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Abstract: The integration of additive manufacturing direct-writing technologies with injection
molding provides a novel method to combine functional features into plastic products, and could
enable mass-manufacturing of custom-molded plastic parts. In this work, direct-write technology is
used to deposit conductive ink traces on the surface of an injection mold. After curing on the mold
surface, the printed trace is transferred into the plastic part by exploiting the high temperature and
pressure of a thermoplastic polymer melt flow. The transfer of the traces is controlled by interlocking
with the polymer system, which creates strong plastic/ink interfacial bonding. The hybrid process
chain uses designed mold/ink surface interactions to manufacture stable ink/polymer interfaces.
Here, the process chain is proposed and validated through systematic interfacial analysis including
feature fidelity, mechanical properties, adhesion, mold topography, surface energy, and hot polymer
contact angle.

Keywords: direct-writing; additive manufacturing; injection molding; micro manufacturing;
functionalization

1. Introduction

Recent research efforts have opened new opportunities for the integration of Additive
Manufacturing (AM) technologies with other mass-market fabrication techniques. The increasing
industrial adoption of AM technologies has been shifting the focus from prototyping to direct
integration with established processing technologies and applications. In particular, direct-write
additive manufacturing has shown promise in a variety of applications ranging from radio frequency
(RF) to sensing and even microfluidic integration [1–10]. Among AM technologies, direct-write
micro-dispensing using silver conductive inks is one of the most common methods used to create
printed electronics [11,12]. However, direct-write applications are no-longer limited to printed
electronics, and inks are no-longer limited to silver-based nano particles. For example, Ruthenium and
Barium Strontium Titanate inks have been developed for dielectric properties, Li4Ti5O12 (LTO) and
LiFePO4 (LFP) have been used for printed batteries, BO3Y (yttrium borate) was used as a printable
luminescent material, and even bio-materials including silk fibroin has been printed with direct-write
methods [13–26]. The material and process flexibility of direct-write AM offers significant opportunities
for integration with mass-manufacturing technologies, such as plastic injection molding.

The current integration of functional features into plastic parts relies on the use of multi-step
technologies, such as insert molding [27] or injection over-molding [28]. These technologies are
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characterized by high productivity, but limited flexibility for the integration of electronic features and
functionalities. High production volumes are guaranteed through the separation of manufacturing in
two consecutive steps: injection molding of the device and fabrication of the circuit traces.

Recent efforts to improve design flexibility have focused on post-processed methods. In particular,
new process chains have been proposed to integrate printed circuits on injection molded parts using
direct-write onto the plastic surface [29]. However, typical direct-write printing would require printing
on difficult-to-reach areas, such as slots or internal surfaces to create complex geometries [30]. Moreover,
the surface roughness, structures adhesion, and mechanical resistance of AM circuits can be critical
factors in some applications, such as RF and sensing.

Here we propose the use of direct-writing AM technology to additively deposit conductive
features on an injection mold surface. The printed traces undergo a transfer process into the polymeric
part during the molding process. The volumetric integration of printed features into plastic parts is
enabled by controlling the relative plastic/ink and mold/ink interfacial strengths. This process can also
be further enhanced through the use of engineered injection-mold surface properties and coatings
which have previously been demonstrated as an effective solution to control polymer flows both during
the injection [31,32] and ejection phase [33].

To understand the printing of functional ink features onto injection mold materials, it is crucial
to understand the interface interactions involved in the process. The creation of a quality ink/mold
interface is the key parameter to achieve consistent printing. However, the ink/polymer interface
should be stronger, to enable the final “transfer” to the plastic part. The ink/polymer interface
is controlled by a variety of phenomena, including surface roughness [34], surface energy [35,36],
and processing conditions [37]. In particular, high surface roughness has been shown to promote
stronger interfacial interactions [38]. For these high roughness interfaces, the polymer melt has the
capability of entering topographical voids, increasing the surface contact area between the melt and
mold [39]. The investigation of these interfaces should also consider the differences in surface energy
(i.e., polar and a-polar components) between two materials. The design of the material systems
involved at the interfaces, allows achievement of stronger or weaker surface adhesion, depending on
the similarities between polar and a-polar components of materials surface energy [40].

