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Abstract: In this study, macroporous graphene aerogels (GAs) were synthesized by chemical reduction
of graphene oxide sheets and were used as a support material for in situ synthesis of conductive
poly(para-phenylenediamine) (p(p-PDA)). The in situ synthesis of p(p-PDA) in GA was carried out
by using a simple oxidation polymerization technique. Moreover, the prepared conductive p(p-PDA)
polymers in the networks of GAs were doped with various types of acids such as hydrochloric acid
(HCl), nitric acid (HNO3), sulfuric acid (H2SO4), phosphoric acid (H3PO4), respectively. The prepared
GA and different acid-doped forms as GA/p(p-PDA) composites were characterized by FT-IR, TGA,
and conductivity measurements. The observed FT-IR peaks at 1574 cm−1, and 1491 cm−1, for
stretching deformations of quinone and benzene, respectively, confirmed the in situ synthesis of
P(p-PDA) polymers within GAs. The conductivity of GAs with 2.17 × 10−4

± 3.15 × 10−5 S·cm−1

has experienced an approximately 250-fold increase to 5.16 × 10−2
± 2.72 × 10−3 S·cm−1 after in situ

synthesis of p(p-PDA) polymers and with HCl doping. Conductivity values for different types of
acid-doped GA/p(p-PDA) composites were compared with the bare p(p-PDA) and their undoped
forms. Moreover, the changes in the conductivity of GA and GA/p(p-PDA) composites upon CO2 gas
exposure were compared and their sensory potential in terms of response and sensitivity, along with
reusability in CO2 detection, were evaluated.

Keywords: graphene oxide; graphene aerogel; poly(para-phenylenediamine); GA/conductive
polymer composite; conductivity; sensor

1. Introduction

Over the past decades, carbon-based materials have been the focus of eminent interest in
both scientific and industrial fields due to their captivating mechanical, electrical, thermal, and
physicochemical properties, as well as their environmentally friendly nature and economically viable
accessibility that has collectively led to the emergence of diverse structures including carbon nanotubes
(CNTs), carbon dots, mesoporous carbon, and graphene and so on [1–4]. Particularly, amongst
all these materials, graphene has come into great prominence owing to its distinct characteristics
such as great thermal and electrical conductivity, high stiffness, elasticity, and unique hexagonal
monoatomic lattice structure with the high theoretical surface area of ~2630 m2/g in the pristine
form [5–7]. Graphene-based materials have been widely implemented in various areas [6–8]
including solar cells [9–11], anti-corrosion coatings [12], electrode materials [13,14], sensors [14,15],
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biosensors [16–18], biomedical devices [2,19–21], and microelectronics [22], e.g., light-emitting
diodes [23,24], displays [25–27], batteries [28,29] and supercapacitors [30,31]. However, innate
functionalities of pristine graphene are only partially inherited into their incorporated polymer
composites, mainly because of isolation and aggregation tendencies of graphene sheets, and its
chemical stability most likely due to strong π-π interactions [5,32]. Chemically modified graphene
forms such as graphene oxides (GOs) have been produced by decorating 2D graphene sheets with
various oxygen-containing moieties such as epoxy, hydroxyl, and carboxylic acid groups to surpass
aggregation behaviors of graphene sheets [7,33]. Several methods of GO preparation such as Hummers,
Staudenmaier, Hoffmann, and Brodie methods and some of their modified forms are the most
established ones [7]. GOs possess a good aqueous dispersibility and are electrical insulators because of
the spoilage of the sp2 hybridization. Preparation of reduced GOs (r-GOs) can be achieved to solve poor
conductivity of GOs by treating them with different reducing agents such as hydroquinone, diazene
(N2H2), hydrazine(N2H4), sodium borohydride(NaBH4), sodium hydroxide (NaOH), sodium sulfide
(Na2S), sodium bisulfate (NaHSO3), ascorbic acid (C6H8O6), and hydroiodic acid (HI) [34,35]. GOs have
been reported in preparation for a variety of composite materials [36] such as metal composites [37],
various polymers, hydrogels [38], and cryogels [39].

Aerogels are a specific type of 3D network with ultra-low-density and extreme surface areas, highly
porous structure, and great mechanical elasticity, and have been exploited in numerous applications
e.g., electronic devices, heat insulation, catalysis, waste management, sensor application, and so on [40].
3D GO and rGO-based materials i.e., graphene aerogels (GAs) can integrate superior properties of
graphene materials in continuous aerogel networks preventing aggregation and collapsing of graphene
sheets. GAs are also sought in numerous applications including chemiluminescence detection of
macromolecules [41], catalysis [42], electrode materials, energy storage, supercapacitor applications [43],
and remediation of pollutants [44,45] such as dyes, pesticides, herbicides, and pathogens. Composites
of GAs can be prepared by which the desired properties of guest molecules along with GAs can
be combined in a single physical entity. Various nanoarchitectures and polymers were generated
in situ within GAs such as CoFe2O4 nanoclusters [46], TiO2 [47], and Co [48] nanocrystals, gold
nanoparticles [49], Fe3O4 nanoparticles [50], and quantum dots [51], along with some polymers such
as polydimethylsiloxane [52], poly(aniline), poly(pyrrole) [34,53], and so on.

