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Abstract: Harmonic generation is an attractive research field that finds a variety of application
areas. However, harmonic generation within a medium of micron-scale interaction length limits
the magnitude of nonlinear coupling and leads to poor harmonic generation efficiency. In this
study, we present a constrained non-linear programming approach based on the Quasi-Newton
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm to obtain high-fidelity harmonic generation in
optical micro-resonators. Using this approach, one can achieve high-intensity harmonic generation
in a simple Fabry–Perot type optical micro-resonator. The generation of super-intense harmonics
at a typical ultraviolet (UV)-ablation frequency of 820 THz and at pure yellow-light (515 THz) is
investigated in particular. Moreover, we achieved more than 98% accuracy compared to well-known
theoretical results. Our approach enables the design of highly efficient microscale harmonic generators
to be used in integrated photonic devices.

Keywords: harmonic generation; non-linear wave mixing; non-linear programming; micro-resonator

1. Introduction

Microscale harmonic generation is of high interest for many modern technologies, including optical
antennas, lab-on-chip devices, and integrated optical devices. Currently, the conversion efficiency of
microscale optical harmonic generators is very low due to the very small interaction length. Highly
efficient targeted harmonic generation can be achieved with interaction mediums that are at least
a few centimeters long. However, theoretically, the efficiency of generating a desired harmonic
can be increased in the microscale by increasing the intensities of the waves that are intermixed,
such an increase in intensity will definitely damage the micron-sized optical medium. Another solution
may be to use an interaction material that has a superior nonlinearity, but materials with superior
nonlinearity are usually not available. Even in the case of availability, super-nonlinear materials can be
quite costly to employ in micron size as they are usually fabricated in thin film form and need to be
arranged as an array of thin films to achieve the desired conversion efficiency. The discovery of novel
super-nonlinear materials via experimentation is a hot-topic and some artificial materials do display
an unusually high nonlinearity [1–5].

Although highly nonlinear natural materials and super-nonlinear artificial materials may help
to increase the harmonic generation efficiency in the microscale, these materials usually lead to
high dielectric, conduction, and scattering losses, along with being too expensive to afford or to
fabricate. For these reasons, high-efficiency harmonic generation remains as an issue in the microscale.
In this study, we used a computational approach to tackle this issue. A computational study that is
based on maximizing the harmonic generation efficiency via a nonlinear programming algorithm is
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lacking [6–8]. Experimental studies usually focus on finding new techniques to increase the second
and the third harmonic generation efficiency and there are relatively few experimental studies that
have demonstrated a minor increase in the harmonic generation or conversion efficiency via certain
experimental configurations and setups [9–39]. Some computational studies have focused on increasing
the computation efficiency of harmonic generation problems rather than proving that the harmonic
generation efficiency itself can actually be increased. These include the studies mentioned in [6–8],
which have managed to increase the efficiency of the nonlinear Finite-Difference-Time-Domain (FDTD)
method by decreasing the dispersion error. The current literature of harmonic generation via nonlinear
wave mixing is dominated by increasing the efficiency of the second/third harmonic generation
rather than increasing the efficiency of an arbitrary harmonic [9–39]. There are currently no known
techniques in the literature that reported a high-efficiency in the microscale for an arbitrary harmonic
generation (not necessarily the second harmonic) under monochromatic optical excitation [9–15,30–39].
In this study, we will show that for an arbitrary excitation frequency, one can maximize the harmonic
generation efficiency at an arbitrary frequency. For example, if a microcavity is excited with an infra-red
pump wave, and we want a super-high harmonic generation efficiency in the ultraviolet spectral range,
we will show that this is possible by using constrained non-linear programming. The generation of
a desired harmonic with an ultra-high efficiency is important for many applications in optics and
biomedical engineering, such as for integrated optical devices that are used in spectroscopy and for
Lab-On-Chip devices that are used for medical diagnostics. Another research field that can benefit
from highly efficient harmonic generation at a desired frequency is the field of optical antennas. Optical
antennas that can generate light at an arbitrary frequency would become ultra-wideband optical
antennas through the embedding of a microscale controller. The microscale controller would have to
do what we aim to do in this study, the adjustment of the micro-resonator parameters for maximizing
the harmonic generation efficiency. Most importantly, ultra-efficient microscale harmonic generators
can pave the way for macroscale high-efficiency harmonic generators that can generate powerful THz
rays, ultraviolet (UV) rays, X-rays, and even gamma rays with much higher efficiencies than are
currently available. High power yellow-light and ultraviolet-light generation is of particular interest
as the power output of many yellow-light and ultraviolet-light generators is quite low. Especially high
intensity UV-harmonic generation is an important issue as the harmonic conversion efficiency at this
level is extremely low [40–45]. To provide a mathematical and computational proof that high-efficiency
harmonic generation is feasible in a micro-resonator, we will present a full-fledged dispersion analysis.
We will first investigate the nonlinear wave propagation concept in an arbitrary multi-resonant medium
that is placed as an interaction medium in a plain Fabry–Perot type micro-resonator. Then, we will
define the wave equation and its associated polarization density equations for each resonance frequency.
Finally, we will define the pump wave as a combination of M ultrashort pulses and we will tune
the pulses of these high-intensity pulses to maximize the frequency conversion efficiency at a target
frequency that is to be generated. We will achieve this through an efficient constrained nonlinear
programming algorithm that has a relatively lower computation cost and a relatively faster convergence
rate such as the Quasi-Newton type Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. We will
start our analysis by presenting the partial differential equations involved in nonlinear wave propagation
in a multi-resonant interaction medium placed in a micro-resonator, and then we will present the
formulations for the BFGS algorithm for the frequency tuning of the intense pulses that form the source
wave which energizes the micro-resonator.

