
micromachines

Article

Advanced Infill Designs for 3D Printed
Shape-Memory Components

Daniel Koske and Andrea Ehrmann *

����������
�������

Citation: Koske, D.; Ehrmann, A.

Advanced Infill Designs for 3D

Printed Shape-Memory Components.

Micromachines 2021, 12, 1225. https://

doi.org/10.3390/mi12101225

Academic Editors: Matteo Cocuzza

and Simone Luigi Marasso

Received: 20 September 2021

Accepted: 7 October 2021

Published: 8 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany;
daniel.koske@fh-bielefeld.de
* Correspondence: andrea.ehrmann@fh-bielefeld.de

Abstract: Poly(lactic acid) (PLA) is one of the most often used polymers in 3D printing based on the
fused deposition modeling (FDM) method. On the other hand, PLA is also a shape memory polymer
(SMP) with a relatively low glass transition temperature of ~60 ◦C, depending on the exact material
composition. This enables, on the one hand, so-called 4D printing, i.e., printing flat objects which
are deformed afterwards by heating them above the glass transition temperature, shaping them and
cooling them down in the desired shape. On the other hand, objects from PLA which have been
erroneously deformed, e.g., bumpers during an accident, can recover their original shape to a certain
amount, depending on the applied temperature, the number of deformation cycles, and especially on
the number of broken connections inside the object. Here, we report on an extension of a previous
study, investigating optimized infill designs which avoid breaking in 3-point bending tests and thus
allow for multiple repeated destruction and recovery cycles with only a small loss in maximum force
at a certain deflection.

Keywords: 3D printing; poly(lactic acid) (PLA); fused deposition modeling (FDM); shape-memory
polymer (SMP); 4D printing; infill patterns

1. Introduction

Nowadays, 3D printing is used for many applications, from rapid prototyping to
rapid tooling to rapid manufacturing [1]. Printing polymers is often performed by the
fused deposition modeling (FDM) technology which enables creating 3D shapes from a
broad variety of polymers [2,3]. One of the most often used polymers in FDM printing is
poly(lactic acid), a biodegradable natural polymer without cell-toxic properties and thus
also suitable for biotechnological and biomedical applications [4,5].

While 3D printing in general allows for creating nearly all shapes, in many cases this
freedom of design is limited by technical problems, such as the requirements to have a
suitable contact surface with the printing bed, to avoid too strong overhangs, etc. This is
why in many cases it would be supportive to print a certain shape flat on the printing bed
and afterwards deform it to reach the final shape. PLA indeed shows such shape-memory
functionality [6–8]. It can thus be used to fit orthoses to an individual finger [9], but also
for diverse biomedical applications, such as for minimally invasive surgeries [10–13]. 4D
printing PLA is also used for design purposes and other applications [14–17].

In case of 4D printing, the required final shape is reached by heating the as-printed
object to a temperature above the glass transition temperature, i.e., typically in the range of
60 ◦C to 100 ◦C in case of PLA [6,10,11], deforming the object at high temperature and fixing
the desired shape during cooling it down back to room temperature. Another application
of shape memory polymers, however, is related to accidental deformation, e.g., of bumpers,
safety equipment for sports, etc. In this case, the deformation occurs at low temperatures
where the mechanical impact may not only lead to reversible deformation, but also to
broken bonds between 3D printed lines or within them.
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In a previous study, we thus investigated diverse infill patterns, comparing some
of the patterns available in slicing programs for FDM printers with self-designed infill
patterns, mostly based on the idea of leaf spring structures [18]. Here, we show the results
of a subsequent study, leading to more sophisticated structures which retain their shapes
to a large amount even after 10 bending and recovery cycles.

2. Materials and Methods

The samples used in this study were printed using a MEGA-S FDM 3D printer (ANY-
CUBIC; Shenzhen Anycubic Technology Co., Ltd., Shenzhen, China). A nozzle diameter of
0.4 mm was used to set a layer thickness of 0.2 mm for the first layer and 0.12 mm for the
other layers. The printing temperature was set to 200 ◦C and the heating bed temperature
was set to 60 ◦C constantly.

The test specimens made of PLA (GIANTARM, Shenzhen, China; PLA filament
1.75 mm, silver; without additives to increase crystallinity) were constructed with the
dimensions of 120 mm × 15 mm × 6 mm following polymer test specifications (ISO
20753:2018) and printed on the long side (on the rear of the CAD models shown in Table 1).

Table 1. Samples used in this study. Red parts denote the printed shell, the green parts show the printed inner wall (all
samples were printed without support structures).

