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Abstract: Flexible inorganic electronic devices (FIEDs) consisting of functional inorganic components
on a soft polymer substrate have enabled many novel applications such as epidermal electronics and
wearable electronics, which cannot be realized through conventional rigid electronics. The low thermal
dissipation capacity of the soft polymer substrate of FIEDs demands proper thermal management to
reduce the undesired thermal influences. The biointegrated applications of FIEDs pose even more
stringent requirements on thermal management due to the sensitive nature of biological tissues to
temperature. In this review, we take microscale inorganic light-emitting diodes (µ-ILEDs) as an
example of functional components to summarize the recent advances on thermal management of
FIEDs including thermal analysis, thermo-mechanical analysis and thermal designs of FIEDs with
and without biological tissues. These results are very helpful to understand the underlying heat
transfer mechanism and provide design guidelines to optimize FIEDs in practical applications.

Keywords: flexible inorganic electronics; thermal management; epidermis; microscale inorganic
light-emitting diodes

1. Introduction

Flexible inorganic electronics, which offer the high performance of conventional rigid electronics
but with the ability to be deformed like rubber, have enabled many novel devices, with some examples
illustrated in Figure 1, including flexible microscale inorganic light-emitting diodes (µ-ILEDs) [1],
epidermal electronics [2], flexible and stretchable 3ω sensors [3], skin-mounted power management
systems [4], and soft robotics [5]. The challenge to develop flexible inorganic electronic devices
(FIEDs) lies in the mismatch between the intrinsic brittle inorganic electronic material (e.g., silicon)
and the flexibility requirement in applications. One effective strategy to overcome this mismatch is to
integrate the functional inorganic electronic material in a stretchable format [6–12] at strategic locations
on a soft polymer substrate by advanced transfer printing techniques [13–16]. Due to the unique
mechanical properties of FIEDs, they can have conformal contacts with biological tissues under complex
deformations, which enable the real-time monitoring of human vital signs for early diagnosis [17]. In the
past decade, researchers have demonstrated several flexible real-time health monitoring devices to
measure human vital signs including body temperature [4,18], blood glucose [19–21], blood oxygen [22],
skin hydration [3], blood flow [2], brain electrophysiological signal [23,24], electrocardiography
(ECG) [25], etc.
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Microscale inorganic light-emitting diodes, as a typical inorganic electronic device, show 
excellent interactions with biological tissues as excitation sources. For example, μ-ILEDs can be an 
alternative excitation source to an optoelectronic tweezer via noncontact manipulation methods to 
investigate behaviors of various biological samples such as cells [26–32], proteins [33], DNA 
molecules [34,35] and particles [36,37]. In addition to the above applications, μ-ILEDs can also be 
adopted in optogenetics to control, affect and readout the neural activities of biological creatures, 
especially for stimulation in brain [38–41], retina [42–44], and audition [45–49]. However, a large 
amount of heat energy will be generated by μ-ILEDs when they are in service. 

The poor heat dissipation capacity of soft polymer substrate with a thermal conductivity on the 
order of 0.1 W/m/K in FIEDs, which is much lower than that of the conventional silicon substrate 
(~100 W/m/K), may induce a high temperature rise in the functional component and cause device 
performance degradation [50]. When FIEDs are integrated with biological tissues, the sensitive 
nature of tissues to temperature poses more stringent requirements on the temperature control in 
practical applications. Moreover, the thermo-mechanical coupling due to the high temperature rise 
could affect the device reliability [51,52]. Therefore, thermal management of FIEDs becomes one of 
the most important challenges in the applications of FIEDs, especially in those involving biological 
tissues. Thermal models will help to establish design guidelines to reduce the adverse thermal 
effects [53]. This paper aims to review the recent advances in thermal management of FIEDs with the 
focus on thermal analysis, thermo-mechanical analysis and thermal designs of FIEDs with and 
without biological tissues, through discussions of analytical models, finite element analysis and 
experiments.  

 

Figure 1. Examples of flexible inorganic electronic devices. (a) A flexible inorganic microscale 
inorganic light-emitting diode (μ-ILED) display [1]. (b) An epidermal temperature sensor array in a 
twisting motion [2]. (c) A flexible and stretchable 3ω sensor [3]. (d) A soft, thin skin-mounted power 
management system [4]. (e) A soft ultrathin electronics enabled for fully soft robots [5]. 