2. Nonlinear Wave Interaction in Optical Micro-Resonators

The interaction medium of an optical micro-resonator may have a single dominant resonance
(emission) frequency or it may have multiple resonance frequencies associated with different resonance
probabilities (oscillator strengths) [40–45]. Some materials, such as excitonic materials, have a single
resonance frequency, while most materials have more than one resonance frequency. In this study,
we will consider an arbitrary medium which has N resonance frequencies associated with N
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corresponding polarization damping rates. Quantum mechanics dictates that each electron that
oscillates at a certain resonance frequency is associated with a resonance probability or oscillator
strength and the sum of all resonance probabilities is equal to one. Assuming we have M different
waves present in an arbitrary medium, if at least one of the waves has a sufficiently high intensity,
then there will be a nonlinear coupling between the M waves and energy transfer between the waves
will occur. For the total high-intensity wave that is present in a medium with N resonances, the wave
equation that represents the time variation of the electric field E of the high intensity wave and the
associated equations that represent the components of the polarization density induced by the high
intensity wave are given as

∇
2(E) − µ0ε∞

∂2(E)
∂t2 = µ0σ

∂(E)
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where P is the total polarization density, Pi is the polarization density component at the ith resonance
frequency, γi is the polarization damping rate associated with the ith resonance frequency, ωi is the
ith angular resonance frequency, e is the electron charge, d is the atomic diameter, σ is the medium
conductivity, and ε∞ is the background permittivity. The number of electrons oscillating at each
resonance is indicated by Qi and they are related to the number of electrons per unit volume (electron
density) Q via the oscillation strength ξi such that

N∑
i=1

ξi = 1, Qi = ξiQ, P =
N∑

i=1

Pi =
N∑

i=1

Qipi = Q
N∑

i=1

ξipi (5)

where, pi is the dipole moment at the ith resonance.
Therefore, in order to determine the time variation of the electric field, we had to solve these

N+1 equations. However, since our goal was to maximize the harmonic generation efficiency,
we dealt with the nonlinear programming of these equations to maximize the spectral intensity at the
desired frequency.

Assuming that we excite the optical microcavity with M high-intensity ultra-short pulses. The total
wave that represents the overall excitation is stated as

E(x = 0 µm, t) =
∑M

i=1Ai cos(2πνit +ψi)(u(t) − u(t− ∆Ti)). (6)

We wanted to tune the frequencies of the excitation, since there were N+1 equations and M
optimization parameters involved in this configuration, we needed a cost-efficient optimization
algorithm. The Quasi-Newton type Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm enabled
a relatively fast convergence at a lower computational cost as the Hessin matrix was recursively
updated and the computation of the second derivatives were not needed. Hence, we employed the
BFGS algorithm for the optimization part.

Given the expression for excitation in Equation (6), and Equations (1)–(5) that modeled its
propagation in the microcavity, we could then define the optimization problem. Note that this was
a constrained optimization problem as the source device that generates the excitation could generate
the ultrashort pulses at a certain frequency range and at a certain maximum pulse energy. Assuming
that the we were solving the problem for a given pulse energy that was below the maximum available
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pulse energy, we had the allowable frequency range as the constraint of the problem. Most importantly,
since we wanted a high-intensity output at a target frequency (desired harmonic), we had to define the
cost function carefully and accurately. The intended description for the cost function can be stated as

F(ν) =
∣∣∣∣E(
ν = νtarget

)∣∣∣∣ = ∣∣∣∣∣∣
∫ νtarget+∆ν

νtarget−∆ν

{∫ ∆T

0

{
E(x = x′, t)e−i(2πΩ)t

}
dt

}
ei(2πΩ)tdΩ

∣∣∣∣∣∣ (7)

where ∆ν is the bandwidth around the target frequency. A certain target harmonic can be programmed
to be maximized because the process of nonlinear wave mixing generates many new harmonics as
a result of supercontinuum generation [20–26], which arise from high stored energy. What we intended
to do is to program the microcavity to concentrate the supercontinuum spectral density around the
target frequency. Therefore, the summary of the problem can be stated as follows: optimization

parameters: ν = [ν1, ν2, . . . , νM], cost function to be maximized: F(ν) =
∣∣∣∣E(
ν = νtarget

)∣∣∣∣, constraints:
νmin ≤ ν ≤ νmax, equations:

