground state, instead
falling to excited oscillation levels. For this reason, the wavelength emitted is often longer, and the
photon energy is thus lower than that of the incident light. The fluorescence is extremely sensitive
to detection. However, it requires a molecule-specific electronic state. Therefore, only a part of the
molecule fluoresces, and imaging is limited with regard to the selection of molecules [4,14,17].

2.6. Raman Spectroscopy

Raman technology is the strongest upcoming technique at the moment. It scans the fundamental
oscillation of molecules, but, in contrast to mid-infrared (MIR) spectroscopy, it does so by exploiting the
polarizability of molecules. Stimulated with photons in the visible range, the molecules are short-time
excited into a virtual state and fall back instantaneously into another vibrational-rotational state of
the electronic basic level. This has the advantages that, depending on the used excitation wavelength,
classical fiber-optic sensors are applicable for Raman measurement techniques and the high selectivity
of MIR spectroscopy is present. On the other hand, the Raman effect is extremely weak. Strong lasers
used as excitation sources and long integration times are necessary. Technological advancements in the
last few years have had a strong and positive impact on this situation [3,15,18-20].

Table 1 shows a comparison of all mentioned spectroscopic methods for better comparison,
highlighting the major advantages and disadvantages of each technique.

Table 1. Summary of the different measurement techniques.

Technique Pro Contra
Ultraviolet/Visible (UV/VIS) Spectroscopy high sensitivity low selectivity
weak extinction; only
NIR (Near-Infrared) Spectroscopy easily accessible measurable at higher
concentrations
NIR (Scanning) high range of detection slow

and monitoring

smaller wavelength

NIR (Photometric) fast .
resolution
high selectivity in - . .
Mid-Infrared Spectroscopy combination with a high difficulties leth W?Fer due
e to superimposition
sensitivity

imaging is limited with
Fluorescence Spectroscopy extremely sensitive regard to the selection of
the molecule; invasive

very weak effect; strong
Raman Spectroscopy high selectivity laser or very sensitive
detector needed

only works for specific

Particle Detection very fast . .
particle size

3. Results

In this next part, a different application, based on the results, is presented.

3.1. NIR Image Analysis

Analogous to image analysis in the UV/VIS range, charge-coupled device (CCD) cameras are
used, and wavelength selectivity with optical filters is utilized either on the emitter or on the detection
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side. Cameras on silicon-based chips have a limited spectral range and are not sensitive in the NIR
wavelength region. Instead, cameras based on indium gallium arsenide (InGaAs) are used, and these
are sensitive in the 900-1600 nm range. Exact wavelength ranges may vary depending on the exact
InGaAs detector used. In combination with NIR LEDs, acquiring images with wavelength-selected
brightness levels according to the absorption bands of fluids for locally-fluctuating concentrations is
possible. Acquiring reference images without the presence of any absorbing substances is important.
The computer-based optimization of images, like anti-shading methods, can be used to compensate
for inhomogeneous illumination problems. Advantage of NIR LED illumination as an alternative to
broadband illumination and the use of sequentially used filters include the simplicity of its design and
its fast change of wavelengths. Without special equipment, image sequences of 25 full frames/s are
achievable, and, thus, moderately fast changing processes are accessible for detection. With individual
wavelengths, pulses down to microseconds can also be captured [21]. By mathematically linking the
remission at the surface with the absorption of the investigated fluids, extinction data and the resulting
layer thickness distributions can be visualized. In Figure 7, you can see the measurement data of
water strands.

wave length [nm]| 1200 1300 1450 1500 1550 1650
line spacing [ms] 0 100 200 300 400 500
max. value | I

|

0

layer thickness [um]| 840 889 643 832 775 559

Figure 7. Near-infrared (NIR) measurement on water strands at all different wavelengths 274 x 142 mm
(220 x 220 DPI), water glycerin [21].

A uniform illumination of the examined surface is important for later measurements, especially
with curved surfaces (e.g., pipes). Here, the refractive index difference to the gas space causes light
deflection, which can lead to the significant misinterpretation of the measurement signals. In the
present case, the deflections were already significantly suppressed. This reduction is possible by
distributing the light directions via a special dome illumination. The work so far has concentrated on
the application of film thickness measurements. In addition, reactive processes, where both the fluid
concentration and the film thickness distribution changes, are to be measured [21].

3.2. MIR Image Analysis

In the field of thermal imaging, mid-infrared (MIR) image analysis is common. However, depth
of field and contrast are usually not sufficient for scientific purposes. The method of MIR scanning has
proven to be more favorable. Commercial devices typically reach scanning velocities of one-to-two
measuring points per second. Therefore, the acquisition of images is very time-consuming. A two-stage
procedure for data acquisition proves to be more capable. The first stage, image scanning with full
spectrum width, is selected for each pixel. Here, the assignment of interesting statements to the suitable
wavelengths can be assigned via gold standards for narrowly-defined local conditions [22]. In the
following step, the interesting wavelengths and target cutout are selected and monitored with up to
300,000 measurements per second with a spatial resolution of 20 pm in the fast scanning mode using
quantum cascade lasers for routine sample measurements [23].
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The special confocal beam path provides a tolerance towards distance variations to the target.
As proven, a fast, flat, and confocal absorption measurement in the middle infrared range, from 3 to
5 um, is possible (Figure 8). With these techniques, unequal surfaces with topographies can be sampled,
and coatings with a layer thickness of less than one micrometer are eligible for molecule selective
detection. It is possible to transfer the measuring principle to further applications [23].