2. Thermal Management of FIEDs 

2.1. Thermal Analysis of FIEDs 

We take micro-scale inorganic light-emitting diodes (μ-ILEDs), which serve as the functional 
components of FIEDs, to induce the undesired heating, as an example to review the recent advances 
on thermal analysis of FIEDs. Kim et al. [1] reported an unusual strategy using anisotropic etching 
and microscale device assembly to fabricate μ-ILEDs on unconventional substrates. Figure 2a shows 

Figure 1. Examples of flexible inorganic electronic devices. (a) A flexible inorganic microscale inorganic
light-emitting diode (µ-ILED) display [1]. (b) An epidermal temperature sensor array in a twisting
motion [2]. (c) A flexible and stretchable 3ω sensor [3]. (d) A soft, thin skin-mounted power management
system [4]. (e) A soft ultrathin electronics enabled for fully soft robots [5].

Microscale inorganic light-emitting diodes, as a typical inorganic electronic device, show excellent
interactions with biological tissues as excitation sources. For example, µ-ILEDs can be an alternative
excitation source to an optoelectronic tweezer via noncontact manipulation methods to investigate
behaviors of various biological samples such as cells [26–32], proteins [33], DNA molecules [34,35] and
particles [36,37]. In addition to the above applications, µ-ILEDs can also be adopted in optogenetics to
control, affect and readout the neural activities of biological creatures, especially for stimulation in
brain [38–41], retina [42–44], and audition [45–49]. However, a large amount of heat energy will be
generated by µ-ILEDs when they are in service.

The poor heat dissipation capacity of soft polymer substrate with a thermal conductivity on the
order of 0.1 W/m/K in FIEDs, which is much lower than that of the conventional silicon substrate
(~100 W/m/K), may induce a high temperature rise in the functional component and cause device
performance degradation [50]. When FIEDs are integrated with biological tissues, the sensitive nature
of tissues to temperature poses more stringent requirements on the temperature control in practical
applications. Moreover, the thermo-mechanical coupling due to the high temperature rise could
affect the device reliability [51,52]. Therefore, thermal management of FIEDs becomes one of the most
important challenges in the applications of FIEDs, especially in those involving biological tissues.
Thermal models will help to establish design guidelines to reduce the adverse thermal effects [53].
This paper aims to review the recent advances in thermal management of FIEDs with the focus
on thermal analysis, thermo-mechanical analysis and thermal designs of FIEDs with and without
biological tissues, through discussions of analytical models, finite element analysis and experiments.

2. Thermal Management of FIEDs

2.1. Thermal Analysis of FIEDs

We take micro-scale inorganic light-emitting diodes (µ-ILEDs), which serve as the functional
components of FIEDs, to induce the undesired heating, as an example to review the recent advances
on thermal analysis of FIEDs. Kim et al. [1] reported an unusual strategy using anisotropic etching and
microscale device assembly to fabricate µ-ILEDs on unconventional substrates. Figure 2a shows the
schematic diagram of the µ-ILED structure with the µ-ILED encapsulated by benzocyclobutene (BCB)
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and metal layers (i.e., interconnection) on a substrate. Due to the symmetric conditions, a quarter
geometry of the µ-ILED layout with key geometrical dimensions labelled is shown in Figure 2b.
Cui et al. [54] established a three-dimensional analytical model to study the thermal properties of
rectangularµ-ILEDs with the length of 2a× 2b and a thickness of HLED. The steady state heat conduction
equation can be expressed as

∂2∆T
∂x2 +

∂2∆T
∂y2 +

∂2∆T
∂z2 = 0 (1)

where ∆T = T(x, y, z) − T0 is the temperature increase from the ambient temperature T0. The µ-ILED
is modeled as a planar heat source since its thickness is much smaller than its in-plane dimension.
The boundary conditions include the heat convection on the top surface, the constant temperature on
the bottom surface, and the heat generation in the µ-ILED region. The heat flux and temperature are
continuous at the interfaces. The temperature increase of µ-ILED is obtained as

∆TLED =
2P

ab[2ab + (a + b)HLED]π2

∫ +∞

0

∫ +∞

0

(E + F) sin2(αa) sin2(βb)

Gα2β2
√
α2 + β2

dαdβ(ξ) (2)

where P is the heat generation power; E, F, G are
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(
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(
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(
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) km
√
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km
√
α2+β2−h

e2Hm
√
α2+β2

+
(
1 + km

kB

)
G = kB(E− F) + ks(E + F)coth

(
Hs

√
α2 + β2

) (3)

where k, H and h are the thermal conductivity, thickness and coefficient of heat convection, respectively;
the subscripts “m”, “B”, and “s” stand for interconnection, BCB and substrate, respectively.