∇
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Note that even though the total excitation wave initially had M frequency components as seen
in Figure 1, after the desired interaction duration, the spectrum of the excitation changed due to the
nonlinear interaction. What we were trying to achieve here is to maximize the spectral density of the
output spectrum around the target frequency, so that the output intensity at the desired harmonic
was maximized.
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are to be tuned for high-intensity targeted harmonic generation via intracavity energy maximization.
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Equations (1)–(4) can be discretized using the FDTD method at each iteration (k) of the optimization
as follows:

Ek(i+1, j)−2Ek(i, j)+Ek(i−1, j)
∆x2 − µ0ε∞(i, j)Ek(i, j+1)−2Ek(i, j)+Ek(i, j−1)

∆t2

= µ0σ(i, j)Ek(i, j)−Ek(i, j−1)
∆t

+µ0
Pk(i, j+1)−2Pk(i, j)+Pk(i, j−1)

∆t2

(12)

P1,k(i, j+1)−2P1,k(i, j)+P1,k(i, j−1)
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(15)

Pk = P1,k + P2,k + · · ·+ PN,k, Q = Q1 + Q2 + · · ·+ QN (16)

Equations (12)–(15) were solved for each new update. For high precision, we chose ∆t and ∆x to
be small.

3. Non-Linear Programming for Efficient Harmonic Generation

As already mentioned, we used the BFGS algorithm for its relatively low computational cost and
high convergence rate. The BFGS algorithm is a Quasi-Newton algorithm that recursively computes
the Hessian matrix instead of computing the second derivative of the cost function at every iteration.
The BFGS algorithm is useful when the Hessian matrix is not available or when it is too costly
to compute.

3.1. BFGS Algorithm-Based Optimization

Start with an initial estimate of the Hessian matrix

H0 = I(I : Identity matrix). (17)

Identify the cost function that includes the penalty terms for constraint violations

F(ν) =
∣∣∣∣E(
ν = νtarget

)∣∣∣∣ = (18)

∣∣∣∣∣∣
∫ νtarget+∆ν

νtarget−∆ν

{∫ ∆T

0

{
E(x = x′, t)e−i(2πΩ)t

}
dt

}
ei(2πΩ)tdΩ

∣∣∣∣∣∣− L1

 N∑
i=1

δi(vi − vmax)


q

− L2

 N∑
i=1

ζi(vmin − vi)


q

δi =

{
0 i f vi ≤ vmax

> 0 i f vi > vmax

}
, ζi =

{
0 i f vi ≥ vmin
> 0 i f vi < vmin

}
q: exponent of the penalty (positive valued), {L1, L2} : penalty constants (positive valued), {δi, ζi} :
penalty weights
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3.2. Determining the Penalty Weights

In order to decrease
∣∣∣∣E(
ν = νtarget

)∣∣∣∣ by a factor of
(
100− 100

σ

)
% for a deviation of ∆ν from νmax or

νmin, the penalty coefficients δ1 and δ2 were chosen as (assuming single-pulse tuning)

δ1 =


0 i f νp < νmax

(1− 1
σ )

(∆ν)2

∣∣∣∣E(
νp

)∣∣∣∣ i f νp > νmax

, δ2 =


0 i f νp > νmin

(1− 1
σ )

(∆ν)2

∣∣∣∣E(
νp

)∣∣∣∣ i f νp < νmin

 (19)

∆ν: deviation from max/min allowable frequency, σ : reduction factor.

Such that F =
∣∣∣∣E(
ν = νtarget

)∣∣∣∣− δ1(ν− νmax)
2
− δ2(νmin − ν)

2 (20)

Identify the search direction, pk = − Hk ∇Fk (Search direction). Determine a suitable step
size (Backtracking approach). Select α > 0,ρ ε (0, 1), c ε (0, 1). while F(xk+ α pk) ≤ F(xk)+

cα∇Fk
Tpk α← ρα end.

Update the values of the optimization parameters: νk+1 = νk + αk pk (Update equation).
Compute the parameter difference vector and the gradient difference vector sk = νk+1− νk,

yk = ∇Fk+1− ∇Fk. Update the Hessian matrix for the next iteration Hk+1 =
(
I− ρkskyk

T
)
Hk

(
I− ρkyksk

T
)
+

ρksksk
T (BFGS update)

∇F =



F(ν1+ε,ν2,...,νN)−F(ν1,ν2,...,νN)
ε

F(ν1,ν2+ε,...,νN)−F(ν1,ν2,...,νN)
ε
.
.
.

