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Abstract: Depositing platinum (Pt) interconnectors during the sample preparation process via a
focused ion beam (FIB) system is an inescapable procedure for in situ transmission electron microscopy
(TEM) investigations. To achieve good electrical contact and avoid irreversible damage in practical
samples, the microscopic evolution mechanism of FIB-deposited Pt interconnectors need a more
comprehensive understanding, though it is known that its resistivity could be affected by thermal
annealing. In this work, an electron-beam FIB-deposited Pt interconnector was studied by advanced
spherical aberration (Cs)-corrected TEM combined with an in situ heating and biasing system to
clarify the relationship of microscopic evolution to resistivity variation. During the heating process,
the Pt interconnector underwent crystallization, organic matter decomposition, Pt nanocrystal growth,
grain connection, and conductive path formation, which are combined actions to cause several orders
of magnitude of resistivity reduction. The comprehensive understanding of the microscopic evolution
of FIB-deposited Pt material is beneficial, not only for optimizing the resistance performance of Pt as
an interconnector, but also for understanding the role of C impurities with metal materials. For the
purpose of wiring, annealed electron-beam (EB)-deposited Pt material can be recommended for use
as an interconnector in devices for research purposes.

Keywords: microscopic evolution; Pt interconnector; in situ heating and biasing; annealing treatment

1. Introduction

With the development of transmission electron microscopy (TEM), there has been a growing interest
in in situ TEM techniques to study the dynamic microstructure evolution of materials and devices
induced by external heating/biasing/forcing/gas fields [1–9], which is characterized of high-spatial
resolution and real-time recording. In situ TEM studies can clarify the structure–property relationships
of advanced functional materials by recording their physical or chemical changes under external
fields [10–13], which is helpful to optimize the performances of functional materials. For example,
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Gong et al. [8] fabricated an all-solid-state lithium-ion battery through a focused ion beam (FIB) system,
and directly observed the in situ formation process of nano-polycrystals in TEM, which provides
guidance for further optimizing battery properties. It is worth noting that the key point to guarantee
the success of in situ TEM experiment is to fabricate a high-quality sample by FIB system, in which
platinum (Pt) interconnector deposition [14–16] is an inescapable procedure. For the in situ biasing
experiment the resistance of the Pt interconnector directly affects the electrical performance of device.
Therefore, it is necessary to study the relationship between structure and property in Pt interconnectors
for better applications.

In practice, a Pt interconnector can be deposited via the microchemical vapor-deposited method
in a FIB system either by electron-beam (EB) or ion-beam (IB) deposition, in which the precursor
is basically commercial cyclopentadienyl platinum-trimethyl [(CH3)3Pt(CpCH3)] [17,18]. Therefore,
the obtained Pt interconnector is the mixture of Pt metal and organic compounds whose electrical
properties will be affected by the structure of the mixture and organic dopant, i.e., carbon (C), resulting
in high resistance. There are also some carbon-free precursors, such as tetrahedral [Pt(PF3)4] [19–22],
which is expensive, is not desirable of the strong etching capability of F atoms, would decompose to
produce poisonous PF3 gas [23], and so has not been utilized in large-scale commercial production.
With commercial [(CH3)3Pt(CpCH3)] precursor, an IB-deposited Pt interconnector usually shows better
electrical conductivity, which is suitable for connecting circuits [24]. More specifically, the resistivity of
an IB-deposited Pt interconnector is around 70–700 µΩ·cm [25], while the value of the EB-deposited one
is much higher, around 1–100 Ω·cm [26]. The difference between IB and EB deposition in resistivity is
probably because the IB deposition process allows the organic precursor to decompose more completely
than the EB method does [27,28]. However, the gallium (Ga) injection during the IB process will cause
more irreversible damage [29–32], such as amorphization [33] or crystallization [34], which cannot be
ignored. Therefore, the EB-deposited Pt interconnector [35,36] would be a compromise to have less
damage but higher resistivity.