To clearly understand the effects of the parameters (such as geometrical parameters, material
parameters and loading parameters) on the µ-ILED temperature, Equation (2) was further simplified
based on a few reasonable assumptions. First, the effect of the heat convection boundary on the
top surface is negligible. Second, the substrate is regarded as a semi-infinite solid because the

substrate thickness is much larger than other dimensions. Third, e2Hm
√
α2+β2

≈ 2Hm
√
α2 + β2,

and e2HB
√
α2+β2

≈ 2HB
√
α2 + β2. After adopting the above assumptions, Equation (2) becomes

∆TLED ≈
2P

ab[2ab + (a + b)HLED]π2

∫ +∞

0

∫ +∞

0

sin2(αa) sin2(βb)

α2β2
√
α2+β2

kmHm
√
α2+β2

1+ km
kB

HmHB(α2+β2)
+ ks

dαdβ (4)

Figure 2c compares the temperature increase of the µ-ILED with the accurate analytical prediction
from Equation (2), the approximate prediction from Equation (4), and finite element analysis (FEA) for
µ-ILEDs with 100 µm × 2b × 5 µm under the heat generation power of 12 mW. The good agreement
among them validates the treatments in analytical models. The temperature increase on the top surface
of metal layer is obtained as

∆Tsurface = 4P
π2ab ·

∫ +∞

0

∫ +∞

0

kmHm
√
α2+β2e(Hm+HB)

√
α2+β2

kmHm
√
α2+β2−h

sin(αa) sin(βb) sin(αx) sin(βy)

Gαβ
√
α2+β2

dαdβ
(5)



Micromachines 2020, 11, 390 4 of 19

Micromachines 2020, 11, x 3 of 19 

 

the schematic diagram of the μ-ILED structure with the μ-ILED encapsulated by benzocyclobutene 
(BCB) and metal layers (i.e., interconnection) on a substrate. Due to the symmetric conditions, a 
quarter geometry of the μ-ILED layout with key geometrical dimensions labelled is shown in Figure 
2b. Cui et al. [54] established a three-dimensional analytical model to study the thermal properties of 
rectangular μ-ILEDs with the length of 2a × 2b and a thickness of HLED. The steady state heat 
conduction equation can be expressed as 

2 2 2

2 2 2 0T T T
x y z

∂ Δ ∂ Δ ∂ Δ+ + =
∂ ∂ ∂  (1) 

where ( ) 0, ,T T x y z TΔ = −  is the temperature increase from the ambient temperature 0T . The μ-ILED is 
modeled as a planar heat source since its thickness is much smaller than its in-plane dimension. The 
boundary conditions include the heat convection on the top surface, the constant temperature on the 
bottom surface, and the heat generation in the μ-ILED region. The heat flux and temperature are 
continuous at the interfaces. The temperature increase of μ-ILED is obtained as 

( )
( ) ( ) ( ) ( )

2 2

LED 2 2 2 2 20 0
LED

sin sin2 d d
2 π

E F a bPT
ab ab a b H G

α β
α β ξ

α β α β

+∞ +∞ +
Δ =

+ +  + 
   (2) 

where P is the heat generation power; E, F, G are 

( )

( ) ( ) ( )

2 2 2 2
m B B

2 2
m

2 2
2 2mm m

2 2
Bm

2 2
2mm m

2 2
Bm

2 2
B s s

1 e 1 e

1 e 1

coth

H H H

B

H

B

k hk kE
k kk h

k hk kF
k kk h

G k E F k E F H

α β α β

α β

α β
α β

α β
α β

α β

+ + +

+

    + +
= + + −    

+ −    


   + + = − + +    
+ −   


= − + + +




 (3) 

where k, H and h are the thermal conductivity, thickness and coefficient of heat convection, 
respectively; the subscripts “m“, “B”, and “s” stand for interconnection, BCB and substrate, 
respectively. 

 
Figure 2. Schematic illustration of (a) the µ-ILED layout and (b) a quarter geometry of the analytical
modeled µ-ILED system [54]. (c) The shape influence on the temperature increase of µ-ILEDs with
100 µm× 2b× 5µm under the input power of 12 mW [54]. (d) The distribution of the surface temperature
increase of a single rectangular µ-ILED under the heat generation power 12 mW [54]. (e) Schematic
diagram and (f) the distribution of surface temperature increase of a µ-ILED array consisting of two
µ-ILEDs [54].

Again, the good agreement with an error less than 5% of the surface temperature between the
analytical prediction from Equation (5) and FEA with power of 12 mW and µ-ILED size of 100 × 200 ×
5 µm in Figure 2d validates the analytical model.

The results for a single µ-ILED in Equations (2)–(5) can be adopted to find the temperature of
µ-ILED arrays based on the superposition method. Cui et al. [54] took an array of two µ-ILEDs
with one’s dimension of 100 × 100 µm (2a × 2b), the other’s dimension of 100 × 200 µm (2a × 2b1)
and the spacing of 200 µm (b0), as shown in Figure 2e, as an example to illustrate this approach.
The temperature increase at any point (x, y, z) for the array of two µ-ILEDs is given by

∆Tarray(x, y, z) = ∆T1(x, y, z) + ∆T2(x, y, z) (6)

As shown in Figure 2f, the analytical prediction of surface temperature agrees well with FEA,
which validates the accuracy of the analytical model. Besides the surface temperature, the temperature
increase of µ-ILED array can also be determined with any spacing for an array with finite or even
infinite number of µ-ILEDs.