Sample Name (Sample Mass) Sliced Model Printed Specimen

A-k (6.1 g)
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All specimens were designed and constructed in-house and always printed under
the same circumstances, with a sample fill density of 100%, a print speed of 50%, and a
high edge print positioning with a supporting brim with 6 line counts. To illustrate the
material content, the mass of the test specimens was determined using a Xavax Jewel
digital precision balance (Hama GmbH & Co KG, Monheim, Germany) and used as an
indication and comparison value (Table 1).

In the first phase, certain basic patterns have been developed as filling structures for
the specimen. The structures of the test specimen series “A” were created following an Octet
grid matrix pattern [19]. A sample A-k with smaller repeat unit and a sample A-G with
larger repeated unit were designed and printed, optimizing the structures presented in [18].

Test specimen “B” is an extension from the self-developed structure “LP100” from [18].
Here, waves and textile structures were combined for a new structural idea.

The infill pattern for test specimens “C” includes the structural fabric from dynamic
lightweight design [20]. Auxetic structural behavior [21] is to be tested for shape memory
effects in the test specimens C-k and compared with the other designs.

In the second phase, the filling patterns of the first phase have been changed or mixed.
The AC-G test specimen was created as a mixture of A-G and C-k. The AC-H test specimen
was designed from the A-G pattern, with the inclusion of reinforced structures due to
increased fill pattern content. The specimen D-G is another new approach constructed
from the test specimen series “A” and “C”.

Each sample was tested in triplicates regarding maximum deflection and with different
amounts of specimens, as given in the Results section, for bending and recovery tests.

Bending and recovery tests were performed by a universal testing machine (Kern &
Sohn, Balingen-Frommern, Germany). While each set of samples was first tested until break
(or until the maximum deflection possible in the test setup) to find the point of maximum
force, recovery tests were performed until the maximum force was reached, followed by
recovery in a water bath of (60 ± 1) ◦C for 1 min, before it was cooled down in another
water bath at room temperature for 2 min. This temperature is above the glass transition
temperature of amorphous PLA used for 3D printing [22,23].

The main differences to the previous study [18] are as follows:

- The inner walls are thinner, enabled by printing on a long thin plane (front or back in
the sliced models in Table 1), thus reducing the specimen’s mass.

- Channels along the whole specimen are not only produced along the shorter in-plane
direction (from front to back in Table 1), but also along the longer in-plane direction
(from left to right in Table 1).

- Special lightweight designs are used (samples A and C), again reducing the specimen’s
mass.

- All samples are more lightweight than the best specimen of the previous study (sample
LP100 in [18] had a mass of 9.8 g).

3. Results and Discussion

First, Figure 1 depicts the results of the maximum bending tests. Generally, the three
nominally identical samples behaved quite similarly in most cases, with one specimen of
sample B-G (Figure 1c) breaking during the test, while the others remained intact.

For samples A-k, B-G, and C-k, a maximum bending force is visible near 5 mm
deflection, followed by a decrease of the force necessary for further bending up to a
deflection of ~10 mm, and a subsequent further decrease with smaller slope until the
maximum possible deflection was reached. In these three samples, the maximum forces
reached values around 170–200 N.
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(c) specimens B-G.; (d) specimens C-k.

Sample A-G behaves slightly differently. Here, the maximum force is lower, is reached
later, and the slope of the elastic part of the curve (around 0–6 mm) is lower. As the infill
percentage varies from one position to the other in these samples, calculation of the elastic
modulus from these forces is not unique and thus not used for comparison here.

More interestingly, in sample A-G the force does not strongly decrease after the
maximum value but stays on a similar level in two of the three samples under investigation
and slowly decreases in the third one. It must be mentioned that in this sample, the pattern
has the largest lateral dimensions of the unit cell, i.e., small deviations of the positioning in
the test stand can have a large influence on the result.

This relatively constant level of force, independent from the deflection, can be assumed
to be advantageous for the planned application in recoverable bumpers etc., where the
deformation depth will vary, and a material structure able to absorb energy constantly
along a broad range of deformation is necessary.

This is why more structures similar to the infill pattern A-G were prepared, which are
presented in Figure 2.
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Table 2 depicts the maximum forces as well as absorbed energies for the maximum
deflection of ~27.5 mm used in these tests [24]. Due to the small dimensions of the tested
specimens, the absorbed energies are not large, but allow for comparing the different
samples, showing that the absorbed energies are similar for most samples, with samples
A-G absorbing the smallest energy and the last four samples (C-k, AC-G, AC-H, and D-G)
absorbing significantly more energy than the others. Among these four samples, AC-G has
the smallest maximum force, i.e., would cause the smallest impact on the opposite object in
a crash and seems thus advantageous for the possible use as a bumper.

Table 2. Maximum forces and absorbed energies derived from Figures 1 and 2.