In situ synthesis of conductive polymers within 3D templating networks is of significant importance
as the low stability of such polymers in freely standing forms was surmounted by the supporting
matrix [54]. Besides the extra protection and stability incorporated within the composites, such kinds
of hybrid structures integrate the inherent functionalities of their constituents into unique interfaces
and exhibit superior properties than their precursors. Synthesis of various conductive polymers within
porous networks has been reported such as poly(aniline), poly(pyrrole), and poly(thiophene) [55,56].
In the present study, the exceptional conductivity of p(p-PDA) was fortified by the extraordinary
properties of GAs (high surface area and high porosity, robust and flexible mechanical properties, and
the extremely light weight of the aerogel structure, and so on [57,58]).

Studies reported for CO2 detection in the literature are generally based on nondispersive
infrared [59], electrochemical [60], optic [61], capacitive [62], and work function-based [63] sensors.
Additionally, chemical sensors have received great attention in the detection of CO2. They give
perceptible signals through gas-sensitive layers as changes in their conductivity, by which the amount
of decrease or increase in their resistance or changes in their capacitive properties with the change
of dielectric constants can be tracked upon CO2 gas exposure [64,65]. Because of the features
such as low energy consumption, low cost, and flexible and adaptable size, which can be used in
electronic applications, chemical sensors can afford noteworthy potentials for CO2 detection in different
environments [66].

In this study, GOs were synthesized from graphite flakes by the modified Hummer method and
then used in the fabrication of 3D highly porous GAs upon chemical reduction of the prepared GOs
by L-Ascorbic acid (L-AA) as reducing agent and freeze-drying processes. Thereafter, a conductive
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polymer poly(para-phenylenediamine) (p(p-PDA)) was in situ synthesized within the pores of the
prepared GAs followed by doping with several acids such as hydrochloric acid (HCl), nitric acid
(HNO3), sulfuric acid (H2SO4), and phosphoric acid (H3PO4). The prepared GA/p(p-PDA) composites
were characterized by Fourier transform infrared (FT-IR) spectroscopy, and thermal gravimetric (TG)
analysis. The influences of different acid dopants on the electrical conductivity of GA/p(p-PDA)
composites were determined and their sensory potentials against CO2 gas were investigated at ambient
pressures and temperatures.

2. Materials and Methods

2.1. Materials

Graphite flakes (average particle size of 7–10 µm, 99% purity, Alfa Aesar), sodium nitrate
(NaNO3, 99.0%–100.5%, Merck), sodium hydroxide (NaOH, 98%–100.5%, Sigma-Aldrich), potassium
permanganate (KMnO4, 99%), hydrogen peroxide (H2O2, 30%, Merck), and sulfuric acid (H2SO4,
95%–97%, Sigma-Aldrich) were used in the preparation of GOs. L-Ascorbic acid (L-AA, 99%, Sigma
Aldrich) was used for the reduction of GOs nanosheets in synthesis GAs. P-Phenylenediamine (p-PDA,
98%, Sigma Aldrich) was used as a monomer for in situ synthesis of p(p-PDA) in the GA networks,
and ammonium persulfate (APS, 98%, Sigma Aldrich) was used as an initiator of oxidative p-PDA
polymerization. Hydrochloric acid (HCl, 36%–38%, Sigma Aldrich), nitric acid (HNO3, 65%, Sigma
Aldrich), sulfuric acid (H2SO4, 98%, Merck), and phosphoric acid (H3PO4, 85%, Sigma Aldrich) were
used in the doping of in situ synthesized p(p-PDA) within GAs.

2.2. Synthesis of Graphene Aerogels

Graphene aerogels (GAs) were prepared by chemical reduction of prepared GOs following the
cited literature with some modifications [34,67]. Concisely, 3.0 g of prepared GOs were dispersed in
500 mL DDW, following the modified Hummers method [39,68], with a final gravimetric concentration
of 6 mg/mL. A quantity of 20 mL of this solution containing GO layers was transferred into graduated
cylinders and subjected to sonication for 3 h at 30 ◦C–50 ◦C. After the sonication, the reducing agent
L-AA was added into GO solution at a 3:1 w/w (L-AA:GO) ratio and sonicated for 1 min more to
dissolve added L-AA. Then, the mixture was incubated without stirring at 40 ◦C for 24 h. Following
the formation of black colored 3D graphene aerogel networks, they were transferred into 2.0 L beakers
for washing in excess of DDW by continuously changing and replenishing the water every 8 h for
10 days. In the final step after washing, macroporous GAs were obtained via displacement of its liquid
content with air by freeze-drying, and the resultant GAs were placed in closed tubes for further usage.

2.3. Synthesis of Conductive Poly(p-phenylenediamine) (p(p-PDA))

The synthesis of conductive poly(p-phenylenediamine) (p(p-PDA)) was carried out in accordance
with the literature [69–72]. In short, 25 mL 0.5 M p(p-PDA) solutions were prepared in DDW. After that,
1 M 25 mL acid solutions containing 0.5 M APS were separately prepared from various acids such as
HCl, HNO3, H2SO4, and H3PO4 and added drop by drop in separate p(p-PDA) solutions in an ice
bath. Afterward, the prepared p(p-PDA) polymers were collected by centrifugation at 10,000 rpm for
10 min and washed twice with water and acetone, then dried by using a heat gun.