In addition to the 3D thermal model for rectangular heat sources, Lu et al. [55] established an
analytical axisymmetric model to study the thermal properties of square µ-ILEDs with an effective
radius of r0 = L/

√
π, with L as the length of the µ-ILED, which compares well with FEA and

experiments. Yin et al. [56] studied the thermal properties of different shaped serpentine metal
heater devices analytically, which can be used to evaluate the heating effects of complex shaped
flexible heaters.
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Pulsed operation is an effective routine for thermal management by further reducing the adverse
thermal influences. Kim et al. [50] fabricated µ-ILEDs, which are located on top of a PI layer and
hydrogel substrate and encapsulated with an SU8 layer (Figure 3a) to demonstrate the pulsed strategy.
The key geometrical dimensions are labelled in Figure 3b, which shows a quarter geometry of the
µ-ILED structure. The applied heat generation power (Figure 3c) is denoted by Q(t) = Q0U(t), where
Q0 is the peak power and U(t) as a unit pulsed power. Cui et al. [57] established an analytical model to
study the thermal properties of µ-ILEDs in pulsed operation. The duty cycle is defined by D = τ/t0,
where τ is the pulse duration and t0 is the period.
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Figure 3. Schematic illustration of (a) the µ-ILED layout and (b) a quarter geometry of the analytic
modeled µ-ILED system [57]. (c) The pulsed power Q(t) with Q0 as the peak power [57]. (d) The µ-ILED
temperature increase versus time [57] after saturation [57]. (e) The maximum and the minimum
temperature increases versus duty cycle after saturation [57]. (f) The maximum normalized temperature
increase of µ-ILED versus duty cycle with various values of σ [57].

Figure 3d compares the µ-ILED temperature increase after saturation under pulsed power with
the peak power of 30 mW, the period of 50 ms, the duty cycle of 50% and the µ-ILED dimension of
100 × 200 × 6.5 µm (2a × 2b × hLED) from analytical prediction by Equation (9) and FEA. The good
agreement validates the analytical model. In order to study the effect of duty cycle, the maximum
and minimum temperature increases of µ-ILED are shown in Figure 3e, which indicates that the duty
cycle has a significant effect on the temperature of a µ-ILED. A smaller duty cycle will yield a lower
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temperature increase of the µ-ILED. Furthermore, Cui et al. [57] established a scaling law for the
maximum temperature increase of µ-ILED as

∆T
max
LED =

(√
1 + γ2

)3

γ2
(
1 + 1+γ

2γ hLED
)G

(
χ, hSU8, D,γ, σ

)
(7)

where the normalized maximum temperature ∆T
max
LED = kSU8a∆Tmax

LED/Q0, χ =

khydrogelchydrogelρhydrogel/(kSU8cSU8ρSU8), γ = b/a, hLED = hLED/a, hSU8 = hSU8/a, σ = a2/(λSU8t0),
and G is a non-dimensional function [57]. Figure 3f shows the normalized maximum temperature as a
function of duty cycle under various values of σ with χ = 5.55, γ = 2, hLED = 0.13, and hSU8 = 0.14.
It is noted that small D or large σ are effective to reduce the maximum temperature increase of the
µ-ILED. More discussions on the influences of other non-dimensional parameters can be found in
Cui et al.’s work [57].

On the other side, many researchers theoretically and experimentally investigated the heat
exchange in polymers, which aims to replace metallic heat exchanges for the µ-ILED devices [58–60].
A series of new composites were fabricated to enhance the thermal properties of polymers by adding
particles [61–63], fibres [64,65], carbon nanotubes [66–68] and so on.

2.2. Thermo-Mechanical Analysis of FIEDs

In addition to effects of temperature increase, the heating induced thermal stress (or strain) is not
negligible since the thermal expansion coefficient of sot polymer substrate is much larger than that of
the stiff functional inorganic component, which results in noticeable mismatch at the interface between
the stiff functional component and the substrate. This mismatch may lead to interfacial delamination,
thus causing the failure of FIEDs. Moreover, the non-negligible thermal stress may cause mechanical
discomfort when FIEDs are integrated with biological tissues. Therefore, thermo-mechanical analysis
of thermal management of FIEDs should be fully explored.