F(ν1,ν2,...,νN+ε)−F(ν1,ν2,...,νN)
ε


, ρk =

1
yk

Tsk
(21)

Note that we solved the FDTD equations at every iteration of the BFGS algorithm until the desired
intensity at a target frequency was obtained. The summary of the whole process is summarized in the
flowchart presented in Figure 2.Micromachines 2020, 11, x 7 of 21 
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Figure 2. Flowchart description of high-intensity harmonic generation using non-linear programming.
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4. Numerical Simulations

4.1. Simulation1: Intense Harmonic Generation in the Ultraviolet (UV) Frequency Range

The total excitation (pump) wave E that was composed of two high-intensity ultrashort pulses,
energized a Fabry–Perot type optical micro-resonator that had an optical isolator at the input (left) port
and a band-pass filter at the output (right) port. These two ultrashort pulses were both initiated at
x = 2.5 µm at time t = 0 sec (Figure 3). The total excitation wave at the input port can be expressed as

E(x = 0 µm, t) =
2∑

i=1

Ai cos(2πνit +ψi)(u(t)

−u(t− ∆Ti))
V
m , u(t) : Unit step f unction

(22)

A1 = 8× 107, A2 = 1× 108, ∆T1 = 1.5 ps, ∆T2 = 1 ps
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Figure 3. Nonlinear mixing of two ultrashort pulses in an optical microcavity, whose frequencies were
tuned for high-intensity targeted harmonic generation at 820THz via intracavity energy maximization.

Our goal was to generate a desired monochromatic wave (harmonic) at f = 820 THz, a typical
UV-ablation frequency. To achieve this, the excitation frequencies of the ultrashort pulses were tuned.

• Spatial and temporal intervals of the simulation : 0 ≤ x ≤ 10 µm, 0 ≤ t ≤ 10 ps

• Resonance frequencies of the interaction medium : fr =
{
4× 1014 Hz, 6.3× 1014 Hz, 8.8× 1014 Hz

}
• Polarization damping rates of the interaction medium : γ =

{
2× 109 Hz, 3× 1010 Hz, 1× 1011 Hz

}
• Relative permittivity of the interaction medium : (εr) = 10 (µr = 1)
• Location of the optical isolator : x = 0 µm, Bandpass filter location : x = 10 µm

• Spatial range of the interaction material : 0 µm < x < 10 µm Density of electrons : Q = 3.5 × 1028

m3 ,
Atom diameter : d = 0.3 nanometers

• Resonance probabilities: ξ = {0.3, 0.4, 0.3}, Cost function to be maximized : C
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Problem statement: Identifying the excitation frequencies of the high-intensity ultrashort pulses

for maximizing the intensity spectral density around the target frequency (
∣∣∣∣E(
ν = νtarget = 820THz

)∣∣∣∣)
inside the micro-resonator, for 50 THz < {ν1, ν2} < 500 THz , and for 0 µm < x < 10 µm, 0 ≤ t ≤ 10 ps.

C =
∣∣∣∣E(
ν = νtarget = 820THz

)∣∣∣∣
=

∣∣∣∣∣∫ 8.2×1014+∆ν
8.2×1014−∆ν

{∫ ∆T
0

{
Ein(x = x′, t)e−i(2πΩ)t

}
dt

}
ei(2πΩ)tdΩ

∣∣∣∣∣ (23)

∆T = 10 ps,
(
8.2× 1014

− ∆ν
)

Hz < Ω <
(
8.2× 1014 + ∆ν

)
Hz, ∆ν = 10 THz

Initial conditions of the electric field and polarization density: (Prime sign refers to the
time derivative)

P2(x, 0) = P2
′ (x, 0) = E2(x, 0) = E2

′ (x, 0) = P1(x, 0) = P1
′ (x, 0) = E1(x, 0)

= E1
′ (x, 0) = 0

(24)

Bandpass filtering: Frequency selective cavity wall (right port) is fixed at x = 10 µm∣∣∣Γ(ν)∣∣∣
= 1− e

−(
(ν−820THz)
√

200THz
)

2

(Magnitude response of the harmonic selective output wall)
(25)

Cost function: C(ν1, ν2) =
∣∣∣E(ν = 820 THz)

∣∣∣−∑2
i=1

{
δi,1(νi − νmax)

2 + δi,2(νmin − νi)
2
}

δi,1 =

 0 i f νi ≤ νmax
|E(ν=820 THz)|

1027 i f νi > νmax

,

δi,2 =

 0 i f νi ≥ νmin
|E(ν=820 THz)|

1027 i f νi < νmin


(26)

FDTD Equations: Discretization of Equations (1)–(4) via finite difference time domain is as
follows [27–30]

Ek(i+1, j)−2Ek(i, j)+Ek(i−1, j)
∆x2 − µ0ε∞(i, j)Ek(i, j+1)−2Ek(i, j)+Ek(i, j−1)

∆t2

= µ0σ(i, j)Ek(i, j)−Ek(i, j−1)
∆t

+µ0
Pk(i, j+1)−2Pk(i, j)+Pk(i, j−1)

∆t2

(27)

P1,k(i, j+1)−2P1,k(i, j)+P1,k(i, j−1)
∆t2 + γ1

P1,k(i, j)−P1,k(i, j−1)
∆t

+4π2 f12
(
P1,k(i, j)

)
−

4π2 f12

Q1ed

(
P1,k(i, j)

)2
+

4π2 f12

Q1
2e2d2

(
P1,k(i, j)

)3

= Q1e2

m (Ek(i, j)).

(28)

P2,k(i, j+1)−2P2,k(i, j)+P2,k(i, j−1)
∆t2 + γ2

P2,k(i, j)−P2,k(i, j−1)
∆t

+4π2 f22
(
P2,k(i, j)

)
−

4π2 f22

Q2ed

(
P2,k(i, j)

)2
+

4π2 f22

Q22e2d2

(
P2,k(i, j)

)3

= Q2e2

m (Ek(i, j)).