2.4. In Situ Synthesis of Conductive p(p-PDA) within GAs

For in situ synthesis of conductive p(p-PDA) polymers within GA networks, the earlier reports on
p(p-PDA) synthesis were followed with some modifications [69–72]. Accordingly, the GAs were placed
into 0.5 M 50 mL aqueous solutions of p-PDA and stirred for 1 h at 100 rpm in dark for loading of
p-PDA monomers into pores and pore walls of the GAs. After that, the p-PDA loaded GAs were placed
into 50 mL of different acid solutions containing 0.5 M APS and 1 M of various acids including HCl,
HNO3, H2SO4, and H3PO4, then stirred for 30 min more at 100 rpm for in situ oxidative polymerization
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of p-PDA. Various acid-doped GA/p(p-PDA) composites were washed once with water and ethanol
then dried in an oven at 50 ◦C.

2.5. Characterization

Morphological properties of GA-based conductive polymer composites were assessed by scanning
electron microscopy (SEM, Hitachi, Regulus 8230) operating in a low vacuum mode at a 5 kV accelerating
voltage. For the imaging, GA-based samples were mounted on aluminum SEM stubs with the aid of
sticky carbon tapes, and the surface of the specimens was coated with gold to a few nanometers of
thickness by a sputter coater to prevent excess charge buildup on the surface of specimens, and then
samples were analyzed with SEM.

Functional groups of GAs and various acid-doped GA/p(p-PDA) composites were ascertained by
FT-IR analysis and spectral peaks of these materials were recorded in the range of 650–4000 cm−1 with
a 4 cm−1 resolution employing attenuated total reflectance of the attached FT-IR spectrometer (Thermo,
Nicolet-iS10).

Thermal stabilities of GAs and various acid-doped GA/p(p-PDA) composites were determined
by a TG analyzer (TGA, SII TG/DTA 6300, Exstar) under continuous purging of nitrogen gas with
200 mL/min flow and the heating rate of 10 ◦C/min up to 900 ◦C.

Electrical conductivities of GAs, and acid-doped GA/P(p-PDA) composites were measured at
room temperature via a computer-controlled electrometer (Keithley 2400 Source-Meter).

2.6. Conductivity Measurements

Conductivity measurements of GAs and various acid-doped GA/p(p-PDA) composites with
lengths of 1.24 ± 0.45 cm were performed by attaching small pieces of conductive carbon tape
(~3 × 4 mm) to the top and bottom of bare and composite GA samples to connect the electrodes,
followed by applying the voltage up to 40 V. The conductivity values were calculated from the slope of
the current–voltage (I–V) response curves at the Ohmic (linear) region by using Equations (1) and (2);

V = I × R (1)

σ = (1/R) × (l/A) (2)

where, ‘V’ is the voltage, ‘I’ is the current, ‘R’ is the bulk resistance, ‘σ’ is the conductivity, ‘1/R’ is the
resistivity, ‘l’ is the thickness and ‘A’ is the cross-sectional area of the sample.

2.7. Sensor Application of GA Based Composites to CO2 Gas

The potential sensor application of the prepared GA-based composites to CO2 gas was investigated
by tracking the change in their conductivity upon CO2 exposure. For this purpose, 0.25 g of bare
p(p-PDA) polymers were pelleted under compression of 10 tons of pressure, and the resulting pellet
was exposed to CO2 gas for 30 min. The sensory potential of GA/p(p-PDA) composites were also
evaluated by 30 min of CO2 gas exposure, which corresponded to 11,980 ppm CO2. The conductivity
of p(p-PDA)s, and GA/p(p-PDA) composites, were determined by recording their current–voltage
curves via an electrometer and subsequent calculation of conductivity values from Equations (1) and
(2). The sensitivity studies of HCl-doped GA/p(p-PDA) composites were conducted by exposing them
to CO2 gas for 0.5, 1, 5, 10, 20, 30, 45, and 60 min with the flow rate of 200 mL/min.

Besides, reusability of the GA/p(p-PDA)-HCl composites was also investigated. Briefly, the
HCl-doped composite GA samples were treated with CO2 gas for 30 min, and the change in their
conductivity was recorded. After that, the used (CO2 exposed) GA/p(p-PDA)-HCl composites were
incubated at 60 ◦C for 2 h for regeneration of their conductivity and recovered conductivities were
noted. Following the incubation, the composites were retreated with CO2 gas for another 30 min and
the same reuse–regeneration cycles were applied for a total of 5 cycles.
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3. Results and Discussion

3.1. In Situ Synthesis and Characterization of p(p-PDA) within GAs

The schematic illustration describing the preparation of GA/p(p-PDA) composites was given
in Figure 1. The loading of p-PDA monomer into 3D GA networks was governed by simple ionic
interactions of partially positive p(p-PDA) monomers due to their amine groups with the partially
negatively charged functional moieties of reduced GO sheets as well as hydrophobic interactions in
GA networks, which was followed by oxidative polymerization in the presence of APS and various
acid dopants such as HCl, HNO3, H2SO4, and H3PO4.
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Figure 1. (a) Schematic illustration of GA/p(p-PDA) composite synthesis, and (b) digital camera images
of GA/p(p-PDA) composites.