Figure 4a shows a typical structure of an FIED with a functional component encapsulated by an
encapsulation layer on a soft polymer substrate. Zhang et al. [69] developed a three-dimensional steady
state analytical model to study thermo-mechanical properties of FIEDs based on the transfer matrix
method through the Fourier integral transform in space domain and the Laplace integral transform
in time domain. According to the linear thermoelasticity theory, the thermo-mechanical equilibrium
equations can be expressed as 

∇
2u + 1

1−2µ
∂e
∂x −

2α(1+µ)
1−2µ

∂θ
∂x = 0

∇
2v + 1

1−2µ
∂e
∂y −

2α(1+µ)
1−2µ

∂θ
∂y = 0

∇
2w + 1

1−2µ
∂e
∂z −

2α(1+µ)
1−2µ

∂θ
∂z = 0

∂2θ
∂x2 + ∂2θ

∂y2 + ∂2θ
∂z2 =

ρc
k
∂θ
∂t

(8)

where θ, ρ, c, t are temperature increase, density, heat capacity and time, respectively; u, v, w are
the displacements along x, y and z directions, respectively; and e = ∂u/∂x + ∂v/∂y + ∂w/∂z is the
volumetric strain. After solving the above equilibrium equations combined with boundary and
continuous conditions, the stresses, displacements, temperatures and heat fluxes at any point in
transformation space are related the counterparts on the bottom surface and can be obtained by
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

σ̃z(ξ, η, z, s)
τ̃zx(ξ, η, z, s)
τ̃yz(ξ, η, z, s)
ũz(ξ, η, z, s)
ṽz(ξ, η, z, s)
w̃(ξ, η, z, s)
θ̃(ξ, η, z, s)
Q̃(ξ, η, z, s)


= [Λ]



σ̃z(ξ, η, 0, s)
τ̃zx(ξ, η, 0, s)
τ̃yz(ξ, η, 0, s)
ũz(ξ, η, 0, s)
ṽz(ξ, η, 0, s)
w̃(ξ, η, 0, s)
θ̃(ξ, η, 0, s)
Q̃(ξ, η, 0, s)


(9)

where σz, τzx, τyz, Q are the normal stress, shear stresses and heat flux, respectively; [Λ] is the
transfer matrix; the superscript “∼” stands for the variables in the transformation space. The inverse
transformation of Equation (9) gives the stresses, displacements and temperature.
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Figure 4. (a) Schematic diagram of a flexible electronic device consisting of a functional component on
a substrate encapsulated by an encapsulation layer [69]. (b) The temperature increase versus time at
the center point on the top surface. [69]. The comparisons of (c) x-stain, (d) y-strain and (e) shear strain
from experiments, finite element analysis (FEA) and analytical model [69].

In order to validate the analytical model, an experimental setup was established to acquire the
strains on the top surface of the device via digital image correlation technology and the temperature
via an infrared camera. The FIED with a heater embedded in polydimethylsiloxane (PDMS) is taken as
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an example to illustrate the analytical approach. Figure 4b compares the temperature increase at the
center point on the top surface for a heater (2 × 1.25 mm) under a heat generation power of 291 mW.
It is obvious that the temperature rise increases quickly at first and then slowly to the steady state.
Figure 4c–e compares the strain contours on the top surface. The good agreement among the analytical
predictions, FEA and experiments validates the accuracy of the analytical thermo-mechanical model.

3. Thermal Management of FIEDs Integrated with Biological Tissues

3.1. Thermal Analysis of FIEDs Integrated with Biological Tissues

The unique mechanical properties of FIEDs, which can sustain complex bending, twisting or
stretching even with large deformations, enable their conformal contact with biological tissues for
diagnostic and surgical functions. The biological tissues pose great challenges in thermal management.
First, the biological tissue is very sensitive to temperature and even a few degrees in temperature
increase may cause human discomfort or tissue lesion. Second, the heat transfer in biological tissue
doesn’t obey Fourier’s law due to its strong biological features including blood perfusion, metabolism,
and so on.

In the past decade, several analytical studies were performed to study the thermal properties
of FIEDs integrated with biological tissues, especially human skin. Cui et al. [70] established a
one-dimensional analytical model to predict the temperature in FIED/skin systems. In the model,
the skin consists of four layers: stratum corneum layer, epidermis layer, dermis layer and fat layer,
as shown in Figure 5a. It is known that blood perfusion only exists in the dermis layer and metabolism
exists in all the layers of human skin. The heat transfer equations, including Fourier heat transfer
equation in FIEDs and the Pennes bio-heat transfer equation in human skin tissues are given by

ki
d2∆Ti

dz2 = 0 (i = 1, 2)

ki
d2∆Ti

dz2 + qmet = 0 (i = 3, 4, 6)

k5
d2∆T5

dz2 −ωbρbcb∆T5 + qmet = 0

(10)

where the subscript i denotes the corresponding layer, k is the thermal conductivity, ∆T is the
temperature increase from the ambient temperature; ωb, ρb and cb are the flow rate, density and heat
capacity of blood, respectively, and qmet is the metabolic heat generation. Considering the boundary
conditions with natural convection on the top surface and constant temperature on the bottom surface,
and continuity conditions (Figure 5b), the temperature increase in the system can be derived analytically
by solving Equation (10). Figure 5c shows the temperature increase in the system along the thickness
direction. The results from the analytical model agree well with FEA. It is shown that the temperature
increase varies nonlinearly in the dermis layer due to the effect of blood perfusion while temperature
varies linearly in other layers.

