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Abstract: Microbial Fuel Cells (MFCs) are biological fuel cells based on the oxidation of fuels by
electrogenic bacteria to generate an electric current in electrochemical cells. There are several methods
that can be employed to improve their performance. In this study, the effects of gold surface
modification with different thiol molecules were investigated for their implementation as anode
electrodes in micro-scale MFCs (µMFCs). Several double-chamber µMFCs with 10.4 µL anode and
cathode chambers were fabricated using silicon-microelectromechanical systems (MEMS) fabrication
technology. µMFC systems assembled with modified gold anodes were operated under anaerobic
conditions with the continuous feeding of anolyte and catholyte to compare the effect of different
thiol molecules on the biofilm formation of Shewanella oneidensis MR-1. Performances were evaluated
using polarization curves, Electrochemical Impedance Spectroscopy (EIS), and Scanning Electron
Microcopy (SEM). The results showed that µMFCs modified with thiol self-assembled monolayers
(SAMs) (cysteamine and 11-MUA) resulted in more than a 50% reduction in start-up times due
to better bacterial attachment on the anode surface. Both 11-MUA and cysteamine modifications
resulted in dense biofilms, as observed in SEM images. The power output was found to be similar in
cysteamine-modified and bare gold µMFCs. The power and current densities obtained in this study
were comparable to those reported in similar studies in the literature.

Keywords: microbial fuel cell; biofilm; surface modification; thiol; Shewanella oneidensis; MEMS

1. Introduction

Microbial Fuel Cells (MFCs) are bioreactors converting the energy stored in chemical bonds
of organic compounds (e.g., glucose, lactate, etc.) into electrical energy via the catalytic activity of
electrogenic bacteria under anaerobic conditions [1–3]. They have attracted a lot of attention in scientific
communities over the last decades not only as a solution for renewable power sources, but also as
biosensors or water treatment devices [4–7]. Figure 1 exemplifies a double-chamber (anode and
cathode) MFC with a Proton Exchange Membrane (PEM) separating the chambers.
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Figure 1. A double-chamber bioanode Microbial Fuel Cell (MFC) schematic.

In the last few years, researchers have mostly focused on the development of micro-scale MFCs
(µMFCs) to employ them as portable devices [8,9]. Attributable to the advantages of micro-scale
physics, µMFCs provide easy handling, higher surface areas, a lower consumption of substrates,
quicker responses, and reduced distances for protons and electrons to travel [8,10–12]. In this scope,
microelectromechanical systems (MEMS) technology is attractive for establishing µMFCs owing to the
precise microfabrication techniques and economical mass production opportunities [10].

Macro-scale MFCs offer high power outputs, but a very long start-up time, which is the duration
required to reach the maximum performance, and very high volumes ranging from mL to L,
which cripple their practicality [6,11]. µMFCs have decreased this start-up time to a few days
rather than weeks; however, researchers are yet to reach desired power outputs necessary for industrial
applications. To exploit µMFCs as feasible power sources, their performance parameters, namely their
power density, current density, and start-up time, must be further enhanced by decreasing their internal
resistance [10,12].

The optimization of chamber and/or cell geometries, chamber or electrode materials, and electrode
surface characteristics can be employed to decrease the internal resistance [6]. Optimizing the electrode
surface characteristics can result in better surface contact for the bacterial biofilm. Biofilms are complex
structures adhering to surfaces and consist of colonies of single bacterial species or multiple bacterial
species. They can be found with a self-produced polymeric matrix attached to biotic or abiotic
surfaces [13]. Their structure varies from Gram-positive to Gram-negative bacteria. The biofilm quality
is affected not only by the interactions between the electrode surface and bacteria, but also by the
operational parameters of the fuel cell [14,15]. Although bacterial adhesion to a surface is the first
step of biofilm formation, other parameters also exist, such as hydrophobic interactions, electrostatic
interactions, the electrode surface roughness, surface charges, and cell surface structures [16]. A study
by Friman et al. published in 2013 showed that both the plankton bacterial cells and the biofilm
contributed to the overall MFC voltage, and the biofilm contribution was three-times higher [17].
Additionally, Slate et al. reviewed studies showing the relation between the biofilm quality and power
output [18].