(29)

P3,k(i, j+1)−2P3,k(i, j)+P3,k(i, j−1)
∆t2 + γ3

P3,k(i, j)−P3,k(i, j−1)
∆t

+4π2 f32
(
P3,k(i, j)

)
−

4π2 f32

Q3ed

(
P3,k(i, j)

)2
+

4π2 f32

Q32e2d2

(
P3,k(i, j)

)3

= Q3e2

m (Ek(i, j)).

(30)

P = P1 + P2 + P3

x: Space coordinate, t: Time, k: Iteration, Ek(x, t) = Ek(i∆x, j∆t) → Ek(i, j)
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Ek : Total wave electric field at the kth update

Optimization via BFGS algorithm: Choose the identity matrix as the initial Hessian matrix

H0 = I (I : 2× 2 identity matrix)

vp1,0 = 250 THz, vp1,1 = 245 THz, vp2,0 = 225 THz, vp2,1 = 220 THz, α1 = 0.4

∇Ck =


C( fp1,k, fp2,k)−C( fp1,k−1, fp2,k)

fp1,k− fp1,k−1
C( fp1,k, fp2,k)−C( fp1,k, fp2,k−1)

fp2,k− fp2,k−1

 (31)

pk = − Hk ∇Ck, ν k+1 = νk + αk pk, sk = vk+1− vk, νk =

[
ν1,k
ν2,k

]
yk = ∇Ck+1− ∇Ck ρk =

1
yk

Tsk

BFGS recursion: Hk+1 =
(
I− ρkskyk

T
)
Hk

(
I− ρkyksk

T
)
+ ρksksk

TI : Identity matrix

∇Ck+1 =


C( fp1,k+1, fp2,k)−C( fp1,k, fp2,k)

fp1,k+1− fp1,k
C( fp1,k, fp2,k+1)−C( fp1,k, fp2,k)

fp2,k+1− fp2,k

 (32)

A simple formula for the step size that complies with the backtracking approach is determined as

αk = c
( log |

C(νk)
C(νk)−C(νk−1)

| ) / ( |
C(νk)

C(νk)−C(νk−1)
| )

(33)

The base of the step size (c) was a simple constant (1 < c < 1.5 ) and αk was the step size at
iteration k. In this example, c was chosen as c = 1.45. According to these presented formulations,
the maximum amplitude of the desired harmonic that was attained in the micro-resonator (for 0 < t < 10

ps) was obtained as
∣∣∣∣E(
ν = νtarget = 820 THz

)∣∣∣∣ = 7.6× 107 V/m , and the resulting optimal excitation
frequencies were identified as ν1 = 273.2 THz, ν2 = 284.7 THz (see Table 1).

We,p = Stored electric energy density = 1
2ε∞E2 + 1

2 EP
( Joules

m3

)
,

E : Electric field intensity
(34)

P : Polarization density created by the pump wave
(

Coulomb
m2

)
, ε∞ : Background permittivity.

As indicated in Table 1, the optimal frequencies of the ultrashort excitation pulses gave rise
to an enormous amount of stored electric energy and a corresponding large amount of stored
polarization density (non-linear coupling coefficient). When we investigated Table 1, we realized that
the induced electric energy density and the induced polarization density should be concurrently high
for a super-intense harmonic generation at a desired frequency. The amount of stored electric energy
was crucial in generating the high-intensity target harmonic and the induced polarization density
was important in concentrating the available spectral energy around the desired frequency and in
transferring the energy from one harmonic to another. It is important to note that in a multi-resonant
interaction medium with many resonances, if the desired frequency (target harmonic) is near one of the
resonance frequencies of the medium, generating the target harmonic with a high intensity is harder as
the dielectric absorption is stronger near the resonance frequencies of the medium. Therefore, if the
desired frequency of the harmonic is near any resonance, one should expect a relatively lower-intensity
target harmonic after the optimization process is completed. To provide an increase in the intensity
of the desired harmonic, one may use more ultrashort excitation pulses. At the end of 13th iteration,
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electric field at the output of the bandpass filter for 10 ps simulation time is seen in Figure 4. As seen in
this figure, electric field at 820 THz reaches in a scale of 108 V/m.