Cui et al. [71] further extended the one-dimensional thermal model to a three-dimensional model
to investigate the thermal properties of FIEDs involving a rectangular heating component (e.g., µ-ILED)
integrated with human skin. The analytical model accounts for the coupling between the Fourier heat
conduction in µ-ILED and the Pennes bio-heat transfer in skin. Figure 5d shows the schematic structure
of the FIED/skin system with key dimensions labelled. The governing equations and boundary
conditions are all non-homogeneous for such a system. The linear superposition principal is adopted
to obtain the temperature increase, which is validated by FEA. Based on the thresholds of 39 and 43 ◦C
for thermal pain and tissue injury, a thermal comfort map is obtained as shown in Figure 5e under the
heat generation power of 5 mW, with the comfortable region, uncomfortable region and tissue injury
region separated by the two white lines. It is shown that a thicker substrate with a higher thermal
conductivity can reduce the maximum temperature increase to avoid human discomfort or tissue
injury. Cui et al. [71] also investigated the thermal properties of FIED/skin system under a pulsed heat
generation power to further reduce the temperature rise.
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modeled system [70]. (c) The comparison of temperature increase along the thickness direction between
the analytical prediction and FEA [70]. (d) The three-dimensional analytical model showing a quarter
geometry of the µ-ILED device integrated with skin tissue [71]. (e) The dependence of the thermal
comfort map on the thickness and thermal conductivity of the substrate [71].

In order to consider the actual situations, the clothing effect [72], sweating effect [73], and interfacial
thermal resistance effect [74] on thermal properties of the FIED/skin system were also investigated.
Besides human skin, thermal properties of FIED integrated with other biological tissues were also
studied. For example, Yin et al. [75] developed an axisymmetric cambered analytical model in a sphere
coordinate system to investigate the thermal characteristics of FIEDs affixed on a large curvature
myocardial surface via steady state analysis. The model, verified by FEA, can exactly predict the
thermal properties of the heart or other large curvature structures. Effects of parameters, such as
curvature, myocardium, substrate thickness and substrate material on the thermal properties of FIEDs
were investigated systematically. Li et al. [76] established an analytical model to predict temperatures of
four µ-ILEDs in the brain and yielded optimal designs to constrain the temperature rise below 1 ◦C [77].

Thermal models of FIED/skin systems can be used to characterize human vital signs and
mechanical properties of human skin. For example, Webb et al. [2] developed an ultra-thin, soft,
conformal temperature sensor and heater array that can measure blood flow. When the power is
applied, the heaters induce an anisotropic temperature distribution, which can give the blood flow
based on analytical thermal models. Tian et al. [3] proposed an effective three omega technology to
obtain the skin hydration by comparing the analytical model, finite element analysis and experiments
for the FIED/skin system under a transient periodical load. Li et al. [78] designed and fabricated flexible
sensors on fingers/toenails to precisely study thermal transport characteristics of nail bed tissue.

3.2. Thermo-Mechanical Analysis of FIEDs Integrated with Biological Tissues

Li et al. [79] established an axisymmetric steady state thermo-mechanical model to obtain the
temperature and stresses in the FIED/skin system. Figure 6a schematically shows the multilayer
structure of FIED/skin system with the power density of Q0 loaded in a circular region with radius
of r0. The thicknesses of substrate, epidermis, dermis and fat layers are denoted by hP, hE, hD and hF,
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respectively. The transfer matrix method was adopted to derive the temperature increase and thermal
stresses in the system at any point. For example, Figure 6b shows the maximum principal stress
distribution at the device/skin interface for a heater size of 2 mm. The analytical predictions agree well
with FEA, which validates the accuracy of the analytical thermo-mechanical model. The maximum
principal stress reaches an almost unchanged maximum value within the heating region (r < 2 mm)
and then decreases quickly as the distance to the heater increases. The distribution of temperature
increase at the device/skin interface shows a similar trend as that of the maximum principal stress [79].
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Figure 6. (a) Schematic diagram of the cross-sectional structure for the flexible inorganic electronic
device (FIED)/skin system [79]. (b) The distribution of the maximum principal stress at the device/skin
interface along the radial direction [79]. (c) The maximum temperature increase and (d) the maximum
principal stress at the device/skin interface vary with the size of heating component and the substrate
thickness [79].

