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Abstract: The quick growth of information technology has necessitated the need for developing
novel electronic devices capable of performing novel neuromorphic computations with low power
consumption and a high degree of accuracy. In order to achieve this goal, it is of vital importance to
devise artificial neural networks with inherent capabilities of emulating various synaptic properties
that play a key role in the learning procedures. Along these lines, we report here the direct impact of
a dense layer of Pt nanoparticles that plays the role of the bottom electrode, on the manifestation
of the bipolar switching effect within SiO2-based conductive bridge memories. Valuable insights
regarding the influence of the thermal conductivity value of the bottom electrode on the conducting
filament growth mechanism are provided through the application of a numerical model. The
implementation of an intermediate switching transition slope during the SET transition permits
the emulation of various artificial synaptic functionalities, such as short-term plasticity, including
paired-pulsed facilitation and paired-pulse depression, long-term plasticity and four different types
of spike-dependent plasticity. Our approach provides valuable insights toward the development of
multifunctional synaptic elements that operate with low power consumption and exhibit biological-
like behavior.

Keywords: conducting filament; diffusivity; nanoparticles; synapses; plasticity; conductance; resis-
tive memories

1. Introduction

The recent advances toward developing artificial neural networks and the perspective
of carrying out in-memory calculations have increased the interest for emergent electronic
synaptic elements that will be capable of performing multiple cognitive processes with low
power consumption and high accuracy [1]. Even though several memory scenarios have
been proposed toward that direction, a substantial amount of attention has been assembled
around memristive devices, particularly due to their minuscule dimensions, relatively
small power supply requirements and most important their excellent compatibility with
the conventional complementary metal-oxide semiconductor (CMOS) procedures [2,3].
The comparative advantage of memristors, as far as the development of artificial synaptic
devices is concerned, lies on their ability to continuously tune their synaptic weight values,
which is quite crucial for the realization of various bio-synaptic properties [4].

In recent years, tremendous progress has been made toward emulating various neu-
romorphic functionalities with memristive devices [5]. The impressive characteristic of
all the reported properties is that they cover a time constant between a few microseconds
to several years. Under this light, we can argue that the synaptic properties are generally
divided into two major categories: the short-term plasticity (STP) effects and the respective
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long-term plasticity (LTP) [6]. The STP pattern is associated with quick response and
information filtering whereas LTP response is connected with the memory capacity and
the dynamic modifications in synaptic strength. As concerns the STP properties, several
types of plasticity effects that evolve within the range of microseconds to several minutes
have been discovered, including the analog conductance modulation (excitatory/inhibitory
responses), paired-pulsed facilitation (PPF), paired-pulse depression (PPD) and augmen-
tation. In contrast with STP, LTP includes the long-term potentiation (LTPot), long-term
depression (LTDep) effects as well as the transition from STP to LTP. The synaptic effi-
cacy under LTP mode has a typical duration from several hours to years. Moreover, the
distribution and firing activity of the incoming signals to the synapses from the neuron
network, as well as the local dynamic synaptic weight modulation, results in the realization
of some high-order synaptic plasticity characteristics with both long-term and short-term
dynamics. These include the spike-dependent plasticity [7], the metaplasticity [8] and
the hetero-synaptic plasticity effects [9]. Although the abovementioned list of synaptic
properties seems daunting and it is almost impossible to devise an electronic element
capable of performing all of these tasks, memristors arise as an ideal candidate for that
direction. Despite their relatively simple metal–insulator–metal (MIM) structure, resistive
switching devices possess extremely rich and complicated internal mechanisms capable of
emulating a variety of bio-realistic synaptic properties [10].