Table 1. Broyden–Fletcher–Goldfarb–Shanno (BFGS) updating process.

|Eν=820 THz| ν1 ν2 We,p ( J
m3 ) Ppump( C

m2 ) k (Iteration #)

5.8 × 103 V/m 250 THz 225 THz 2.9 × 107 0.09 1

2.9 × 103 V/m 245 THz 220 THz 1 × 107 0.05 2

2.7 × 105 V/m 249.4 THz 226.1 THz 8.66 × 107 0.14 3

2.0 × 104 V/m 257.2 THz 231.3 THz 5.49 × 107 0.13 4

1.3 × 103 V/m 264.9 THz 226.6 THz 1.31 × 107 0.06 5

7.6 × 103 V/m 276.0 THz 222.2 THz 1.76 × 107 0.07 6

1.4 × 104 V/m 286.7 THz 231.8 THz 1.73 × 107 0.07 7

1.1 × 106 V/m 279.7 THz 218.0 THz 3.06 × 107 0.10 8

9.8 × 105 V/m 272.1 THz 236.9 THz 2.49 × 107 0.10 9

5.1 × 106 V/m 263.5 THz 285.1 THz 3.30 × 107 0.10 10

1.2 × 107 V/m 273.4 THz 310.7 THz 8.21 × 107 0.16 11

3.2 × 106 V/m 275.1 THz 288.8 THz 3.48 × 107 0.12 12

7.6 × 107 V/m 273.2 THz 284.7 THz 5.75 × 107 0.17 13
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Figure 4. Time variation of the maximum electric field amplitude at the bandpass filter output (820 THz).

In Figure 5 we present spectral magnitude through the iterations. As seen in Figure 5a there is
no generated target frequency (820 THz) at 6th iteration. When the iterations proceed (Figure 5b–d),
wave mixing between two source waves happens, and we obtained generated target frequency at
820 THz. At the end of 13th iteration, intensity spectral density at the band-pass filter output for
822 THz is 1023 (W/m2Hz) as seen in Figure 6.
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4.2. Simulation 2: Intense Quasi-Monochromatic Yellow-Light Generation Around 515THz

The total excitation (pump) wave E that was composed of two high-intensity ultrashort pulses,
energized a Fabry–Perot type optical micro-resonator that had an optical isolator at the input (left) port
and a band-pass filter at the output (right) port as seen in Figure 7. All ultrashort pulses were initiated
at x = 2.5 µm at time t = 0 sec. The total excitation wave at the input port can be expressed as

E(x = 0 µm, t) =
2∑

i=1

Ai cos(2πνit +ψi)(u(t) − u(t− ∆Ti)) V/m (35)

A1 = 1× 108, A2 = 1.2× 108, ∆T1 = 1ps, ∆T2 = 0.7ps

Our goal was to generate a desired monochromatic wave (harmonic) at f = 515 THz. To achieve this,
the excitation frequencies of the ultrashort pulses were tuned.

• Spatial and temporal intervals of the simulation : 0 ≤ x ≤ 10 µm, 0 ≤ t ≤ 10ps

• Resonance frequencies of the interaction medium : fr =
{
3× 1014Hz, 4.4× 1014Hz, 6.3× 1014Hz

}
• Polarization damping rates of the interaction medium : γ =

{
1× 1010Hz, 2.5× 1010Hz, 1× 1011Hz

}
• Resonance probabilities: ξ =

{
1
3 , 1

3 , 1
3

}
, Permittivity of the interaction medium : (εr) = 12 (µr = 1)

• Location of the optical isolator (input port) : x = 0µm, Filter (output port) location : x = 10µm

• Spatial range of the interaction material : 0 µm < x < 10 µm, Density of electrons : N = 3.5× 1028

m3

• Atom diameter : d = 0.3 nanometers, Cost function to be maximized : C

Problem statement: Identifying the excitation frequencies of the high-intensity ultrashort pulses

for maximizing the intensity spectral density around a target frequency (
∣∣∣∣E(
ν = νtarget = 515 THz

)∣∣∣∣)
inside the micro-resonator, for 50THz < {ν1, ν2} < 500 THz , and for 0 µm < x < 10 µm, 0 ≤ t ≤ 10 ps.

C =
∣∣∣∣E(
ν = νtarget = 515THz

)∣∣∣∣
=

∣∣∣∣∣∫ 5.15×1014+∆ν
5.15×1014−∆ν

{∫ ∆T
0

{
Ein(x = x′, t)e−i(2πΩ)t

}
dt

}
ei(2πΩ)tdΩ

∣∣∣∣∣ (36)
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tuned for high-intensity targeted harmonic generation at 515THz.

∆T = 10ps,
(
5.15× 1014

− ∆ν
)
Hz < Ω <

(
5.15× 1014 + ∆ν

)
Hz, ∆ν = 10 THz
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Initial conditions of the electric field and polarization density: (Prime sign refers to the
time derivative)

P2(x, 0) = P2
′(x, 0) = E2(x, 0) = E2

′(x, 0) = P1(x, 0) = P1
′(x, 0) = E1(x, 0) = E1

′(x, 0) = 0

Band-pass filtering: Frequency selective cavity wall (right port) is fixed at x = 10µm

∣∣∣Γ(ν)∣∣∣ = 1− e
−(

(ν−515 THz)
√

200 THz
)

2

(37)

Cost function: C(ν1, ν2) =
∣∣∣E(ν = 515 THz)

∣∣∣−∑2
i=1

{
δi,1(νi − νmax)

2 + δi,2(νmin − νi)
2
}

δi,1 =

 0 i f νi ≤ νmax
|E(ν=515 THz)|

1027 i f νi > νmax

,

δi,2 =

 0 i f νi ≥ νmin
|E(ν=515 THz)|

1027 i f νi < νmin


(38)