Recently, researchers found that the resistivity of the EB-deposited Pt material could be further
reduced by means of heating treatment. For instance, its crystallinity could be improved when
annealing under an N2 atmosphere, resulting in a reduced resistivity [37–39]. If the protective gas is
replaced by O2, the resistivity of the Pt interconnector could drop by about three orders of magnitude,
in which the deposition structure was purified due to the oxidation of carbonaceous material [36,39,40].
In terms of lowering the resistance of deposited Pt material, the annealing temperature increment plays
a key role [41,42], while the annealing time has a slight effect [37–39]. Additionally, a freestanding
Pt/C nanotip was skillfully deposited on a grid by IB to study the microstructure evolution, which
was annealed to 500 ◦C and 900 ◦C, while the resistance of the nanotip was not obtained at the same
time [43]. Though the structural change of Pt with temperature is probably the main origin of the
resistivity reduction, a thorough explanation of the microscopic evolution with resistivity variation
is still lacking, which is very important in understanding the underlying mechanism and further
optimizing its resistance performance. In this work, in situ heating and biasing were carried out in a
spherical aberration (Cs)-corrected TEM combined with the first-principles calculations to reveal the
mechanism of resistivity variation from the microstructural aspect.

2. Experimental Methods

2.1. Materials and In Situ Experiments

A heating and biasing nano-chip from DENSsolutions (Delft, The Netherlands) with eight-point
contacts was used for Pt interconnector deposition, as shown in Figure 1a. Considering the thickness
of the SiN support membrane is relatively thick, etching from the back of the nano-chip to reduce its
thickness is necessary to acquire an ultrathin SiN membrane between the two electrodes. Then, the Pt
interconnector was deposited to connect two electrodes by using an electron beam (EB) in the FIB system
(Helios G4, Thermo Fisher Scientific, Waltham, MA, USA). A gas injection system with cyclopentadienyl
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platinum-trimethyl [(CH3)3Pt(CpCH3)] in the FIB was used as the precursor for microchemical
vapor-deposited. The size of the Pt interconnector is about 3 µm × 0.6 µm × 0.05 µm. EB deposition
voltage: 2 kV; current: 1.6 nA; dose: 7.9 × 10−10 pC/um2; volume per dose: 5.0 × 10−2 µm3/nC.
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A Gatan Oneview camera was used for in situ recording HREM images with 25 frames per second. 
A Lightning D9+ heating and biasing holder from DENSsolutions (Delft, The Netherlands) was 
employed to manipulate the temperature and measure the resistance together. Temperature control 
was realized by Digiheater 3.2 software (DENSsolutions, Delft, The Netherlands). Resistance testing 
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Figure 1. (a) Schematic of nano-chip for in situ heating and biasing together in transmission electron
microscopy (TEM), in which, electrodes 1, 2, 3, and 4 are for heating, and electrodes 5, 6, 7, and 8 are
for biasing. (b) Enlarged biasing electrodes. (c) Pt interconnector deposited between two electrodes
on SiN membrane. (d) High resolution electron microscopy (HREM) image of the as-deposited Pt
interconnector with inset of its corresponding Fast Fourier Transform (FFT) pattern revealing its
amorphous structure.

The TEM characterization was carried out on JEM Grand ARM300F microscope (JEOL, Tokyo,
Japan)operated at 300 kV with an image corrector. The composition analysis at different temperatures
is obtained from the attached X-ray energy dispersive spectroscopy (JED-2200, JEOL, Tokyo, Japan).
A Gatan Oneview camera was used for in situ recording HREM images with 25 frames per second.
A Lightning D9+ heating and biasing holder from DENSsolutions (Delft, The Netherlands) was
employed to manipulate the temperature and measure the resistance together. Temperature control
was realized by Digiheater 3.2 software (DENSsolutions, Delft, The Netherlands). Resistance testing
was done by using a Keithley 2450 external source measurement unit (Tektronix, Beaverton, OR, USA).
The Pt interconnector is heated at a rate of 50 ◦C per minute and then held for about 5 min for thermal
stability purposes and the related measurements. Compared to the irradiated experiment [44], the
current density of the electron beam during the observation process was only ~0.02A/cm2, which can
be ignored here.