Electrodes in fuel cells require a high conductivity, chemical stability, corrosion resistivity, and high
mechanical strength. Since the anode is responsible for the growth of bacteria on the surface, it must
have a good biocompatibility, as well as excellent electrical properties, to enable efficient electron
transfer [19]. Generally, carbon-based materials are preferred in MFC studies due to their low
cost. Another reason for their common use is that bacteria attach to carbon surfaces more easily,
for instance, compared to bare gold surfaces. On the other hand, carbon-based materials have a
major disadvantage, which is their low electrical conductivity, especially compared to gold. Although
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the cost of gold electrodes constricts their employment in large systems, they are widely used for
fundamental research in miniaturized micro-scale MFC systems [20]. Gold surfaces can be enhanced
by surface modification methods via the addition of different functional groups. Alkanethiols are
widely preferred for modifying gold surfaces in the literature due to the strong and well-proven
gold–thiol interaction [21]. Thiols form highly ordered self-assembled monolayers (SAMs) present
on the gold surfaces. Since thiols with carboxyl or amine functional groups can bind to proteins on
the bacterial membrane, the functionalization of gold surfaces with such groups will favor bacterial
attachment [22,23] and this may, in turn, accelerate biofilm formation. However, these self-assembled
monolayers may increase the electron transfer resistance, depending on the length of the carbon
chain of the molecule to be used [24]. Cysteamine (CYS), an alkanethiol with an amine functional
group, is known to favor bacterial attachment [25]. Another thiol is 11-mercaptoundecanoic acid
(11-MUA), containing a carboxyl functional group. Some studies have shown that more current was
generated by creating an SAM of carboxyl terminated alkanethiols compared to non-functionalized
gold electrodes [22,26]. This was explained by the phenomenon in which carboxylic acid could
accommodate cytochromes on the electrode surface through very strong hydrogen bonding with the
peptide bonds in the protein backbone.

Our previous work reported MEMS-based double-chamber µMFC systems operated under
different loads or an open circuit to compare the effect of different acclimatization conditions on
the start-up time. Using Shewanella oneidensis MR-1 and bare gold anodes, the acclimatization of
µMFCs under a finite load (25 kΩ) resulted in a shorter start-up time (30 h) compared to the µMFCs
operated under an open circuit voltage (OCV). Power and current densities normalized to the anode
area were 2 µW/cm2 and 12 µA/cm2, respectively [27]. In this study, the focus was placed on further
decreasing the start-up time and internal resistance, while increasing the power output of MEMS-based
µMFCs with a micro-liter volume. With this aim, surfaces of gold anode electrodes were modified
with SAMs of aforementioned alkanethiol molecules (CYS and 11-MUA) and 4-aminothiophenol
(4-ATP) to increase the biofilm quality favoring the bacterial attachment through functional groups
on the surfaces. There are literature studies in which CYS and 11-MUA molecules have been used
in MFCs [20,23]. 4-ATP, on the other hand, as far as the authors are aware, has not been studied
in MFCs; however, the molecule has been widely employed in the functionalization of various
surfaces, including conducting platforms and electrochemical applications [28,29], due to the fact that
monolayers formed from aromatic thiols possess relatively high electrical conductivities [30].