In this work, a hybrid molding process chain that enables the combination of ink dispensing
technologies with conventional plastic injection molding is developed. Here we describe how
nano-particle ink is printed, cured, and sintered before exposure to the polymer melt. After molding,
the ink system of traces is embedded in the polymer parts and released from the mold surface
due to a customized ink/polymer interface with differential polymer shrinkage. This work reports
the characterization of the interactions at the mold/ink/polymer interfaces considering topography
parameters, surface energy, and contact angle of the hot polymer melt. Additional mechanical testing
is performed to evaluate the strength of molded devices and the adhesion of ink traces to the plastic
parts produced with this method. It is expected that the advantages of integrating the embedded traces
during molding will enable a stronger ink/polymer interface and improve surface homogeneity and
finish compared to post-process printing methods.

2. Process Chain Development

Figure 1 describes the novel process chain and its main manufacturing steps. The process chain
follows three primary processing steps: (i) mold preparation, (ii) direct-write AM, (iii) injection molding.

(i) Mold preparation: the mold was first pre-treated using a solvent/polymer solution, which was
deposited on the surface where the ink will be printed. The releasing agent ensures high-quality
printing and improves release to the polymer system during the injection molding process.

(ii) Direct-write AM: the printing process was carried out using an ink micro-dispensing system
(Pro4, Nordson EDF, East Providence, RI, USA). The dispensing nozzle can be adjusted for multiple
trace dimensions with the resulting feature sizes dependent on the selected ink, the deposition rate,
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and curing methods. Once printed, the ink was cured/sintered in a vacuum oven. It should be noted
that other curing methods could be used including laser curing and photonic curing.

(iii) Injection molding: the mold, with the printed/sintered traces, was assembled into an injection
molding machine for processing. The injected polymer melt flowed over the structures and the rapid
cooling formed a strong bond between the melt and ink. The final polymer part with integrated traces
was then ejected from the mold, resulting in a hybrid, composite part.
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3. Materials and Methods

3.1. Mold Surface Preparation

Before printing conductive ink onto the injection mold surface, the mold was pretreated with an
ABS (Trilac® ABS-MP1000 Polymer Technology and Services, LLC (PTS), Heath, OH, USA) solvent
solution. A typical coating process would include solution-based spin coating, alternatively, spray
coating techniques to compensate for mold size and/or weight constraints.

The resulting mold surface maintains a thin, uniform, polymer coating directly on the stainless-steel.
After coating, the mold is heated on a hot plate at 120 ◦C for 5 min to remove excess solvent from the
coating. The surface treatment was designed and used to improve relative surface energies, enabling
optimal mold/ink interface for molding “transfer.”

3.2. Direct-Write Printing

A silver nanoparticle ink (CB 028, DuPont®, Wilmington, DE, USA) was selected for testing
as it represents the standard ink-based material system in the field of printed electronics. As such,
this investigation also represents a general proof-of-concept for eventual process integration for
electrical applications.
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Printing was carried out on the pre-treated mold surface using an automated micro-pen dispensing
system (Nordson Pro4 EFD). Figure 2 shows a mold inside of the Nordson Pro4 EFD before printing.
After printing, the mold with the printed traces was placed in a vacuum oven (Isotemp 282A, Thermo
Fischer Scientific, Waltham, MA, USA) for sintering at 220 ◦C for 30 min.

To evaluate the effects of polymer pressure on ink/polymer interlocking and adhesion, printed
traces were located at specific locations of the mold surface, based on the relative distance to the
injection location. Each trace was printed in the form of a line with a design length of 20 mm, and a
design height of 50 µm.
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3.3. Injection Molding Setup

Injection molding tests were run on a micro injection molding machine (Xplore® IM 12, Xplore
Instruments BV, Sittard, The Netherlands). The machine features an injection cylinder of 10 mm in
diameter with a maximum shot volume of 12 cm3. The injection molding process conditions were
set as follows: mold temperature at 80 ◦C, melt temperature at 260 ◦C, holding time of 8 s at 0.7 MPa.
A single cavity stainless-steel mold was used to manufacture ASTM D638-14 type I tensile bars. During
injection molding experiments, the mold with the printed traces was mounted on the machine and
removed after every cycle for cleaning and additional printing.