Optimization via BFGS algorithm: Choose the identity matrix as the initial Hessian matrix

H0 = I (I : 2× 2 identity matrix)

fp1,0 = 250 THz, fp1,1 = 245 THz, fp2,0 = 225 THz, fp2,1 = 220 THz, α1 = 0.5

∇Ck =


C( fp1,k, fp2,k)−C( fp1,k−1, fp2,k)

fp1,k− fp1,k−1
C( fp1,k, fp2,k)−C( fp1,k, fp2,k−1)

fp2,k− fp2,k−1

, ∇Ck+1 =


C( fp1,k+1, fp2,k)−C( fp1,k, fp2,k)

fp1,k+1− fp1,k
C( fp1,k, fp2,k+1)−C( fp1,k, fp2,k)

fp2,k+1− fp2,k

 (39)

pk = − Hk ∇Ck, ν k+1 = νk + αk pk, sk = fp,k+1− fp,k, νk =

[
ν1,k
ν2,k

]
, yk = ∇Ck+1− ∇Ck, ρk =

1
yk

Tsk

BFGS recursion: Hk+1 =
(
I− ρkskyk

T
)
Hk

(
I− ρkyksk

T
)
+ ρksksk

T I : Identity matrix

αk = c
( log |

C(νk)
C(νk)−C(νk−1)

| ) / ( |
C(νk)

C(νk)−C(νk−1)
| )

(40)

The base of the step size (c) was a simple constant (1 < c < 1.5 ) and αk was the step size at
iteration k. In this example, c was chosen as c = 1.40. According to these presented formulations,
the maximum amplitude of the desired harmonic that was attained in the micro-resonator (for 0 < t < 10

ps) was obtained as
∣∣∣∣E(
ν = νtarget = 515 THz

)∣∣∣∣ = 9.1× 107 V/m , and the resulting optimal excitation
frequencies were determined as ν1 = 266.2 THz, ν2 = 476.5 THz (Table 2).

We,p = Stored electric energy density = 1
2ε∞E2 + 1

2 EP
( Joules

m3

)
,

E : Electric field intensity
(41)

P : Polarization density created by the pump wave
(

Coulomb
m2

)
, ε∞ : Background permittivity.

At the end of 33th iteration, electric field at the output of the bandpass filter for 10 ps simulation
time is seen in Figure 8. As seen in this figure, electric field at 515 THz reaches in a scale of 108 V/m.
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Table 2. BFGS updating process.

|Eν=515 THz| ν1 ν2 We,p ( J
m3 ) Ppump( C

m2 ) k (Iteration #)

1.9 × 103 V/m 250 THz 225 THz 2.4 × 107 0.20 1

2.6 × 103 V/m 245 THz 220 THz 2.5× 107 0.18 2

3× 103 V/m 248.6 THz 226.1 THz 2.2 × 107 0.19 4

5× 103 V/m 243.8 THz 258.5 THz 2.7 × 107 0.18 6

7× 103 V/m 234.3 THz 288.7 THz 2.3 × 107 0.18 9

1.3 × 104 V/m 249.8 THz 341.4 THz 3.5 × 107 0.18 12

3.4 × 104 V/m 259.9 THz 331.9 THz 5.2 × 107 0.21 15

2.2 × 105 V/m 272.8 THz 363.6 THz 4.6 × 107 0.21 18

9.4 × 105 V/m 277.7 THz 411.1 THz 3.9 × 107 0.18 21

4.3 × 106 V/m 270.4 THz 448.2 THz 6.5 × 107 0.18 24

1.1 × 107 V/m 261.5 THz 475.3 THz 8.8 × 107 0.20 27

2.7 × 107 V/m 265.3 THz 475.8 THz 7.1 × 107 0.22 30

9.1 × 107 V/m 266.2 THz 476.5 THz 7.7× 107 0.22 33
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Figure 8. Time variation of the maximum amplitude at the band-pass filter output (harmonic generation
at 515 THz).

In Figure 9 we present spectral magnitude through the iterations. As seen in Figure 9a there is
no generated target frequency (515 THz) at 6th iteration. When the iterations proceed (Figure 9b–d),
wave mixing between two source waves happens, and we obtained generated target frequency at
515 THz. Compared to generation of a wave at 820 THz we obtained much more sharp spectral
distribution around the target frequency of 515 THz. At the end of 33th iteration, intensity spectral
density at the band-pass filter output for 515 THz is 234.1 (W/m2Hz) as seen in Figure 10.
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5. Testing the Model Accuracy via Comparison with Experimental Results

In order to validate the accuracy of our model, we compared our numerical results with the
well-established experimental formula of second harmonic generation efficiency for many different
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excitation amplitudes. The following example illustrates this comparison by computing the error
percentage for different excitation amplitudes. Once the error percentage was below one percent for
every excitation amplitude, we assessed the computational results to be in good agreement with the
experimental results.