Sample Max. Force (N) Absorbed Energy (J)

A-k 169.7 ± 1.5 2.47 ± 0.04
A-G 96.3 ± 2.1 1.99 ± 0.12
B-G 180.0 ± 1.7 2.42 ± 0.09 1

C-k 195 ± 6 2.91 ± 0.10
AC-G 112.3 ± 2.1 2.622 ± 0.010
AC-H 144 ± 10 2.73 ± 0.12
D-G 206.0 ± 2.0 2.6 ± 0.8

1 Calculated without B-G2 which broke during the test.

While the last of these improved samples (Figure 2c) again shows a sharp peak
around 5 mm, similar to sample A-k, sample AC-H shows a much broader peak at larger
deflection (Figure 2b), and sample AC-G shows a nearly constant force from ~9 mm up
to the maximum available deflection. For the idea of preparing bumpers, sample AC-G
would thus be ideal.

Next, Figure 3 shows the recovery tests up to the deflection where the force became
maximum in the previous tests. As described above, well-applicable shape memory
polymer samples should be able to recover their original shape, which is visible from
the position where the subsequent cycles start; the stronger the residual deformation is,
the larger is the deflection where the force is for the first time larger than zero. On the
other hand, good recovery properties mean that subsequent cycles show similar forces at
maximum deflection.

According to these rules, a clear pre-selection among the here tested samples can be
made. The specimens C-k and AC-H show a relatively strong residual deformation, i.e.,
not a good recovery. Besides, in sample C-k there are severe “jumps”, resulting from large
broken bonds in this sample, making this structure not well usable.

The samples B-G and D-G, on the other hand, show strongly reduced maximum forces,
in both cases losing more than 2/3 of the original maximum force after 10 bending and
recovery cycles. This makes these two samples not well suited for applications in bumpers,
etc. either.

The samples A-k and A-G, on the other hand, do not show both these problems. While
in both cases there is a clear difference between the first and the second cycle, all subsequent
cycles show relatively similar values, in case of sample A-k even with a small increase of the
maximum force from the fifth cycle which may be due to work hardening [25]. However,
sample A-k showed only a narrow peak, indicating that larger deformation will not be
recovered in a similar way.
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Thus, Figure 4 shows bending and recovery cycles of sample A-G, which was found
to have only a slight decrease of the force for larger deflections, now comparing maximum
deflections of approximately 11 mm, 16 mm, 21 mm, and 26 mm, i.e., testing in steps of
~ 5 mm between the maximum force (Figure 3b) and the maximum possible bending.

In comparison with the first recovery test, using a maximum deflection of 7 mm
(Abb. 3b), here the difference between the maximum forces of the first and the residual
cycles is larger. Besides, the residual deformation grows with the maximum elongation,
as it could be expected. On the other hand, in all cases the last cycles show a relatively
constant behavior in terms of maximum force and residual deformation. Again, a slight
work hardening is visible where lines of subsequent tests cycles are crossing. No breaking
of the samples occurred, making it in general suitable for safety applications etc.

Very similar findings can be recognized in Figure 5 where the same tests are depicted
for sample AC-G. Comparing the recovery tests of both samples A-G and AC-G, they
show comparable maximum forces, with higher values for sample AC-G, nearly identical
residual deformation, and slightly smaller differences between the forces during the first
cycle and the subsequent ones for sample AC-G. As Table 1 shows, both samples share a
similar idea of construction. This indicates that this sort of construction, further optimized,
is advantages in comparison with the other structures tested here.
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Finally, in comparison with the previous structures [18], it must be mentioned that the
latter partly showed larger maximum forces, similar residual deformation, but a stronger re-
duction of the maximum force with subsequent cycles, indicating that the recent structures
are a better base for applications in bumpers and other reusable safety equipment.

The main aim of this study was to find more lightweight structures with identical
or better recovery properties as the best sample of the previous study [18]. Figure 6 thus
compares the residual strain of the samples A-G and AC-G (Figures 4 and 5) with the results
of the sample LP100 from the previous study (Figure 7b in [18]). It is clearly visible that the
most lightweight sample, A-G, does not show larger residual strains than the best sample
of the previous study and for most maximum deflections similar results as the heavier
sample AC-G. The structure A-G is thus best suited for a lightweight recoverable object.
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4. Conclusions

Different self-designed infill structures were used to prepare 3-point bending test
samples from PLA by 3D printing via the FDM technique. Two of the samples designed
as typical lightweight structures showed relatively constant forces for a broad range of
deflection, making them suitable for safety applications. Bending and recovery tests
revealed good recovery properties of these samples after heating the specimens to 60 ◦C,
with one of the lightweight structures designed for the recent studies showing even lower
residual strain despite significantly reduced mass. Next, the recovery process itself must
be optimized in terms of temperature and duration, besides the choice of the ideal PLA
material, combined with a final optimization of the specimen geometry, before tests with
fast deformations will be performed, as they will typically occur during accidents.
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