The resin used for the experimentation was acrylonitrile butadiene styrene ABS (Trilac®

ABS-MP1000 Polymer Technology and Services, LLC (PTS), Heath, OH, USA). This polymer was
selected for its good processability, low viscosity, and rigidity. Additionally, this ABS resin is compatible
with the coating layer that was used for mold pre-treatment before ink deposition.

3.4. Imaging and Topography Characterization

The dimensions of the traces printed on the mold surface and their qualitative inspection were
performed using a stereomicroscope (SteREO Discovery V20, Zeiss, Oberkochen, Germany) to scan
the whole printing area. Topographies were acquired using an optical profiler (Wyko NT2000, Bruker
Nano, Tucson, AZ, USA), using a 20x magnification lens equipped with a Mireau interferometer.
Figure 3a shows the characterization setup and the areas that were scanned.

From the acquired topographies, surface roughness Sa and mean summit curvature Ssc were
evaluated according to ISO 25178:2012-2. These areal parameters were compared at multiple locations.



Micromachines 2020, 11, 509 5 of 13

The surface amplitude roughness Sa was used as a quantitative indicator of amplitude while the
average surface summit curvature Ssc characterizes the contact area between multiple surfaces.

The molded parts were sectioned to evaluate interface adhesion and morphology. Samples were
embedded in a thermoset resin for polishing. For a smooth interface, the polishing process (Ecomet 250,
Buehler, Lake Bluff, IL, USA) consisted of alternating pans of increasing mesh up to 3,000 with a total
processing time of 20 min. Figure 3b shows a cross-section of a molded part with the integrated printed
ink trace. The interface surfaces were qualitatively analyzed using Scanning Electron Microscopy
(SEM - FEI, Quanta 400, Thermo Fisher Scientific, Waltham, MA, USA), allowing identification of voids,
interface interlocking, and overall ink/polymer adhesion.
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3.5. Surface Energy and Polymer Melt Contact Angle

The adhesion at the ink/mold and ink/polymer interfaces was evaluated by quantifying the surface
energy for the different materials involved in the process chain. Surface energy was measured using
a drop shape analyzer (DSA 100, Krüss GmbH, Hamburg, Germany). Two different liquids (water
and diiodomethane) were used for the estimation of surface energy based on the extended Fowkes’
two liquids in contact model [41]. The measurements were performed on the following substrates:
mold-polished steel, mold steel pre-treated for printing, sintered ink, and ABS molded parts in a
trace-free area.

The effect of injection molding on the creation of a strong polymer/ink interface was evaluated by
measuring the contact angle of the hot polymer melt over the mold surface. These tests were performed
using the same drop shape analyzer on which a high temperature syringe dosing unit (TC21, Krüss
GmbH, Hamburg, Germany) and measuring cell (TC3213, Krüss GmbH, Hamburg, Germany) were
mounted. Contact angle measurements were performed using printed/sintered ink and hot ABS at
injection molding melt temperature (i.e., 260 ◦C). The measurements were performed on polished steel.

3.6. Mechanical Properties

Mechanical properties of the injection molded parts with and without embedded traces were
evaluated using standard ASTM dog-bone samples. The mechanical properties of the base ABS
were benchmarked on ten samples manufactured following the procedure described in Section 3.3.
Additionally, the mechanical properties were characterized for five samples manufactured with the
proposed process chain.
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Tensile testing (5966, Instron, Norwood, MA, USA) was carried out at room temperature according
to ASTM D638. A load of 50 kN was used to achieve plastic fracture and the respective stress-strain
curve. Young’s modulus was calculated as the ratio of the stress at a percent strain of 0.2 %, while the
Ultimate Tensile Strength (UTS) was evaluated as the maximum stress value before breakage.

3.7. Peeling Test

Further analysis of the molded parts with the integrated traces was carried out through a peeling
test. The adhesion strength of the ink/plastic interface was evaluated according to ISO 2409:2013
cross-cut test. The test was performed using a hand-held, multi-blade cutting tool with a 1 mm cutting
spacing between each blade. A pressure-sensitive adhesive tape (12.7 mm width, 600 HC-33 from
3M®) was used to remove the loose ink. The embedded ink trace were determined to have height
of 200 µm, width of 2 mm, and length of 6 mm. The test consisted of sectioning the printed traces,
attaching the tape to the surface of the hybrid part, and peeling. The result of the test is evaluated by
inspecting the portions of the printed ink that are removed with the tape.