The amounts of in situ polymerized p(p-PDA) within GA pieces were gravimetrically calculated
by the mass difference between dried bare GA and GA/p(p-PDA) composites and the results are
reported in Table 1. As can be clearly noticed wherefrom, for 1.0 g of GA, the highest amount of
p(p-PDA) polymers were synthesized in the presence of H2SO4 acid doping as 3.94 ± 0.8 g/g of GA.
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Table 1. The gravimetric amounts of in situ synthesized p(p-PDA) polymers within GAs.

Type of Dopant GA
(g)

GA/p(p-PDA)
(g)

In Situ Synthesized
p(p-PDA)

(g/g)

HCl 0.04 ± 0.002 0.12 ± 0.04 2.08 ± 0.5
HNO3 0.03 ± 0.002 0.08 ± 0.01 1.78 ± 0.3
H2SO4 0.03 ± 0.001 0.15 ± 0.03 3.94 ± 0.8
H3PO4 0.03 ± 0.002 0.14 ± 0.04 3.67 ± 0.7

In the descending order 3.67 ± 0.7 g, 2.08 ± 0.5 g, and 1.78 ± 0.3 g of p(p-PDA) polymers were in
situ synthesized by simultaneous doping of H3PO4, HCl, and HNO3 acid solutions, respectively.

Moreover, the SEM analysis of GA-based composites revealed the existence of highly porous
structures with pores of varying sizes, in a range of 1–100 µm. The corresponding SEM images
of GA, GA/p(p-PDA)-HCl, GA/p(p-PDA)-HNO3, GA/p(p-PDA)-H2SO4, and GA/p(p-PDA)-H3PO4

composites are given in Figure 2a–e, respectively. As shown in the micrographs, the pores and pore
walls of the GA composites were covered with the in situ synthesized conductive p(p-PDA)s. The least
amount of p(p-PDA) polymers appears to be the one that was synthesized in the presence of HNO3
acid doping with regards to other acid dopants.

It has been reported that high surface area, porosity, and pore volumes of GA-based materials
favor diffusion of gases into the porous GA networks [73,74]. Thereby, these porous structures can
be employed in various applications e.g., in situ synthesis of conductive polymers for potential
sensor applications.

The FT-IR spectra of p(p-PDA) and prepared bare HCl-, HNO3-, H2SO4-, and H3PO4-doped
conductive p(p-PDA) polymers are given in Figure S1. The characteristic peaks of p-PDA at 3389 cm−1

was assigned to symmetric stretching vibrations of =CH, and the peaks at 3032 cm−1 for symmetric and
at 3302, and 3201 cm−1 were designated to asymmetric stretching vibrations of N-H bonds. The spectral
peaks observed at 1613 cm−1 were attributed to N-H deformation of secondary amines, the peaks at
1502 cm−1 for symmetric stretching vibration of aromatic CC, the peaks at 1327 cm−1 for symmetric
stretching of C-N, and the peaks that appeared at 807 cm−1 were assigned to out of plane deformation
showing 1,4-distubistution in the benzene ring, respectively [75]. The FT-IR spectra of p(p-PDA)
polymers doped with various types of acids have shown the same characteristic peaks as stretching
deformations of quinone at 1589 cm−1, stretching vibrations of benzene at 1503 cm−1, and also the peak
at 1303 cm−1 can be assigned to C-N stretching in a secondary aromatic amine, 1098 and 1014 cm−1 for
the aromatic C-H in-plane bending modes, and 807 cm−1 for out-of-plane deformations of C-H in the
1,4-disubstituted benzene ring, respectively [76]. Moreover, the FT-IR spectrum of prepared GO, L-AA,
GA, and GA/Pp(p-PDA) composites by using various types of acids as doping agents were compared
in Figure 3.
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Figure 3. FT-IR spectra of GA/p(p-PDA) composites doped with various types of acids.

As it is readily seen from the FT-IR spectrum of GO, the O-H stretching vibrations were observed
as t broad bands between 3600–3000 cm−1, and the peak for C=O groups from both the carboxylic acid
and ketones was observed at 1722 cm−1 [76,77]. The peak at 1615 cm−1 was assigned to the aromatic
C=C bonds as a result of skeletal vibrations of unoxidized graphene units. The stretching vibrations
at 1042 cm−1 and 873 cm−1, respectively, were attributed to C-O stretching modes of vibrations in
the alkoxy and the ether groups of GO [77,78]. The FT-IR peaks that appeared at 3516, 3411, and
1645 cm−1 are assigned to O-H groups, and the peak observed at 1758 cm−1 can further stem from
the C=O groups, which is noticeable from the FT-IR spectrum of L-AA [34]. For GA, the spectral
peaks are seen at 3511 and 3408 cm−1 and are attributed to the O-H stretching, and the peaks at
1749 cm−1 belong to C=O stretching vibrations. The peaks that appeared at 1616 cm−1 can arise from
the skeletal vibration of graphene sheets. From the oxidized graphene, GO sheets to their chemically
reduced GA forms, the red shift can be readily noticed for C=O bands with the respective change from
1722 to 1749 cm−1 [34]. Additionally, the characteristic peaks of p(p-PDA), respectively, as stretching
deformations of quinone at 1574 cm−1, stretching deformations of benzene at 1491 cm−1, and C-N
stretching modes of a secondary aromatic amine at 1297 cm−1, aromatic C-H in-plane bending modes
at 1053 cm−1, and the peaks at 828 cm−1 for out-of-plane deformations of C-H in the 1,4-disubstituted
benzene ring can be realized from the given FT-IR spectra [76]. Based upon the systematical analyses
of FT-IR spectra of the prepared GOs, GAs, and GA-p(p-PDA) composites, one can clearly state that
the in situ syntheses of conductive p(p-PDA) polymers were successfully achieved within 3D GAs.