Example 5.1: Second Harmonic Generation by Nonlinear Wave Mixing

The goal of this example was to compute the second harmonic generation efficiency of a high
intensity input wave after it had propagated through an interaction medium for a certain amount of
time. The input wave was initially monochromatic with an angular frequency of ω1. The generated
second harmonic of the input wave had an angular frequency of ω2 = 2ω1. Experimental and
computational formulations were compared.

The 100 THz (monochromatic) high-amplitude input wave E1 is excited at x = 2.4µm (see Figure 11).
The excitation amplitude of the input wave is A1 (V/m).

• E1(x = 2.4 µm, t) = A1 × sin
(
2π

(
1× 1014

)
t + ϕ1

)
V/m ( ϕ1 = 0)

• Spatial range and duration of the computation: 0 ≤ x ≤ 10 µm, 0 ≤ t ≤ 30 ps

• Resonance frequencies of the interaction medium : fr =
{
7.8× 1014 Hz, 9.5× 1014 Hz, 1.4× 1015 Hz

}
• Damping coefficients of the interaction medium : γ =

{
4× 1012 Hz, 3× 1012 Hz, 1× 1012 Hz

}
• Interaction medium background permitttivity (ε∞) = 1 + χ = 12 (µr = 1)
• Left absorption domain ranges from x = 0 to x = 2.35 µm (absorbing boundary)
• Right absorption domain ranges from x = 7.65 µm to x = 10 µm (absorbing boundary)

The experimental formula for the efficiency of second harmonic generation is stated as [40–42]

ηexperimental = (tanh
√

d2η3ω2cnε0A1
2L2 )

2

d = Nonlinearity coefficient, η = Medium impedance, n = Index of refraction
A1 = Input wave amplitude, L = Length of the medium

ω2 = Angular frequency of the generated sec ond harmonic
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For a computation range of 0 ≤ t ≤ tmax , the expression for the computational second harmonic
generation efficiency is stated as [40–42]

ηcomputational =
Intensity of the sec ond harmonic of the source wave at t = tmax

Intensity of the first harmonic of the source wave at t = 0
(42)

The parameters of the computation are as follows:

ω1 = First harmonic angular frequency = (2π× 100) THz

L = Length of the interaction medium = 3.33 µm (ranging from x = 3.33 µm to 6.66 µm)

ω2 = Second harmonic angular frequency = 2π× 200 THz, n =
√

12
A1 = Input wave amplitude (Varied from 108 V

m to 2.5× 109 V/m, in increment of 108 V/m)

Oscillator weights (Resonance probabilities) = ξ = {0.3, 0.4, 0.3}
Based on Equation (42), the computational second harmonic efficiency

(
ηcomputational

)
was found

as ηcomputational = 1.74 × 10−4 for an excitation amplitude of A1 = 3 × 108 V/m. Using this result,
we tried to estimate the nonlinear coefficient of the medium by solving the following transcendental
equation [40–42]

(tanh
√

dest2η3ω2cnε0A1
2L2 )

2
= 1.21×

10−21C
V

(43)

From which we solved for the estimated nonlinear coefficient as dest = 1.21× 10−21C/V. However,
in order to verify this estimated nonlinearity coefficient, we had to check whether this coefficient matched
the theoretical results with the computational results for all input wave amplitudes. This verification
is shown below in Table 3 for some sample excitation amplitudes and illustrated in Figure 12 for
a broad range of excitation amplitudes. The theoretical and computational results seem to be in good
agreement, there is more than 98% accuracy between the theoretical and the numerical results.

Table 3. Comparison of the numerical and experimental results for different excitation amplitudes with
the estimated nonlinearity coefficient of dest = 1.21× 10−21 C/V.

Excitation Wave
Amplitude (V/m) Theoretical Efficiency Numerical Efficiency Error Percentage

1× 108 1.93× 10−5 1.92× 10−5 0.5

3× 108 1.74× 10−4 1.74× 10−4 0.4

5× 108 4.82× 10−4 4.88× 10−4 1.2

1× 109 1.93× 10−3 1.96× 10−3 1.55

1.5× 109 4.33× 10−3 4.39× 10−3 1.38

2× 109 7.68× 10−3 7.76× 10−3 1.04

2.5× 109 1.20× 10−2 1.21× 10−2 0.83
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6. Conclusions

For an arbitrary micro-resonator interaction medium of multiple resonances, the frequencies
of the ultrashort excitation pulses must be tuned accordingly, based on a rapidly converging
and computationally efficient Quasi-Newton algorithm (such as BFGS) in order to generate
a desired harmonic at an ultra-high efficiency. The non-linear programming process is basically
needed to maximize the stored spectral energy density around the desired frequency so that the
conversion efficiency is maximized. For a micro-resonator medium with many resonance frequencies,
the computational cost increases as the number of differential equations increases due to the occurrence
of many polarization density components. However, the cost can be reduced by decreasing the number
of excitation pulses and alleviating the burden on non-linear programming. Even a single parameter
optimization via a single excitation pulse may allow us to achieve the target harmonic generation
efficiency. However, for devices that have very limited output powers, multiple excitation pulses must
be adjusted in order to achieve the optimal frequency combination that allows the highest efficiency to
be attained and to compensate for the output-power limitations of the source device.
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