4. Results and Discussion

4.1. Influence of Surface Roughness

Figure 4 compares the measured surface features over the different surfaces described in the
process chain. The results of the surface roughness evaluation showed significant differences between
the mold, the release coating, and the sintered ink and are described in Table 1.
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Figure 4. 3D view of the analyzed surface topographies: (a) 3D printed ink on the mold before injection
molding, (b) coating on the mold before injection molding, (c) polished mold surface, (d) plastic part
surface after demolding, (e) embedded ink on the plastic part.
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Table 1. Summary table indicating Sa and Ssc parameter results for the analyzed topographies.

Surface 3D Printed Ink Coating Polished
Mold Surface Plastic Part Embedded Ink

Sa/nm 1396 603 39 52 315
Ssc/µm 1.15 0.10 0.01 0.02 0.19

The printed ink surface had the highest roughness and summit curvature (cf. Figure 4a). Compared
to the polished side of the mold, the ink shows a Sa higher by a factor 35x and an Ssc higher by a factor
115x. This is typical of direct-writing and AM technologies and is due to the particle-based nature
of the inks. These traces are usually characterized by high surface roughness and their topography
often exhibits inhomogeneity and macroscopic defects [42]. As shown in Figure 4e, embedding the
traces during the molding process resulted in an average Sa value of 315 nm, which is 4x smaller than
the printed ink trace alone (cf. Figure 4a). This roughness reduction confirms the effectiveness of the
process chain in reducing the surface roughness of the printed electronics in the plastic part. Therefore,
by printing the traces onto the mold and then transfer them via injection molding, it is possible to
embed printed interconnects within a plastic part.

The SEM micrographs (Figure 5) of increasing magnification (500×–3000×–12000×) display the
anisotropic nature and high roughness of the sintered ink surface before molding. As a comparison,
Figure 6 shows the smoother topography resulting from the hybrid process chain presented in this
work. Indeed, the traces printed on the injection mold surface are “flipped” when transferred to the
plastic system in the injection molding process. The “transfer” process has the advantage of creating a
smoother outer surface because of volumetric integration. This volumetric integration also is expected
to result in higher wear resistance and higher resistance to mechanical shears.
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Moreover, the high initial roughness of the printed traces, facing the polymer melt, favors
interlocking upon injection molding. The molten polymer fills these topographical voids creating
strong interactions at the polymer/ink interface. This exploits the high surface roughness typical of
AM parts to generate higher interface adhesion and guarantees functionality.

4.2. Surface Energy

The surface energy of the different interfaces was used as an indirect measure of the adhesion
strength between different materials interfaces [35]. By using contact angles measurements with a-polar
liquid (water) and a-polar liquid (diiodiomethane) it was possible to calculate the total surface energy
using the Fowkes’ model [41]. From the contact angle measurements with the two liquids (Figure 7a),
surface energy for different surface were obtained (Figure 7b). Then, the percentage of polar or disperse
energy (Figure 7c) were analyzed to evaluate surface interactions.

Considering the experimental results, it was observed that surface energy increases significantly
when reducing the surface roughness. In particular, the polished mold surface revealed a surface
energy composed of 91% disperse and 9% polar contributions, which is double the polar affinity of
an unpolished specimen. Similarly, the ink surface after curing is characterized by higher dispersion
content, equal to 98% but now only a 2% polar contribution. Moreover, the overall surface energy
in the polished mold surface is higher than the sintered ink, increasing from 32.8 ± 3.8 mJ/m2 to
37.5 ± 6.5 mJ/m2.

Contact angle measurements using the liquid ink (Figure 8a), suggest that the mold pre-treatment,
used for release after injection molding (cf. Section 3.1), does not influence the direct-writing process,
and thus the quality of ink deposition. However, the analysis of surface energy shows that higher
surface affinity is formed between the mold and the plastic melt as opposed to the plastic and the
sintered ink. From a process chain perspective, this measured surface affinity is very important to
understand why the mold pre-treatment (cf. Section 3.2) favors the release and transfer mechanism [43].
In the absence of the pre-treatment layer, the ink would have a higher affinity with the mold steel,
and transfer upon injection molding would not occur.