The TGA thermograms of GA and various acid-doped GA/p(p-PDA) composites were compared
in Figure 4. For GA, approximately 20% weight loss was observed at about 480 ◦C, and cumulatively
75% of its weight was lost up to heating 580 ◦C, and from thereon, no significant weight loss was
observed by heating up to 1000 ◦C.
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Figure 4. Thermal gravimetric (TG) thermograms of GA/p(p-PDA) composites doped with various
types of acids.

All of the GA/p(p-PDA) composites shared similar decomposition patterns. The first thermal
decomposition of HCl-doped GA/p(p-PDA) composites was recorded between 30–225 ◦C with 8.4%
weight loss, the second step was observed between 230–315 ◦C with 39.9% cumulative weight loss, and
the last step was occurred between 320–630 ◦C with a final result of more than 99% cumulative weight
loss. The HNO3-doped GA/p(p-PDA) composites were recorded to show 13.3% weight loss between
110–245 ◦C, the second and third steps of thermal decomposition occurred between 250–330 ◦C, and
340–640 ◦C with 50.1%, and 93.9% cumulative weight losses, respectively. H2SO4-doped GA/p(p-PDA)
composites showed approximately 7.5% weight loss up to 185 ◦C, and heating up to 340 ◦C resulted
in a cumulative weight loss of 77.4%. In addition, in the final decomposition step, more than 99%
cumulative weight loss was observed by heating up to 630 ◦C. For the H3PO4-doped GA/p(p-PDA)
composites, 24.3% weight loss was recorded between 130–290 ◦C. The second step occurred between
540–620 ◦C with 77.8% cumulative weight loss, and the last step of thermal decomposition was seen
between 690–780 ◦C with a final cumulative weight loss of 91.5% (8.5% remaining residues). Moreover,
according to TGA data obtained, H2SO4-doped GA/p(p-PDA) composites were the least thermally
stable composite, which was followed by HCl-doped GA/p(p-PDA) composites. Comparatively, the
H3PO4- and HNO3-doped GA/p(p-PDA) composites exhibited better thermal stability and higher
remaining residues than the ones doped with H2SO4 and HCl, while all of the composites show similar
patterns of thermal degradation. The differences seen within thermal degradation profiles of the
GA/p(p-PDA) composites can be attributed to the distinctive effects of various acids dopants on the
structure and morphology of the in situ synthesized conductive polymers. Particularly, as can be
noticeable from the SEM images provided in Figure 2, the crystal structure of the GA-based polymer
composites shows dopant-dependent variations, as it was also stated elsewhere that in situ synthesized
conductive polymers can exhibit differences in their size and crystal structures with the effects of
different doping acids [79].
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3.2. Conductivity Measurements

Carbon-based graphite, graphene oxide, graphene and/or graphene aerogels have three valence
bands where electrons are in high attraction with the central nucleus. There is a free electron called
π-electron that does not pass through the Fermi level as in the metals, however, the Fermi level has
a narrow band that can easily shift the electron from the valance band to the conduction band and
creates electron conductivity [80]. One of the most important properties of the conductivity of these
carbon-based materials is that the in-plane electrical conductivity in their structure is much more
than the out-of-plane electrical conductivity, mainly due to the low area between the graphitic layers,
resulting from the weak π-electron bands connecting different layers of graphite [80,81]. On the other
hand, in conductive polymers known as conjugated organic polymers, conductivity is associated
with self-settling solitons, polarons, and bipolarons in the polymer chain [68,69]. These carriers
become mobile in the electric field and move along the polymer chain, causing electrical conductivity.
The I–V response plots of the various acid-doped p(p-PDA) and GA/p(p-PDA) composites are given in
Figure 5a,b.
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Figure 5. The current (I) versus voltage (V) plots of (a) p(p-PDA) polymers, (b) GA/p(p-PDA) composites
and (c) comparison of calculated conductivity values for p(p-PDA) and GA/p(p-PDA) composites.

From these plots, the conductivity values for p(p-PDA) polymers and GA/p(p-PDA) composites
the were calculated using Equations (1) and (2), respectively, and compared in Figure 5c. It was
observed that the conductivity of GAs increased with the in situ synthesis of p(p-PDA). Electrical
conductivities of bare p(p-PDA) and GA/p(p-PDA) composites were also given in Table 2. As given, the
conductivities of p(p-PDA) polymers different from each other depending on the type of acid dopant
used. The conductivities of p(p-PDA)-HCl, p(p-PDA)-HNO3, p(p-PDA)-H2SO4, and p(p-PDA)-H3PO4

were calculated as 4.46 × 10−8
± 1.12 × 10−8, 6.46 × 10−9

± 2.24 × 10−9, 1.99 × 10−8
± 1.93 × 10−9,

and 2.22 × 10−8
± 1.11 × 10−9 S·cm−1, respectively. From these values, the highest conductivity was

measured for the HCl-doped p(p-PDA) polymers, which is approximately 7-fold greater than HNO3,
and 2-fold higher than the conductivities of H2SO4-, and H3PO4-doped p(p-PDA) polymers. Electrical
conductivity of bare GAs was calculated as 2.17 × 10−4

± 3.15 × 10−5 S·cm−1, which is much higher
than all types of p(p-PDA) polymers with different acid doping. As was expected, conductivity of
GAs underwent a significant rise after in situ preparation within GA of various acid-doped forms as
GA/p(p-PDA) composites.
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Table 2. The change in conductivities of p(p-PDA) polymers, and GA/p(p-PDA) composites upon 30
min of CO2 exposure.