2. Materials and Methods

2.1. Device Design, Fabrication, and Assembly

Two-chamber MEMS-based µMFCs were designed to have circular gold electrodes of the same
size in both the anode and cathode chamber. Through-holes were drilled through the silicon substrate
for anolyte/catholyte feeding via microfluidic connection. The microfabrication masks used to define
the gold electrodes were prepared with Cadence® software (Virtuoso Layout Editor, Cadence Design
Systems Inc., San Jose, CA, USA) and the microfabrication (Figure 2a) was performed in a class 1000
clean room area. Briefly, thermal oxide was formed on a 6” polished silicon wafer by plasma-enhanced
chemical vapor deposition (PECVD) to provide passivation. Cr/Au layers (30 nm/300 nm) were
sputtered on the mentioned passivation layer and patterned by the standard photolithography process
by coating photoresist (PR) on the wafer and exposing it with a mask under UV light. The through-holes
were drilled via deep reactive-ion etching (DRIE). A picture of the microfabricated electrode is shown
in Figure 2b.
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Figure 2. (a) Micro-scale Microbial Fuel Cell (MFC) (µMFC) electrode microfabrication steps;
(b) microfabricated µMFC electrode. When two electrodes on substrates faced each other at 180◦,
the gold contact pads were exposed for electrical wiring. A: Silicon substrate; B: gold electrode;
C: silver electrode (the brownish thin circular electrode around the gold electrode is the oxidized
silver layer to be processed as the reference electrode for further studies); D: contact pads for electrical
connection; and E: inlet and outlet ports.

For the assembly, two pieces of Gel-Pak WF 1.5-X4 gel films (170 µm× 15 mm× 17 mm, with round
holes at the center) were used as gaskets between the electrodes and proton exchange membrane
(Nafion 117), which separates the anode and cathode chambers. All layers were manually stacked on
top of each other (Figure 3) and tightly kept together inside the specially designed µMFC holder made
of two pieces of an acetal homopolymer (Delrin® by Dupont, Wilmington, DE, USA) (Figure 4).
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Figure 3. Schematic of µMFC: (a) extended view; (b) assembled view.

Assembled µMFCs had two chambers (10.4 µL each), defined as anode and cathode chambers.
The exposed conductive electrodes area per chamber was 0.61 cm2. The microfluidic inlet and
outlet of the µMFC were connected from the outside of the silicon substrates via finger-tight PEEK
(Polyether ether ketone) fittings (IDEX Health & Science) and capillary fused silica tubing (ID 150 µm,
Postnova Analytics GmbH, Landsberg am Lech, Germany). Electrical connections were made by
inserting pogo pins (spring-loaded electrically conductive pins) (OD 0.66 mm, FIXTEST GmbH, Engen,
Germany) from the outside of the µMFC holder until the production of electrical contact pads of both



Micromachines 2020, 11, 703 5 of 15

anode and cathode electrodes. Figure 4 depicts the schematic holder design and an image of the
assembled µMFC.
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Figure 4. Schematic µMFC holder design and assembled µMFC: The holder is composed of two
identical pieces of homoacetal polymer designed to house electrodes and permit fluidic and electrical
connections. (a) Outer view of the holder piece; (b) inner view of the holder piece; (c) inner view
of the holder piece; (c) holder inner view housing one of the electrodes; (d) assembled µMFC with
microfluidic and electrical connections.

2.2. Surface Modification with Thiols

To enhance the bacterial attachment on the surface, gold anode surfaces were modified with
alkanethiols having different functional groups and chain lengths: amine terminated CYS and 4-ATP
and carboxyl terminated 11-MUA (Sigma-Aldrich, St. Louis, MO, USA) (Figure 5).
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Figure 5. Thiol molecules used in the study: (a) cysteamine; (b) 11-mercaptoundecanoic acid;
(c) 4-aminothiophenol.

The quality of the SAM on the gold surface is affected by several parameters, such as the gold
surface cleanliness, solvent type, immersion time in solution, and concentration of the functional group.
To obtain a good coverage on the gold surface, the procedure was completed as per the manufacturer’s
instructions [31]. Protective photoresist layers on top of the gold electrodes were removed by immersion
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in acetone and IPA, respectively. Alkanethiol solutions with a 5 mM concentration were prepared
separately in pure ethanol, as suggested by the manufacturer. For 11-MUA, the pH was adjusted to ∼2.
For CYS and 4-ATP, the pH was adjusted to ∼12. The cleaned electrodes were immersed and incubated
in either CYS, 11-MUA, or 4-ATP solutions for approximately 48 h. Later, the electrodes were rinsed
with ethanol and dried with a stream of dry nitrogen gas [32,33]. The functionalized surfaces were
characterized with contact angle measurement (KVS Attention Theta, METU Central Laboratory).
The water contact angle was measured at room temperature using the sessile drop method by dropping
5 µL of water on both modified and unmodified surfaces. The contact angle was measured 5 s after the
deposition of a drop by analyzing the image profile of the drop.