2.2. First-Principle Calculations

First-principle calculations were carried out based on density functional theory (DFT).
The Kohn–Sham equations were solved using the Vienna Ab Initio Simulation Package (VASP) [45–48].
The valence electron and core interactions were described using the projector augmented wave (PAW)
method [49]. Electron exchange and correlation were described using the Perdew–Burke–Ernzerhof
with van der Waals correction (PBE-D3) [50–52] generalized gradient approximation (GGA) [51]
function with a kinetic energy cutoff of 520 eV, where the valence electrons treated are 5d96s1 for Pt and
2s22p2 for C. The convergence criterion is 10−7 eV for electronic convergence and 0.02 eV/Å for force.
A reasonably converged grid spacing of ~0.02 Å−1 is used.



Micromachines 2020, 11, 588 4 of 12

3. Results and Discussion

3.1. Electrical Resistivity Results

The in situ heating and biasing experiment was conducted on the nano-chip, as shown in Figure 1a,
in which electrodes 1, 2, 3, and 4 are for heating, and electrodes 5, 6, 7, and 8 are for biasing. This kind
of surround heating type ensures the uniform temperature rise in the center biasing area [9]. Figure 1b
shows the enlarged biasing area with four electrodes. The Pt interconnector was deposited between
two of the electrodes on the SiN membrane after back-etching (in order to make the thickness suitable
for TEM characterization) as shown in Figure 1c. In Figure 1d, the EB-deposited Pt interconnector
manifests as an amorphous phase according to the homogeneous contrast in the high-resolution
electron microscopy (HREM) image and diffuse rings in the inset fast Fourier transform (FFT) pattern.
The resistivity of the as-deposited Pt interconnector was measured as 1357 mΩ·cm, which is too high
to use as an interconnector.

3.2. Microstructure Evolution

To investigate the possible microstructure evolution with temperature of the EB-deposited Pt
interconnector, an advanced in situ TEM technique was used to record a set of HREM images at
different temperatures, as shown in Figure 2, in which the resistance is also measured simultaneously.
When the Pt interconnector was heated to 100 ◦C, its resistivity was reduced from 1357 mΩ·cm to
788.98 mΩ·cm, as shown in Figure 2a, and small Pt nanocrystal grains began to appear in the film, in
which some grains in the top half of the picture are painted blue. When the temperature increases to
200 ◦C, the grain size of the Pt nanocrystals becomes larger, and the number of Pt nanocrystals also
increases, as shown in Figure 2b. At this temperature, the resistivity of the Pt interconnectors further
decreases to 201.96 mΩ·cm. As the temperature continues to rise to 300 ◦C, these Pt grains grow further,
and even merge to form the possible conducting pathways (denoted by dotted yellow lines), as shown
in Figure 2c, accompanied with the continuous resistivity decreasing [43]. From 400 ◦C to 500 ◦C in
Figure 2d,e, Pt resistivity continues to drop, while Pt grains further grow and combine, which benefits
its conductivity. Increasing to 600 ◦C in Figure 2f, there is a significant increase in grain size, in which
most of the grains are joined together to form a nanocrystal network. At this moment, the Pt resistivity
has decreased by near three orders of magnitude compared with its initial state. Although its resistivity
is still higher than pure bulk Pt metal (1.06 × 10−2 mΩ·cm), it can be used in in situ biasing research as
an interconnector. The detailed Pt grain size distribution with temperature is also fully compared in
Figure 3, which indeed shows that the density of nanograins gradually decreases and the average size
increases during the in situ heating process.