The effects of size of the heating component and substrate thickness on the maximum temperature
increase and the maximum principal stress are shown in Figure 6c,d, respectively. The black line in
Figure 6c gives the critical design parameters, which yield the maximum temperature increase of 6 ◦C,
to separate the thermal comfortable and uncomfortable regions. The region above the black line is
the thermal comfortable region while the one below is the thermal uncomfortable region. The black
and white lines in Figure 6d give the design parameters, which yield the principal stress with the
maximum absolute value of 20 kPa, to separate the mechanical comfortable and uncomfortable regions.
The region above the black and white lines is the mechanical comfortable region and the ones below
are mechanical uncomfortable regions. These results are very helpful to provide design guidelines to
reduce the undesired thermal responses in the FIED/skin system.

To further investigate the heater shape effect on the thermo-mechanical properties of the FIED/skin
system, Zhang et al. [80] established a three-dimensional analytical steady state model to study the
thermo-mechanical behaviors of the FIED/skin system with rectangular heating components based on
the transfer matrix method. The transfer equation for each layer is derived analytically. Both cases of
one heater and multiple heaters were systematically investigated.
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Besides the steady state thermo-mechanical analysis, a transient thermo-mechanical model is also
important considering that the perceptions of thermoreceptors and mechanoreceptors, as uncomfortable
feelings are related to the response of thermoreceptors, the rate of thermal strain, and the thermal
stress with thresholds of 19.8 imp/s, 0.21%/s and 20 kPa, respectively [81]. Zhang et al. [81] established
a three-dimensional transient analytical model to predict the temperature increase and thermal stresses
in the FIED/skin system with the structure layout shown in Figure 7a,b. Both cases, under a constant
heat generation power and a pulsed power (Figure 7c), were systematically studied. Figure 7d–f shows
some typical results under a pulsed heat generation power for the FIED/skin system with a heating
component size of 1 mm × 1 mm and a thickness of PDMS encapsulation of 0.6 mm. The pulsed
power density used for calculations has a magnitude of 1mW/mm2, pulse duration time of 0.5 s and
period of 1 s. The maximum principal strain and strain rate are given in Figure 7d,e, respectively.
The thermoreceptors and mechanoreceptors in the human body help humans feel temperature, strain or
stress. Once the responses of these receptors exceed the thresholds, humans may have an uncomfortable
feeling. The red dotted line in Figure 7e corresponds to the response threshold of strain rate (0.21%).
It is noted that the maximum principal strain rate is below 0.21%, which indicates that the strain rate is
not large enough to induce mechanical discomfort under these specific loading conditions. Figure 7f
shows the influences of thicknesses of encapsulation and substrate on the peak value of the maximum
rate of the principal strain. These results are very useful to determine whether the strain rate can
induce mechanical discomfort. In addition to the maximum rate of the principal strain, the maximum
thermoreceptor response and the maximum principal stress were also systematically investigated to
study whether the temperature and thermal stress induce human discomfort in Zhang et al.’s work [81].
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4. Thermal Designs of FIEDs

In practical applications of FIEDs integrated with biological tissues, it is important to prevent
the undesired heating induced by FIEDs to dissipate to biological tissues through the substrate of
FIEDs. Several active thermal designs [82–86] have been reported to help thermal management of
the FIED/skin system. This section will briefly review the recently developed orthotropic substrate
design [83] and the functional soft composite design [85].

4.1. Orthotropic Substrate Design

In order to prevent heating energy to dissipate from FIEDs to human skin, Li et al. [83] reported
an orthotropic substrate design consisting of layered metal and polymer materials shown in Figure 8a,
which can control the heat flow direction to achieve the goal of thermal management. The in-plane
and off-plane thermal conductivities can be obtained as

kin-plane =
k1 + k2

2
, koff-plane =

2k1k2

k1 + k2
(11)

where k1 and k2 are the thermal conductivities of metal and polymer materials, respectively. For a large
difference in k1 and k2, Equation (11) yields kin-plane � koff-plane, which indicates that the heat dissipation
along the in-plane directions is much larger than that along the off-plane direction. This unique
orthotropic feature offers an advantage in thermal management of FIEDs, especially in bio-integrated
applications where the heat dissipation along the off-plane direction should be minimized.