2.3. Inoculum

Shewanella oneidensis MR-1 (ATCC, Manassas, VA, USA) is a facultative anaerobic electrogenic
bacterium. Glycerol stocks (−80 ◦C) of bacteria were grown on Tryptic Soy Agar (TSA, Merck) at 30 ◦C
for 24 h by the streak plate method to obtain single colonies. Then, a single colony was cultured in
Tryptic Soy Broth (TSB, Merck) medium on a shaker (150 rpm) at 30 ◦C for 24 h under aerobic conditions.
Cell growth was monitored by colony-forming unit (CFU) determination (~2.5 × 106 CFU/mL) by
plating the cells onto TSA plates and incubating them aerobically at 30 ◦C. To be fed as the anolyte,
fresh TSB and bacteria inoculum were mixed (1:1 v/v%). Throughout the operation, the inoculum ratio
fed to the system was decreased and only pure TSB was fed after the third or fourth day.

2.4. MFC Operation

The anolyte (TSB mixed with inoculum at a volumetric ratio of 1:1 for the start-up) and
catholyte solutions were continuously supplied using a syringe pump (KD Scientific) at rates of
3 µL/min and 5 µL/min, respectively, to anode and cathode chambers, independently. The catholyte
was 100 mM potassium ferricyanide (K3[Fe(CN)6], Sigma-Aldrich) in a 100 mM phosphate buffer,
in which the pH was adjusted at 7.5 ± 0.1. The µMFC was operated at 25 ± 1 ◦C. Different µMFC
assemblies were connected to 25 kΩ external loads or operated under open circuit voltage conditions.
The potential between the anode and cathode was measured via a digital multimeter (Agilent 3441A,
Keysight Technologies) with a data acquisition system and recorded results every 1 min via a Keysight
IntuiLink interface. All of the systems were operated under anaerobic conditions via the help of sealing
gaskets between the anode and cathode chambers. The characteristics of µMFC systems operated in
the study are presented in Table 1.

Table 1. µMFC systems operated in the study.

System Surface Treatment Acclimatization Condition

BG-OCV Bare gold Under OCV conditions
BG-25 Bare gold Under 25 kΩ load

CYS-OCV Gold surface modified with Cysteamine Under OCV conditions
CYS-25 Gold surface modified with Cysteamine Under 25 kΩ load

MUA-OCV Gold surface modified with 11-MUA Under OCV conditions
MUA-25 Gold surface modified with 11-MUA Under 25 kΩ load

ATP-OCV Gold surface modified with 4-ATP Under OCV conditions

2.5. Performance Evaluation

The start-up time of the biofilm formation was determined using the voltage versus time plot,
from the point when the voltage started to increase dramatically. The biofilm formation was accepted
as having stopped when the voltage reached a steady value.

The performance of MFCs is usually estimated by a polarization curve. The polarization curve
(voltage vs. current) was obtained by changing the external resistors between 1 MΩ and 0.5 kΩ at
five-minute intervals while recording the voltage. Linear fitting of the curve in the ohmic loss region
resulted in the total internal resistance of the µMFC. The current through the resistors was calculated
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via Ohm’s law, I = V/R, and the output power was obtained via Joule’s law, P = V × I. Current and
power densities were normalized to the anode area (0.61 cm2) and anode chamber volume (10.4 µL).