Contact angle measurements of the hot polymer melt were performed using a heated chamber.
ABS samples were heated at 260 ◦C (i.e., molding temperature) and deposited on different surfaces
to study the wetting behavior. The results indicate that a higher contact angle is formed over the
sintered ink (i.e., 111.7◦) and the unpolished mold surface (i.e., 116.4◦) when compared to the polished
mold surface (i.e., 103.2◦). This contact angle adjustment demonstrates the effect of surface roughness
on polymer/mold surface affinity, which is high for the sintered ink. As reported by Sorgato et al.
the wettability of the polymer to a specific mold surface is crucial to determine the capability of the
polymer to replicate the topography [36].
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different surfaces.

4.3. Mechanical Integrity and Interface Strength

The Young’s modulus of elasticity, measured at 0.02% of elongation, and the Ultimate Tensile
Strength (UTS) were used to analyze the effects of trace inclusion on the mechanical strength of the
composite parts. The results are shown in Figure 9a,b, respectively. The average Young’s modulus
of the traditional parts is 3.1 ± 0.3 GPa, and the parts with embedded structures show a Young’s
modulus of 3.5 ± 0.2 GPa. This slight difference suggests that the embedded printed traces may act as
a reinforcement, increasing the stiffness of the plastic part.

Analysis of the UTS values suggests that the printed traces embedded in the parts have no
significant effect on the overall mechanical strength. The average for the ABS parts is 43.1 MPa, while
the parts with the embedded traces have an average UTS of 43.2 MPa. This consistent UTS indicates
that integration of the traces does not introduce any points of high-stress concentration, and the hybrid
process chain has no negative effect on the tensile strength of the hybrid part.
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electronics and bulk parts.

The adhesion at the ink/polymer interface for the parts was evaluated by carrying out peeling
tests (Figure 10). The test was conducted on multiple traces located at multiple distances from the
injection location, as described in Section 3.2. For all locations, strong adhesion was observed and no
noticeable loss in adhesion could be measured. The results indicate that the proposed process chain
can create consistent adhesion along the whole cavity where the polymer pressure is different.
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5. Conclusions

This work presented an innovative process to integrate printed silver traces into injection molded
plastic parts. This manufacturing process can be used to produce plastic parts that embed printed silver
traces with custom surface roughness, unaltered mechanical properties, and strong polymer/electronic
adhesion. The experimental results have demonstrated the effectiveness of the process in creating
mechanical interlocking between the polymer system and the printed electronics.

The main findings of this work include:

• Topographical analysis of the different surfaces to verify the proposed process when compared
to printing directly onto molded parts as a post-process. Specifically, the surface roughness of
parts with integrated traces was reported to be low compared to that of post-processed, printed
structures. The improved surface finish is explained by the intrinsic rotation of the structures
during the “transfer” process.

• The high surface roughness of the printed structure before molding was exploited to create
favorable interlocking at the ink/polymer interface, increasing adhesion. The trace transfer process
from the mold/ink interface to the ink/polymer interface is enabled by exploiting the similar
surface energy between the materials. Specifically, the results demonstrated that the surface
energy affinity at the ink/polymer interface must be stronger than that of the ink/mold interface to
promote transfer, indicating the need for a pre-treatment coating.

• It was expected that the composite molded parts would retain the mechanical stability, of bulk
ABS parts. Our statistical analysis verified this effect, where volumetric integration of the printed
traces into the plastic does not affect their structural properties. Moreover, peeling tests and
micrographs of cross-sections demonstrate sufficient adhesion strength between the polymer and
the ink.

• This work presents a first-in-class study on the feasibility, and methods required to integrate,
additive direct-write tools with injection molding. The result is a hybrid technique enabling the
fabrication of custom, design-on-demand plastic parts with integrated conductive structures.
Future work will focus on the integration of additional additive techniques and the integration of
more complex structures and molding techniques.
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