3.3. Resistivity Transition Analysis

From the above results, it is clear that the crystallization, growth, and connection of Pt grains
directly affect the electrical properties of the Pt interconnector. Hence, to further analyze the electrical
property of the Pt interconnector, its resistivity as a function of temperature is plotted in Figure 4a,
exhibiting a decreasing resistance trend. The inserted corresponding derivative of the ogarithmic
resistivity to temperature (dlgR/dT) curve reveals two resistivity transition temperature at 214 ◦C and
525 ◦C, respectively. The first resistivity drop is due to the decomposition temperature of the organic
Pt metal precursor material being around 250 ◦C [28], and also ascribed to the formation of conducting
pathways, referring to Figure 2b,c. To obtain a better view, a real-time grain combination process
lasting about half a minute at 250 ◦C is shown in Figure 4b, in which three small nanocrystal grains
(denoted by yellow dotted lines) gradually merge to form a larger one (the detailed process can be seen
in Supplementary Video S1). Additionally, the second resistivity drop, ascribed to the growth of Pt
nanocrystals and the formation of a complete conductive network inside the Pt interconnector, is proven
by the obvious grain growth from Figures 2e,f and 3. Another concern is the possible composition
variation of the Pt interconnector with increasing temperature. (CH3)3Pt(CpCH3) precursor includes
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elements Pt, C, and hydrogen (H). Considering that H is beyond the detection limit of energy-dispersive
X-ray spectroscopy (EDS), we mainly concentrate on the composition variation between the C and Pt
elements at different temperatures, as shown in Figure 4c. Conspicuously, the atomic amount of C
decreases while Pt content increases with increasing temperature, indicating reducing organic content
as reported in literature [35,37,39]. Therefore, the decrease of the organic matter content is also one of
the reasons for the falling resistivity. On the other hand, the organic matter content still occupies the
main component of the Pt interconnector, which is unfavorable to continue to improve its conductivity.
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decreases and the average size increases due to the growth of nanograins.
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3.4. Lattice Constant of Pt Nanocrystal Evolution

Except for the structure, composition, and resistivity variation of the Pt interconnector during
heat treatment, the lattice parameter may also change. To investigate the lattice parameter variation
during the heating process, the FFT patterns at different temperatures were extracted from the HREM
images (Figure 2), as shown in Figure 5. Afterwards, corresponding raw radially-integrated diffraction
curves were obtained, as shown in Figure 6, in which the black dotted lines denote the position of
the corresponding lattice planes in pure Pt ((JCPDS No. 04-0802). Inspecting the curves in Figure 6,
the position of the peaks of (111) and (002) gradually shifts to the right side, and this phenomenon
becomes more obvious above 400 ◦C, indicating the increasing d-spacings of the corresponding lattice
planes of the Pt interconnector with temperature. The bias of the (022) and (113) peaks in Figure 6
are not so obvious, especially at lower temperatures, which may be due to the weakness of the
corresponding rings and the poor signal-to-noise ratios and which are related to the crystallinity. After
cooling to room temperature from 600 ◦C, the lattice parameter is still larger than that of the initial
state, implying not merely a simple thermal expansion, but containing other factors.
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3.5. The Probable Reason of Pt Lattice Parameter Variation