The EIS measurements were performed with a two-electrode mode using the Autolab PGSTAT204
potentiostat/galvanostat FRA module (Metrohm) under open circuit conditions. Although the fabricated
µMFC electrodes had silver layers to be used as the Ag/AgCl reference electrode after chlorination,
this planar reference electrode was not suitable for long-term studies. Therefore, anode impedance
spectra were obtained using the anode as the working electrode and the cathode functioning as both
the reference and counter electrodes in a frequency range of 1 MHz to 0.1 Hz with a sinusoidal signal of
a 10 mV amplitude. The data were fitted to an equivalent electrical circuit using the Autolab impedance
analysis software Nova 1.11.

2.6. Biofilm Analysis

The anodes were disassembled and rinsed in phosphate buffer saline (PBS). Adherent bacteria
on the anodes were fixed in a 2% glutaraldehyde solution for at least 24 h at 4 ◦C (glutaraldehyde
solution, Grade I, 25% in H2O, Sigma Aldrich, St. Louis, MO, USA). Samples were then dehydrated by
serial 10-min transfers through 50, 70, 90, and 100% ethanol. A thin Au-Pd film with a thickness of
3 nm was deposited onto the sample by sputtering to improve the conductivity for Scanning Electron
Microscope (SEM) imaging. Prepared samples were examined at 20 kV using an SEM (FEI Quanta
400 F, METU Central Laboratory).

3. Results and Discussion

3.1. Characterization of Thiolated Gold Surfaces

Alkanethiol-modified gold surfaces having carboxylic or amine functional groups are known to
result in a more hydrophilic character compared to bare gold surfaces. Table 2 shows the contact angle
values for different surfaces. Carboxyl groups are amongst hydrophilic functional groups. Since the
introduction of carboxylic acid on the surface led to an increase in the hydrophilicity, the water contact
angle decreased approximately 11 degrees, which is in good agreement with the literature [34,35].
Functionalization with amine-terminated alkanethiols also led to a decrease in the water contact angle.
Water molecules can interact with amine groups by forming hydrogen bonds, justifying the modification
of the surface. The introduction of amine groups was also found to increase the hydrophilicity in other
studies [36].

Table 2. Contact angle measurements.

Surface Contact Angle

Bare gold 65◦

Gold surface modified with cysteamine 52◦

Gold surface modified with 11-MUA 53.7◦

Gold surface modified with 4-ATP 52◦

3.2. µMFC Performance

Shewanella oneidensis MR-1 used in the study can be simultaneously found as planktonic cells and
adherent cells forming the biofilm in fuel cells, and both types can generate electricity alongside each
other [37]. However, adherent cells on the anode are considered to be the main contributor to current
generation in most cases [38]. Rozenfeld et al. showed that the biofilm on the anode provided the
majority of the power output rather than planktonic bacteria in different micro electrolysis cells [39].

In accordance with the mentioned literature, when introduced in the anode chamber, planktonic
bacteria started oxidation of the fuel, causing a potential difference between the electrodes in this study.
When the bacteria started to accumulate on the gold anode surface, the biofilm gradually formed.
There was a rapid increase in voltage after some lag time, as shown in Figure 6. This lag time is
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associated with the time needed to establish initial bacteria-anode electron transfer. This increase was
more apparent for the systems operated under OCV (BG-OCV, CYS-OCV, and MUA-OCV) than the
systems operated under load (BG-25 and CYS-25). This can be observed in the voltage versus time
plots of the µMFCs in Figure 6. CYS-25 and BG-25 system voltages started to increase after inoculation
and kept increasing until reaching a maximum stable voltage value.
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The time needed to reach 90% of the maximum stable voltage was determined as the start-up
time. In our previous study, the acclimatization of µMFCs under a load resulted in a shorter start-up
time [27]. In accordance with the previous results, in the study presented here, µMFCs with an
unmodified anode (BG-25) resulted in a shorter start-up time when operated under load than BG-OCV.
µMFCs functionalized with alkanethiols (CYS-OCV and MUA-OCV) displayed a greater than 50%
shorter start-up time without the need of an operation under load with respect to the BG-OCV system.
However, CYS-25 did not present advantages over CYS-OCV in terms of the start-up time. MUA-25
and ATP-OCV systems had very low voltages, so it was not possible to determine their start-up times
and a quantitative performance analysis could not be performed (Table 3).