Type of Dopant

Conductivity
(S·cm−1)

Decrease in Conductivity
(fold)P(p-PDA)

Before After

HCl 4.46 × 10−8
± 1.12 × 10−8 3.12 × 10−9

± 7.54 × 10−10 ~14
HNO3 6.46 × 10−9

± 2.24 × 10−9 4.89 × 10−10
± 3.89 × 10−11 ~13

H2SO4 1.99 × 10−8
± 1.93 × 10−9 1.11 × 10−9

± 3.11 × 10−10 ~18
H3PO4 2.22 × 10−8

± 1.11 × 10−9 3.81 × 10−9
± 5.99 × 10−10 ~6

Materials
GA based composites Decrease in conductivity

(fold)Before After

GA 2.17 × 10−4
± 3.15 × 10−5 1.23 × 10−4

± 2.11 × 10−5 ~2
GA/p(pPDA)-HCl 5.16 × 10−2

± 2.72 × 10−3 8.52 × 10−5
± 1.21 × 10−5 ~600

GA/p(pPDA)-HNO3 9.19 × 10−4
± 1.29 × 10−4 7.23 × 10−5

± 9.88 × 10−6 ~13
GA/p(pPDA)-H2SO4 8.78 × 10−3

± 1.17 × 10−3 8.91 × 10−5
± 1.19 × 10−5 ~100

GA/p(pPDA)-H3PO4 4.11 × 10−4
± 9.13 × 10−5 3.51 × 10−5

± 6.33 × 10−6 ~12

Conductivity of HCl-, HNO3- H2SO4-, and H3PO4-doped GA/p(p-PDA) composites were
calculated to be 5.16 × 10−2

± 2.72 × 10−3 S·cm−1, 9.19 × 10−4
± 1.29 × 10−4 S·cm−1, 8.78 × 10−3

± 1.17 × 10−3 S·cm−1, and 4.11 × 10−4
± 9.13 × 10−5 S·cm−1, respectively. These values were

approximately 250-, 4-, 40-, and 2-fold greater than the conductivity of bare GAs, respectively. As it is
in a good agreement with the conductivity of HCl-doped bare p(p-PDA) polymers, the conductivity
of in situ prepared HCl-doped GA/p(p-PDA) composites with 5.16 × 10−2

± 2.72 × 10−3 S·cm−1 is
approximately 60-fold, 6-fold, and 125-fold higher than those of HNO3-, H2SO4-, and H3PO4-doped
GA/P(p-PDA) composites, respectively. Obviously, different types of acid dopants have imparted
distinct conductivity values to the GA based composites. The higher conductivity was observed for
in situ prepared HCl-doped GA/p(p-PDA) composites. As mentioned earlier, in the literature, the
types of the used acids for doping of conductive polymers have significant effects on size and crystal
structure of the conductive polymers, and higher crystallinity was observed in HCl-doped conductive
polymers amongst doping of several others [79]. As it is clearly seen from Table 1 and SEM images of
the GA-based composites, the amount of in situ prepared HCl-doped p(p-PDA) is more than the in
situ prepared amounts within HNO3-doped p(p-PDA) GAs, so is its conductivity. Therewithal, the
smaller size of HCl than other used acids can make it a better dopant as it can more readily diffuse into
pores of GA composites. Therefore, the highest conductivity values were observed in in situ prepared
HCl-doped GA/p(p-PDA) composites.

3.3. Conductivity Change of GA Based Composites in Response to CO2 Gas Exposure

Carbon dioxide (CO2) gas, as one of the most dangerous causatives of global warming, is increasing
continuously in the atmosphere. According to the standards reported by the American Association of
Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), the concentration of CO2 required
for healthy breathing should not exceed 1000 ppm [82]. However, according to the results of extensive
research and measurements, the amount of industrial CO2 emission is many times higher than this
threshold. The CO2 concentration in the atmosphere increased from 414 ppm in May 2019 to 417 ppm
in May 2020 [83]. It is urgent to take serious precautions to cope with this steady CO2 increase in the
atmosphere. Therefore, the design and use of functional materials that can sense, capture, and store
the ways in which the emission of pollutant gases, whose concentration in the atmosphere intensifies
daily, endangers the lives of all living creatures. Therefore, CO2 sensors and adsorbent potentials of the
prepared bare p(p-PDA) polymers, GAs, and GA/p(p-PDA) composites were evaluated by exposing
them to CO2 gas and the changes in their conductivity were examined. The experimental setup used in
the CO2 exposure of prepared materials was reported in the literature [84]. The HCl-, HNO3-, H2SO4-,
and H3PO4-doped p(p-PDA) polymers and their GA composites of known conductivities were exposed
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to CO2 gas for 30 min at 100 mL/min flow rate and the variations in their conductivities in response to
CO2 gas exposure were illustrated in Figure 6a,b, respectively. It was clearly seen that the conductivity
of various acid-doped P(p-PDA) polymers and GA/P(p-PDA) composites decreased after 30 min of CO2

exposure. The extent of conductivity falls of these acid-doped P(p-PDA) polymers and GA/P(p-PDA)
composites are given in Table 2. As it was realized therefrom, an approximately 15-fold decrease in
the conductivity of HCl-doped P(p-PDA) was observed from 4.46 × 10−8