The µ-ILED is taken as the heating component in FIEDs to demonstrate the performance of
orthotropic substrate design and to identify the underlying heat transfer mechanism. Li et al. [83]
established a three-dimensional analytical model to study the thermal properties of FIEDs with
an orthotropic substrate. Figure 8b shows the influence of the orthotropic substrate design on the
temperature of the heating component. The analytical prediction agrees well with FEA. The µ-ILED
decreases quickly as the in-plane thermal conductivity of orthotropic substrate increases. For the thermal
conductivity ratio kin-plane/koff-plane of 60, the µ-ILED temperature has a significant decrease from 21.5
to 3 ◦C. Figure 8c,d shows the temperature distributions on the top surface and cross-sectional plane for
the cases of homogeneous PDMS substrate and orthotropic PDMS/aluminum substrate, respectively.
Indeed, the orthotropic substrate changes the heat dissipation path with much more heat dissipating
along the in-plane directions, as indicated by the black lines and red arrows. Li et al. [84] further
studied the thermal properties of FIEDs on an orthotropic substrate for biointegrated applications with
influences of thermal conductivity of orthotropic substrate, substrate thickness, and loading parameters
fully investigated. It was shown that the orthotropic substrate design can reduce the temperature rise
of skin significantly.

4.2. Functional Soft Composite Design

Shi et al. [85] proposed a functional soft composite to serve as the thermal protecting substrate for
wearable electronics, with abilities to manipulate the heat flow and efficiently absorb the excessive
heat energy. The thermal protecting substrate features embedded phase change materials with a thin
metal film on the top in a soft polymer as shown in Figure 9a. The thin metal film helps to spread the
heat energy along in-plane directions while the phase change material helps to absorb the heat energy
once the temperature exceeds the transition temperature. A wearable electronics with soft heater as
the heating component, copper as the metal film, paraffin as the phase change material and PDMS as
the substrate material was developed as shown in Figure 9b. Figure 9c shows the optical image of a
wearable device under bending deformation, which indicates its ability to have a conformal contact
with skin.
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Figure 9d compares the temperature contour on the bottom surface of the substrate between
wearable electronic devices on a conventional PDMS substrate and a thermal protecting substrate
from experiments, which can obviously show the high efficiency of the functional thermal protecting
substrate in thermal management. In order to reveal the underlying physics associated with the thermal
protection, a three-dimensional finite element model was established. Figure 9e shows the temperature
distributions on the bottom surface of FEA, which agree well with experiments. Figure 9f compares the
maximum temperature on the bottom surface with a heating duration time of 40 s. The good agreement
between experiments and FEA again validates FEA. Figure 9g shows the temperature versus time
to reveal the thermal protection mechanism. For wearable electronic devices with a conventional
substrate, the temperature increases monotonically to steady state, while the temperature response
can be described as four stages for wearable electronic devices with a thermal protecting substrate.
At stage I, the temperature is reduced compared to the case of conventional substrate, mainly due
to the heat flow manipulation of Cu film since the temperature is below the transition temperature
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of paraffin. At stage II, the temperature remains unchanged due to the occurrence of phase change
of paraffin from sold state to liquid state and the excessive heat energy is absorbed during the phase
change process. At stage III, the temperature increases monotonically to steady state, i.e., stage IV. It is
shown that this thermal protecting substrate design can reduce the maximum temperature increase
over 85% with optimal parameters.
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composite substrate design [85]. (b) Schematic illustration of a wearable device consisting of a heat
source on the functional soft composite substrate with the embedded paraffin as the phase change
material and the Cu film on its top in PDMS [85]. (c) Optical image of a wearable device under
bending deformation [85]. Temperature distributions on the bottom of the PDMS substrate and thermal
protecting substrate from (d) experiments and (e) FEA after heated 40 s [85]. The maximum temperature
on the bottom of the thermal protecting substrate versus time with (f) a heating duration of 40 s and
(g) a long heating duration [85].

The soft functional composite design in Figure 9a can only provide limited stretchability due
to the existence of a stiff metal film. To further improve the stretchablity, Shi et al. [86] developed a
composite with paraffin uniformly mixed with PDMS, which can be bent, twisted and stretched easily
without losing the ability to absorb the excessive heat energy.

Other methods were also developed to effectively reduce the temperature through novel designs.
For example, Kotagama et al. [87] adopted a thermally conductive composite and included liquid-cooled
tubes to enhance the electronic cooling. Liquid metal inclusions were also embedded into the polymer
substrate to achieve both flexibility and high thermal conductivity [88,89].

5. Conclusions

This paper overviews the recent advances on thermal management of FIEDs including thermal
analysis, thermo-mechanical analysis and thermal designs of FIEDs with and without biological
tissues to provide design guidelines for optimization. Despite these advances on thermal management
of FIEDs, there are still many open challenges and opportunities for future research. For example,
for FIEDs with high heat generation powers such as a flexible inorganic µ-ILED display with high
resolution, active thermal design with associated thermal modeling to avoid the undesired heating is
required. In addition, for FIEDs integrated with biological tissues, the thermal pain sensation based on
a holistic neurodynamics model is needed for accurate modeling.
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