Table 3. Performance µMFC systems.

Parameter BG-OCV BG-25 CYS-OCV CYS-25 MUA-OCV

Load during operation OCV 25 kΩ OCV 25 kΩ OCV
Start-up time 70 h 48 h 30 h 42 h 27 h

Internal resistance 19 kΩ 8 kΩ 6 kΩ 23 kΩ 214 kΩ
Maximum power 1.433 µW 2.093 µW 2.000 µW 0.889 µW 0.046 µW

Current at max. power 8.684 µA 15.976 µA 20.000 µA 6.842 µA 0.527 µA

After the maturation of all systems, electrochemical analyses were performed. Figure 7 shows the
polarization and power output curves of the five µMFCs investigated. The polarization plots consist of
three regions. In the first region, activation losses were observed. This was characterized by a drastic
decrease in voltage under a low current. As stated in the literature, these losses occur during the
transfer of electrons at the electrode surface due to the activation energy needed for oxidation and
reduction reactions [40]. In the second region, the voltages for all of the systems fell more slowly and
the voltage drop had a linear relation with the current. This region is defined by the ohmic losses,
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which were both the resistance to the flow of electrons through the electrodes and interconnections,
and the resistance to the flow of ions through anolyte, PEM, and catholyte. The slope of the linear
part of the curve for ohmic losses defines the internal resistance value of the system. MUA-OCV had
the highest internal resistance (214 kΩ), causing a very low power output. This can be explained
by inefficient electron transfer through the anode and 11-MUA coating due to the long chain of this
molecule. Internal resistances for CYS-25 (23 kΩ) and BG-OCV (19 kΩ) were in the same range,
but BG-OCV had a higher power output (1.433 µW) because CYS-25 had not only a higher internal
resistance, but also higher activation losses in the first region. As Figure 7b shows, the power outputs of
BG-25 (2.093 µW) and CYS-OCV (2.000 µW) were close, but CYS-OCV had a 25% higher current value
at the maximum power point due to a 33% lower internal resistance than BG-25. This demonstrated
that CYS-OCV had a higher efficiency between the biofilm and anode surface, which may be due
to better-quality biofilm formation. Concentration losses were dominant in the third region of the
polarization curves, as can be observed in Figure 7. These losses occurred when the rate of mass
transport of a chemical species by diffusion to the electrode surface inside the system limited the
current production, mainly at high current densities, as stated by Logan et al. [40].
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Table 3 provides a comparison of the quantitative results presented in Figure 7 for µMFCs
investigated in this study. Although MUA-OCV had a shorter start-up time, its power output was
very low. The bacteria quickly adhered to the modified surface and resulted in a shorter start-up
time; however, since 11-MUA has a long carbon chain, its electron conductivity is lower than that
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of CYS, which affects the performance of the fuel cell. CYS-OCV was found to be quite promising
because its power output was as high as BG-25 and it had a short start-up time. This can be explained
by the favorable bacterial attachment on the amine group and rapid/uninhibited electron transfer
due to the short carbon chain. On the other hand, ATP-OCV modified with 4-ATP did not generate
power. Correspondingly, it is believed that phenol rings in 4-ATP might have inhibited bacterial
growth, as some studies in the literature have claimed that phenols may have antimicrobial activity [41].
Furthermore, it was concluded that an increase in surface hydrophilicity had a positive effect on
the power output in the case of the cysteamine-modified anode when BG-OCV and CYS-OCV were
compared. Hydrophilicity makes surfaces more approachable for planktonic bacteria, as evidenced
by [42,43], where an enhancement of the power output with an increase in the surface hydrophilicity
was reported. However, it was observed in this study that hydrophilicity alone was not enough
for this enhancement since modification with cysteamine and 3-ATP had a similar hydrophilicity,
but different performance. It can be concluded that the functional group on the surface was also
important, in addition to the hydrophilicity.