From the above results, the relationships of microscopic evolution to resistivity variation of the
EB-deposited Pt interconnector are articulated clearly, and heat treatment can effectively reduce its
resistivity. With the temperature increasing, Pt interconnector has undergone crystallization, organic
matter decomposition, Pt nanocrystals growth, grain connection, conductive path formation, and
lattice expansion, which are combined actions to cause a drop in resistance. Finally, the resistivity of
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the EB-deposited Pt interconnector still has a gap with pure Pt metal. Consider that, in addition to Pt
metal, C is also an important component in this interconnector, which should be taken into account
here. Since Figure 6 reveals the fact that Pt lattice is expanding and the characterization of C atoms is
difficult in TEM, we attempt to investigate the possibility of C atom doping into the Pt structure via
first-principle calculations. Figure 7 shows the calculation of one C atom in a tetrahedral position in
the Pt lattice, which has a slightly lower formation energy than that in the octahedral position (Table 1).
The positive formation energy demonstrates that C atoms do not desire to stay in the interstitial
positions of Pt. After C doping, the distance of the second nearest neighbor Pt atoms is increased
from 3.93 Å to 4.11 Å (Table 1), exhibiting lattice expansion consisting of the experimental result in
Figure 6. Considering the electron transfer effect between C and Pt atoms, as shown in the charge
density difference (CDD) map in Figure 7a, the formation of covalent bonds between C and Pt atoms
localized the free electrons. Since the C atom obtains electron and its surrounding Pt atoms lose it,
according to the Bader charge analysis, the electronic-carrier concentration would decrease, resulting
in the conductivity of the Pt interconnector not reaching that of pure Pt metal [53,54]. However,
the thermal stability of the interstitial C atom in the Pt lattice seems poor by calculating the diffusion
energy barrier by moving a tetrahedral C atom to another equilibrium position, as shown in Figure 7b.
The high diffusion barrier of 1.12 eV, as shown in Figure 7b, may result in a little C in the nterstitial
positions from the kinetic perspective. Thus, the lattice expansion could be another reason; for instance,
the grain size change of the Pt nanoparticles increased from the initial 2–3 nm to above 5 nm during
the in situ heating process, which can also bring the change of the lattice parameter. Referring to
the literature [55–59], there is a change in the opposite trend of the lattice parameter evolution to
the particle size. For instance, no variation in the Pt-Pt distance was observed for Pt nanoparticles
deposited on aluminum oxide films [57]. The unit cell parameter even linearly increases with the
reducing particle size [59]. However, when introducing C into the Pt material system, Scardi et al. [55]
found that the Pt lattice parameter would increase when the Pt particle is dispersed on the C support.
A similar lattice parameter variation tendency is also confirmed for C-supported Pt nanoparticles,
which is interpreted by the continuous-medium (CM) model [58,60]. Though C atoms are easily moved
out of the Pt lattice, according to the calculation results, it may still be have an assistance effect to
increase the Pt lattice parameter when the nanoparticles grow. Thus, C still tends to stay outside the Pt
nanocrystals and form composites with Pt, which is the reason that the conductivity of annealed the
EB-deposited Pt interconnector is not as good as that of pure Pt metal:

Ef = Etotal − EPt − EC, (1)

where Etotal, EPt, and EC are the energy of the system, pure Pt, and one C atom, respectively.

Table 1. The formation of energy and structural features after doping one C atom in tetrahedral or
octahedral interstices in Pt lattice, in which, the formation energy was calculated using the formula,.

Structure Ef (eV) III d1 (Å) IV d2 (Å) V q (e−)

pure 0 2.77 3.93 0
I tetrahedron 2.07 3.13 - 0.57
II octahedron 2.14 - 4.11 0.82

I is one C atom in tetrahedral interstice; II is one C atom in octahedral interstice; III is the distance of the first nearest
neighbor; IV is the distance of the second nearest neighbor; V is the Bader charge for C. Inspecting the formation
energy of interstitial C atom in different positions, the tetrahedral position is 2.07 eV, which is slightly lower than
that in the octahedral position with 2.14 eV.
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Figure 7. Calculation of the possibility of C atom doping into Pt lattice. (a) Charge density difference
contours are plotted, in which, the yellow and cyan isosurfaces represent positive and negative charge
density, respectively. (b) Calculated potential energy profiles between initial state (IS), transition state
(TS), and final state (FS) when moving a tetrahedral C atom to another equilibrium tetrahedral position.

4. Conclusions

An EB-deposited Pt interconnector by FIB is an appropriate choice for in situ TEM studies,
while the relatively higher resistivity can be modified. In this report, with the help of in situ
heating and biasing in TEM together, the crystallization of the EB-deposited Pt interconnector with
temperature has been observed, while the combination of crystal Pt grains could form conductive
pathways, even networks, resulting in an effective resistivity reduction. Combined with the above
reasons, three orders of magnitude of resistance decreasing after annealing to 600 ◦C makes the
EB-deposited Pt interconnector suitable for the electrical circuit. These results can help to understand
the structure–property relationships of the Pt interconnector deposited by a FIB system, and to optimize
the research scheme in designing reasonable in situ experiments more efficiently.
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