Agile Mirror Unit

Laser 2

Focussing Unit

A—

Laser 1

BS1

Detector

2D Translation Stage

Figure 8. Schematic view of the mid-infrared (MIR) scanner setup with confocal mounted detector [23].
3.3. Raman Scanning Image Analysis

As explained above, Raman spectroscopy requires high laser power and long exposure times.
With precisely focused and installed Raman probe-heads (Figure 9) 2D Raman scanning is possible [24].
Even 3D Raman scanning seems to be achievable.

Figure 9. Raman scanning probe with long working distance mounted on a 3D-displaceable table [24].
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In the measurements conducted so far, this method has made it possible to visualize 2D Raman
scans in fluids for the molecular quantification of the concentration profiles in microchannels and to
perform the fundamental investigation of the mixing processes of different accessible fluids, as shown
in Figure 10 [24].

3000

2000

[um] O 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

(b) %
3000 eth%raol conc. [%]

2000

1000

0 :
Wm0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
Figure 10. (a) 11 X 3 mm Raman scan of ethanol in the reactor and (b) 11 X 3 mm false-color image of
the ethanol concentration curve in the reactor calculated from quotient method [24].

The measurement rate correlates with the spectral resolution. Increasing the measurement rate
decreases the possible resolution. Further advancement towards higher measurement speeds is possible
by limiting the numbers of detected Raman shifts by replacing classical Raman spectroscopy by Raman
multichannel photometry [18,24]. Large-area detectors promote Raman photometry by replacing
the necessary dispersion and thus small-area detections in the spectrometer with filter techniques
and single photon counters (such as a photomultiplier [25]). The area and sensitivity gain lead to a
considerable increase in measurement speed. Spectral information is lost, but this can be of minor
importance for known materials [18,26].

Multichannel-Raman photometry shines for process control with rather simple matrices.
In Figure 11, the successful reaction tracing of binding CO, to an amine until saturation is plotted,
with a comparison of spectroscopic and photometric measurements [18]. The absorption of CO,
is well-known in the literature [27]. In photometers, faster detection rates, due to single photon
counting detectors, are available and are subsequently able to resolve the reaction progress in a
more detailed fashion. Both the spectrometer and photometer are able to trace the reaction progress.
Complex matrices demand an increasing number of measurement channels. The measurement speed
remains, but at least the financial advantages fade over the number of channels implemented compared
to a spectrometer system. The sweet spot for Raman photometry, combining fast measurements and
cost reduction, is between two and four channels. Raman photometers use an excitation laser as a
light source. Every measurement channel is equipped with at least one small-band optical filter and
one single-photon counter. A beam-splitter has to be added for a two-channel-photometer, and three
beam-splitters for a 4-channel-photometer if an equal signal distribution is favored [18].
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(a) R2? =0.9851

Reaction process

(b) R?=0.9888

Reaction process

0 100 200 300 400 500
Time/s

Figure 11. Comparison of (a) photometric and (b) spectroscopic measurements of CO, binding to
amine [18].

3.4. Scattering Light Measurement Technology

Scattering light techniques (elastic light scattering) can be used to control the formation of
disperse phases, e.g., due to product failures. Fiber optic backscattering was used with a detection
rate of several full spectra per second [9]. The fast detection rate is mandatory to visualize the
precipitation of inorganic products in the millisecond range. Microchannels, in particular, allow for
strong concentration gradients and, thus, pH or temperature gradients. This can lead to extremely
fast precipitation processes. Fast measurement technologies are required. In geometries with constant
flow and events occurring constantly at each location, kinetic fields for precipitation processes can be
developed in combination with fast backscatter measuring systems with scanning equipment [4].

3.5. Fluorescence Techniques

A method for malignant tissue detection is a laser-induced fluorescence, noncontact-imaging
approach, as shown in Figure 12.

The malignant tissue is labeled with a fluorescent marker. The selected marker can be excited in the
first optical window of the tissue. The optical window is defined as a wavelength region between the
absorption band of hemoglobin (Hb) and water. The emission also has to be in the first optical window
to avoid absorption. This method is not supposed to replace common technologies, like computer
tomography (CT) or magnetic resonance imaging (MRI), but it is meant to supplement the highlighting
of the malignant areas to reduce time that is needed with common technologies. The advantages of
this method, compared to common technologies, are its greatly increased measurement rate and low
price [28].
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- CCD-chip

— ) fiber optical taper
el phosphor screen
micro-channel plate
photokathode

— light trap
blocking filter

fiber

objective
clean-up filter

- blocking filter

sample
scattered stimulating light
labeled tumor

xyz-stage

Figure 12. Schematic diagram of a fluorescence imaging system for malignant tissue detection [28].