The results obtained established certain performance enhancement in terms of power and current
densities and the start-up time with respect to similar microliter-scale microbial fuel cells with the same
biocatalyst used in the literature. The power density (315 µW/cm3) and start-up time (30 h) obtained
with CYS-modified µMFCs (operated in an open circuit) were found to be better than in a similar
literature study carried out by Qian et al. [7] (Table 4). The power and current densities in this study
were smaller than the densities of MFCs made of carbon paper by Vigolo et al. [44], but the start-up
time was five times shorter. Bacteria usually prefer to adhere to carbon-based materials, but they are
difficult to integrate in MEMS processes compared to gold as an electrode material. There are studies
being conducted to adapt carbon-based electrodes to micro-scale MFCs [45], but their fabrication is not
yet compatible with mass production solutions.

Table 4. Comparison of µMFC systems with the literature.

Parameter BG-25 CYS-OCV Qian et al., 2009 [7] Vigolo et al., 2014 [44]

Bacteria S. oneidensis MR-1 S. oneidensis MR-1 S. oneidensis MR-1 S. oneidensis MR-1

Fuel cell geometry Double chamber with
Nafion-117

Double chamber with
Nafion-117

Double chamber with
Nafion-117

Double chamber with
Nafion-117

Process type Continuous Continuous Batch Continuous
Anode area 0.61 cm2 0.61 cm2 0.15 cm2 0.5 cm2

Anode volume 10.4 µL 10.4 µL 5 µL 5 µL
Chamber depth 170 µm 170 µm 100 µm 100 µm

Anode/Cathode materials Au/Au Au/Au Au/Carbon cloth Carbon paper/Carbon paper
Anolyte/Catholyte TSB/K3Fe(CN)6 TSB/K3Fe(CN) TSB/K3Fe(CN) TSB/K3Fe(CN)

Load 25 kΩ OCV 100 Ω 100 kΩ
Start-up time 48 h 30 h 47 h 160 h(15 h lag time)

Internal resistance 8 kΩ 6 kΩ 30 kΩ 49 kΩ
Volumetric power density 330 µW/cm3 315 µW/cm3 15 µW/cm3 900 µW/cm3

Areal power density 3.4 µW/cm2 3.3 µW/cm2 0.15 µW/cm2 9 µW/cm2

Volumetric current density 2515 µA/cm3 3148 µA/cm3 1300 µA/cm3 6200 µA/cm3

Areal current density 26.1 µA/cm2 32.7 µA/cm2 13 µA/cm2 62 µA/cm2

3.3. EIS Characterization

Electrochemical Impedance Spectroscopy (EIS) is a technique widely used for the characterization
of fuel cells to investigate electron transfer processes between interfaces. Its advantage over polarization
curves is that EIS does not only give the total internal resistance of the fuel cell, but can also provide
information about its components, such as the electrolyte resistance, charge transfer resistance,
and diffusion resistance [46]. EIS forms the impedance spectra by applying an AC potential to an
electrochemical cell and then measuring the current through this cell.

TheµMFCs used in this study showed performance variations due to different resistances contained
in their anode, cathode, electrolytes, and membrane. Figure 8 shows the Nyquist plots of overall fuel
cells with a close-up view of the high-frequency region. When the Nyquist plots were compared,
the primary observation was that the plots were formed by a distressed semi-circle (a characteristic
of charge transfer process limitations) and a straight line in the low-frequency region, representing
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typical Warburg impedance (a characteristic of diffusion limitations). A distressed semi-circle is
generally observed due to the combination of a capacitor element and a resistor element in parallel
when fitting the EIS data. Determining the equivalent circuit of the system is crucial to interpreting
these data. The Randles circuit is the most used equivalent circuit in the fitting of experimental data
during EIS analysis. It is a model for a semi-infinite diffusion-controlled faradaic reaction to a planar
electrode [47]. The diffusional resistance element (the Warburg impedance) is in series with the charge
transfer resistance. It also includes the solution resistance and a double-layer capacitor.
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(b) close-up of the high-frequency region (1 MHz–5 kHz).