± 1.12 × 10−8 S·cm−1 to 3.12
× 10−9

± 7.57 × 10−10 S·cm−1 after 30 min of CO2 gas exposure. Similarly, HNO3- and H2SO4-doped
P(p-PDA) polymers have experienced, respectively, about 13-, and 18-fold decrease after 30 min of
CO2 gas exposure. On the other hand, the decrease in conductivity of H3PO4-doped P(p-PDA) was
slightly lower than that of the others with approximately 6-fold reduction.Micromachines 2020, 11, x FOR PEER REVIEW 13 of 20 
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Figure 6. The conductivities of (a) p(p-PDA) polymers, and (b) GA/p(p-PDA) composites before and
after 30 min of CO2 gas exposure.

Moreover, it was found that the conductivity of bare GA was calculated to be 2.17 × 10−4
± 3.15 ×

10−5, and 1.23 × 10−4
± 2.11 × 10−5 S·cm−1, respectively, before and after 30 min CO2 gas exposure,

indicating poor sensitivity of bare GA to CO2 gas. On the other hand, approximately 600-fold decrease
in the conductivity of HCl-doped GA/p(p-PDA) composites from 5.16 × 10−2

± 2.72 × 10−3 S·cm−1 to
8.52 × 10−5

± 1.21 × 10−5 S·cm−1 after 30 min of CO2 gas exposure were attained.
Additionally, the conductivity of H2SO4-doped GA/p(p-PDA) composites appeared to show an

approximately 100-fold decrease from 8.78 × 10−3
± 1.17 × 10−3 to 8.91 × 10−5

± 1.19 × 10−5 S·cm−1 after
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30 min of CO2 gas exposure, whereas the changes in the conductivity of HNO3-, and H3PO4-doped
GA/P(p-PDA) composites were far less than the others, with a 13- and 12-fold decrease, respectively,
after 30 min exposure to CO2 gas.

The change in the conductivity of GA/p(p-PDA) composites in the course of CO2 exposure can
be explained by diffusion of the gas within aerogel networks, which were the main reason that more
conductivity reduction has been observed in GA/p(p-PDA) composites as compared to those of the
free-standing p(p-PDA) polymers. More specifically, the CO2 gas could not diffuse into the interiors of
the bare p(p-PDA) pellets, yet as a result of much higher surface area and macroporous structure of
GA/p(p-PDA) composites along with the gas adsorption properties of the graphite and graphene oxide
layers. Consequently, larger amounts of the CO2 gas were able to diffuse towards the porous network
of the HCl- and H2SO4-doped GA/p(p-PDA) composites and taped the pores much better. In addition,
the positive charges, and unpaired electrons of in situ synthesized p(p-PDA) within GAs can easily
interact with CO2 molecules, which have π-type C=O binding ability and a lone pair of electrons [85].

The response of GA-based composites can be defined as a change in the conductivity in the presence
of various amounts of CO2 molecules, and sensitivity can be defined as the ratio between the output
signal (conductivity) per mole of the sensed molecule, CO2. Hence, the HCl-doped GA/p(p-PDA)
composites exhibiting the greatest change in conductivity was studied for their sensitivity towards
CO2 gas, and the change in the conductivity of GA/p(p-PDA)-HCl composites was recorded at different
exposure time scales, 0.5, 1, 5, 10, 20, 30, 45, 60 min at 200 mL/min CO2 flow rate, and the corresponding
CO2 sensitivity graph is presented in Figure 7a. The amounts of CO2 exposed to GA/p(p-PDA)-HCl
composites at 0.5, 1, 5, 10, 20, 30, 45 and 60 min periods were calculated as 0.0045, 0.009, 0.045, 0.09,
0.18, 0.27, 0.40, and 0.54 moles, respectively. It was observed that the change in conductivity of
GA/p(p-PDA)-HCl composites were increased with the increase in the time of CO2 gas exposure.
Accordingly, 5.7-, 26.4-, 128-, 358-, 511-, 605-, 629-, and 633-fold conductivity decreases were recorded
for GA/p(p-PDA)-HCl composites upon exposure to 198, 396, 1980, 3960, 7920, 11,980, 17,820, and
23,960 ppm CO2, respectively. The required concentration of CO2 for a healthy breath was stated to be
less than 1000 ppm, and the concentration of CO2 in the atmosphere was 417 ppm as of May 2020.
According to the sensitivity graph of HCl-doped GA/p(p-PDA) composites, 193.6 ppm is enough to
trigger a 5.7-fold decrease in the conductivity of GA/p(p-PDA)-HCl composites and gradually decreased
e.g., a 26.4- and 128- fold decrease can be monitored at 397.2, and 1936 ppm CO2 concentration in only 1
and 5 min exposures, respectively. These results clearly indicate that GA/p(p-PDA)-HCl composites can
be used as a promising candidate for CO2 detection in various environmental applications including
the detection of CO2 in the atmosphere. In here, the GA/p(p-PDA)-HCl as CO2 sensor is based on the
change in conductivity upon CO2 exposure in a concentration-dependent manner, so that the sensitivity
can be calculated as conductivity changes (fold)mole of CO2. The sensitivity of GA/p(p-PDA)-HCl is
calculated from the slope of Figure 7a, and it was observed that there was a 1288.7-fold of conductivity
change(decrease)/mole of CO2 gas.
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Figure 7. (a) The change in the conductivity of GA/p(p-PDA)-HCl composites in the presence of the
various amount of CO2 gas, and (b) reusability of GA/p(p-PDA)-HCl composites.