3.6. Combination Techniques: UV/VIS/NIR/Fluorescence

This example illustrates how the different modes described can be built into one device. This allows
for, e.g., the distribution of lipids via Raman scanning. The additional information of the local moisture
that is gathered from NIR scanning is helpful for gathering information on wound healing and also for
reaction monitoring in the microchannel. An optimal control technology seems to be the combination
of different techniques and the selective wavelength information generated by different wavelength
regimes. The combination provides a flexible application for divers scientific problems.

The backscattering needle probe was designed as a setup for simultaneously, multimodal
spectroscopic measurements. The basic setup, presented in Figure 13, contains glass fibers for
ultraviolet, visible, near infrared and fluorescence spectroscopy.

fiber optics

polished surface

back cut

;
/" Needle material: Nitinol
or stainless steel

0.250 mml

fixed with
epoxy resin

,0.785 mm_

1.100 mm

Figure 13. Needle probe for multispectral backscattering measurements. Ultraviolet (UV), visible (VIS),
NIR, and fluorescence measurements are possible. The needle is optimized for tissue penetration with
a front and back cut [13].
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The probe head consists of a name-giving needle and seven bare glass fibers for illumination and
detection [13]. Glass fibers can be used to transport light from the probe head to the spectrometer or
detection unit [29,30]. The real time detection of malignant tissue in in vivo measurements is possible.
A back cut can be applied for better tissue penetration. Measurements can be done with either a
spectrometric or a photometric set-up. For evaluation purposes, the measurements can be done with a
spectrometer, and a virtual photometer can be calculated. This approach has the advantages that it
has been used for proof of concept photometric measurements and reference measurements can be
simultaneously obtained. In addition, the received data are compressed. The monitoring of several
metabolic parameters, like Hb, deoxy Hb, scattering, fat, and auto fluorescence, is possible. Clustered
in groups for malignant, marginal, and healthy tissue, the obtained data are analyzed by a 2D principle
component analysis (PCA). All samples can be assigned to their respective groups. Classical histology
validates all measurements [13].

4. Discussion

In summary, the processes in microchannels, focused on the local concentration distribution of
molecules, can be isolated and processed when the target molecules are spectroscopically accessible.
In currently available technology, this usually means that molecules can be excited to vibrate.
This applies, for example, to water, hydrocarbons, nitrates, and phosphates but not to the dissolved
portion of hydrochloric acid, hydrogen fluoride, hydrogen bromide, or other ion concentrations without
covalent bonds.

In principle, two classes of devices can be distinguished with regard to pictorial representations:

1.  Scanning systems.
2. Simultaneous imaging systems.

Scanning systems are generally slower. Therefore, current technological development is focused
on reducing the necessary number of wavelengths and increasing their detection sensitivity. These two
measures promote an increase in throughput. For known molecules and non-complex matrices,
the spectral resolution of spectrometers can be traded for faster measurement rates in photometers.

The current level is approx. 300,000 measuring points/ss for MIR, NIR, and UV/VIS, and it is
possibly 1000 measuring points/ss in relation to Raman measurement technology [23].

The differences between the scanning technologies result from their respective applications and
boundary conditions. In the presence of water, the strong water absorption in the MIR and NIR
often covers the more interesting spectra of the searched molecules that may be present in smaller
concentrations. Here, Raman technology proves to be beneficial, since the dipole character of the H,O
molecule has limited relevance. On the other hand, Raman spectra show low extinctions, excluding
thin layers and very low concentrations.

Molecule selectivity increases from shorter to longer wavelengths: UV < VIS < NIR < MIR.
However, with longer wavelengths and the associated higher molecular selectivity, technological
effort also increases. The selectivity of Raman spectroscopy is similar to that of MIR measurements:
comparatively high.

With simultaneous imaging flat camera systems, all pixels are simultaneously recorded during a
measurement. The advantage of simultaneity is often accompanied by a loss of wavelength selectivity
and, thus, molecular selectivity. Because only one wavelength can be recorded at a time, the filter or
selective illumination is, because of technical limitations, always somehow broadband. In the case
of the necessary planar illumination, compromises usually have to be made with regard to detection
optics, which leads to a loss of image quality. Contrast reduction, shading, and image distortion are
the visible effects of this process.

Ultimately, the decision for a suitable measuring system is made based on the application and the
resulting boundary conditions.
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5. Patents

Patent Nr. DE102018105067A1: Bildgebendes System zur nichtinvasiven optischen Untersuchung
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DE; Hien, Andreas, 68161, Mannheim, DE; Rddle, Matthias, Prof. Dr., 67273, Weisenheim am Berg, DE.
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