By analyzing the data after fitting with the Randles circuit, it was observed that the main influence
on the impedance was due to the charge transfer resistance. This was especially apparent with the
very high impedance value (−Z” = 46.7 kΩ) of MUA-OCV. Its high impedance hindered the mass
transfer effect in the low-frequency region. This supports the results obtained from polarization curves
showing that MUA-OCV had inefficient charge transfer. Charge transfer resistances calculated using
the fitted data for BG-25, CYS-OCV, CYS-25, and MUA-OCV were 1.3, 1.2, 1.8, and 60 kΩ. These values
differed from the ones obtained using polarization curves. This difference may be corrected by
using more accurate equivalent circuit models. Although the general behaviors of BG-25, CYS-OCV,
and CYS-25 were similar, cysteamine-modified µMFCs had more prominent mass transfer limitations,
as demonstrated by the low-frequency region in the Nyquist plots. These results were consistent
with the study of Rikame et al. [48], where they concluded that the modified graphite anodes showed
decreased charge transfer and electrolyte resistances due to active materials.

As demonstrated in Figure 8b, the solution resistance values changed between 10 and 20 Ω,
which were much lower than the total internal resistance values. Additionally, the same plot showed
that systems had non-zero inductances as its effects are often seen at the highest frequencies (between
1 and 0.15 MHz in the study). Possible causes are the actual physical inductance of the wires and the
electrode. It points out that for developing a more accurate model, an inductor can also be included in
the equivalent circuit.

3.4. Characterization of Biofilms

After approximately two weeks of operation, µMFCs were disassembled and an SEM analysis
of fixed gold anodes was performed. For three different µMFCs, SEM images showing Shewanella
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oneidensis MR-1 are given in Figure 9. CYS-25 and MUA-OCV systems resulted in very densely packed
bacterial cells on the surface by stacking on top of each other. This was in good agreement with the
relation between the start-up time and biofilm quality. Even though MUA-OCV produced a very
low power output, it had a high-quality biofilm resulting in a shorter start-up time, which showed
that 11-MUA does not inhibit biofilm growth, but electron transfer is inhibited by the long carbon
chain of the molecule. The main difference between the appearances of biofilms was the amount of
extracellular polymeric substances (EPS). MUA-OCV had less EPS and precipitated salts than CYS-25.
The appearance of the bacteria was altered in some regions due to the fixation procedure. Furthermore,
the treatment with ethanol might have washed away constituents, and dehydration might have affected
the structure and thickness of the biofilm. There were visible regions where the biofilm was peeled off

from the gold layer due to the damage that occurred during EIS measurements. When observed at
a higher magnification (20,000×), there were voids and cracks on the biofilm. These structures help
the mass transport by forming water channels. These cracks were also observed with the Shewanella
oneidensis MR-1 biofilm grown on gold by Qian et al. [8] and on graphene foam by Jiang et al. [45].
These voids also lead to imperfect contact between the bacteria and the gold surface, causing a decrease
in the electrical conductivity of the biofilm matrixes, which lowers the performance of the fuel cell, as
suggested by other studies [49–51].
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4. Conclusions

The influence of the surface functionalization of gold anodes with alkanethiols on the performance
of microliter-scale MFCs employing an exoelectrogenic bacteria Shewanella oneidensis MR-1 was
investigated. The experimental data showed that µMFCs modified with CYS and 11-MUA resulted in
more than a 50% reduction in start-up times. Depending on the chain length and functional group of the
molecule, power generation enhancement differed. SEM images confirmed that both 11-MUA and CYS
modifications led to dense biofilms; however, their power outputs were lower than the output of bare
gold µMFC acclimatized with a 25 kΩ load. The power and current densities achieved were comparable
to those obtained in similar studies in the literature. These results provided insights into the interaction
of electrogenic bacteria with different functional groups on gold surfaces. Further optimization studies
with gold electrodes may enhance the performance of µMFCs for practical applications with a higher
adaptability as fast and efficient portable devices, such as toxicity sensors, bacterial screening sensors,
and micro power sources.
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