Furthermore, the reusability of the prepared GA/p(p-PDA)-HCl composites were investigated
for five successive (re)use and regeneration cycles, and the corresponding graph is illustrated in
Figure 7b. It was observed that the conductivity of GA/p(p-PDA)-HCl composites decreased from
5.16 × 10−2

± 2.72 × 10−3 S·cm−1 to 8.52 × 10−5
± 1.21 × 10−5 S·cm−1 after 30 min of CO2 gas exposure,

and was recovered to 4.97 × 10−2
± 1.13 × 10−3 S·cm−1 after 2 h incubation at 60 ◦C. The conductivity

of GA/p(p-PDA)-HCl composites decreased from 4.97 × 10−2
± 1.13 × 10−3 S·cm−1 to 8.54 × 10−5

± 1.11 × 10−5 S·cm−1 after the 2nd cycle of CO2 gas exposure, and was recovered back to 4.51 ×
10−2

± 9.35 × 10−4 S·cm−1 after the 2nd cycle. Then, the conductivity of the composites decreased
to 7.87 × 10−5

± 9.84 × 10−6 S·cm−1 after the 3rd CO2 gas exposure, and it was again increased to
3.91 × 10−2

± 8.11 × 10−4 S·cm−1 after the 3rd regeneration. The conductivity of GA/p(p-PDA)-HCl
composites decreased from 3.91 × 10−2

± 8.11 × 10−4 S·cm−1 to 7.11 × 10−5
± 1.71 × 10−5 S·cm−1 in the

4th cycle of CO2 exposure, and then restored to 3.13 × 10−2
± 4.01 × 10−4 S·cm−1 after the 4th recovery.

Finally, the conductivity decreased to 6.32 × 10−5
± 9.23 × 10−6 S·cm−1 after the 5th 30 min of CO2 gas

exposure. These findings clearly demonstrated that the GA/p(p-PDA)-HCl composites can be used in
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the detection of CO2 gas repeatedly after a 2 h of incubation at 60 ◦C, with almost full recovery to its
initial conductivity measuring capability.

4. Conclusions

Herein, we demonstrated the potential usage of GAs as templates and sensory materials. Using GAs
as templates in the in situ synthesis of conductive p(p-PDA) polymers clearly reveals the the versatility
of these materials. The acid types, HCl, HNO3, H2SO4, and H3PO4 used in doping of p(p-PDA)
polymers were found to have a considerable influence on the electrical conductivity of both p(p-PDA)
polymers and their corresponding GA-based composites. GA/p(p-PDA) composites achieved higher
electrical conductivities than both their bare p(p-PDA) polymers and bare GAs. The in situ synthesis
of GA/p(p-PDA)-HCl composites gave rise to a 250-fold increase in the conductivity of bare GAs from
2.17 × 10−4

± 3.15 × 10−5 S·cm−1 to 5.16 × 10−2
± 2.72 × 10−3 S·cm−1. Moreover, GA/P(p-PDA)-HCl

composites were revealed to show the best response to CO2 gas amongst other acid-doped composites,
with an approximately 600-fold conductivity decrease. Owing to the well-known properties of graphene
oxides and GAs to absorb gases, and the response of in situ prepared p(p-PDA) conductive polymer,
GA/p(p-PDA) composites were shown to be a sensor for CO2 gas with the capability of measuring CO2

levels in the atmosphere, which are well within its sensitivity level. Although the gravimetric amount
of in situ synthesized p(p-PDA) polymers with HCl doping in GA/p(p-PDA) composites is less than
that of H2SO4- and H3PO4-doped GA/p(p-PDA) composites, better electrical conductivity, as well as
better CO2 response of this material, affords better outcomes in terms of real applications. Furthermore,
GA/p(p-PDA)-HCl composites exhibited a 5.7-fold conductivity decrease even at 193.6 ppm CO2 gas
concentration in only 30 sec, and a 26.4-fold decrease in 1 min at 397.2 ppm CO2 concentration, along
with the sensitivity of 1288.7 fold conductivity decrease/mole of CO2 gas. Since these concentrations
are less than the half of those reported as dangerous, GA/p(p-PDA)-HCl composites hold remarkable
potential in the determination CO2 as a sensor in many industrial effluents and mining applications,
and so on.

Overall, it is apparent that GA-based materials offer a lot of potential, as they are not restricted to
CO2 sensors and detectors in chimneys of factories, dwellings, and lab gadgets such as CO2 incubators,
etc., to determine the level of emitted/generated or released CO2, but they may also be useful to
track accumulated levels of CO2 in different milieus, including climate chambers and indoor living
environments, and so on.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/11/7/626/s1,
Figure S1: The FT-IR spectrum of bare p(p-PDA) polymers doped with various types of acids.
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