Since the implementation of the various neuromorphic properties is strongly asso-
ciated with the conducting filament (CF) underlying growth mechanism, we can attain
reconfigurable synaptic responses by controlling the effective diameter of the CF. Conse-
quently, we can argue that the STP functionalities can be emulated by small CF that exhibit
unstable behavior whereas LTP behavior can be attained by bigger CFs that preserve their
initial configuration even without applying pre-synaptic pulsing schemes. The presence of
nanoparticles (NPs) within the proposed device structure can be proved quite beneficial
toward controlling the potential percolation paths for the formation of the CFs, due to the
intense local Joule heating effect and its influence on the thermal accelerated ion migration
fluxes. As a result, we managed to reproduce several from the abovementioned synaptic
plasticity effects, as well as four different types of spike-dependent plasticity, namely
spike-rate dependent plasticity (SRDP), spike-voltage dependent plasticity (SVDP), spike-
number dependent plasticity (SNDP) and spike-duration dependent plasticity (SDDP). A
comprehensive numerical model was also applied in order to shed light on the CF dynamic
behavior as well as the influence of the electrode thickness and material composition at the
local Joule heating distribution.

2. Materials and Methods

In order to assess the manifestation of various synaptic properties from our devices,
we fabricated single layer devices of Ag/SiO2/TiN/Pt NPs. All thin film depositions
were performed on oxidized silicon substrates by employing the RF magnetron sputtering
technique. A high vacuum chamber with a base pressure of ~10−6 mbar was employed for
the depositions that were carried out at room temperature. A high-purity ceramic target
(SiO2 target = 99.99%) was used during the growth of the 20 nm thin film of SiO2. The flow
of the inert gas (Ar) during the deposition was kept constant at 20 sccm while for O2 a lower
flow was introduced into the vacuum chamber (1 sccm). The TiN bottom electrode (BE)
and Ag top electrode (TE) were accordingly deposited from TiN and Ag sputtering targets
with a total thickness of 15 and 40 nm, respectively. A total power of 140 W and 200 W was
delivered onto the ceramic targets (SiO2, TiN) and metallic target (Ag), respectively. The
fabricated devices were typical MIM capacitors with square electrodes of 100 um lateral
dimension. The Pt NPs were deposited by using the novel gas condensation terminated
technique from a high-purity Pt target (99.99% purity) [11]. This process evolves in a small
chamber, attached through a small aperture (~5 mm) to the main one, where the samples
are placed. The three main parameters that influence the size and density of the NCs are
the DC current value that is used to ignite the plasma, the inert gas partial pressure within
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the condensation zone, which principally depends on the Ar flow, and the selected distance
between the target material and the escaping aperture, which is defined as the length of the
condensation zone. The latter can be adjusted from a minimum distance of ~10 cm (namely
position 0) to a maximum of ~20 cm (namely position 100) and directly influences the size
of the produced NCs. The bigger this distance, the larger the nanocrystal size achieved. For
our case, a high Ar flow was chosen (60 sccm) in order to achieve a high surface density
(~5 × 1012 NPs/cm2) of the deposited NCs (~5 nm average diameter). Moreover, a current
value of 0.1 A was recorded during the deposition, which took place for about 20 min,
while position 100 was imposed for the length of the condensation zone.

The direct current (DC) I–V characteristics of the devices were performed with the
Keithley 4200 semiconductor parameter analyzer (4200-SCS) at SUSS MicroTec probe station
and at room temperature conditions. Retention measurements at elevated temperatures
were carried out at a Janis Ltd. cryostat (−193 to 200 ◦C) probe station, under vacuum
conditions (~10−2 mbar). The pulsed I–V measurements were conducted by employing
the Keithley 4225 Pulse Measurement Unit (PMU). The structural properties of the Pt NPs
were investigated by using the Philips CM 20 analytical High-Resolution Transmission
Electron Microscope (TEM).

3. Results
3.1. DC I–V Characteristics

Figure 1a illustrates the DC I–V characteristics acquired after the application of external
signals to the TE by keeping the BE to the ground mode.
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A compliance current (ICC) limit of 10−4 A was constantly applied in order to avoid 
the hard breakdown of the dielectric. It is also interesting to notice that no electroforming 

Figure 1. (a) Measured and calculated I–V hysteresis patterns during the application of 0.5 V external
bias, under the application of a compliance current (ICC) limit of 100 µA. The inset picture depicts a
TEM plan view image of the dense layer of Pt of nanoparticles (NPs). The scale bar in the TEM figure
corresponds to 20 nm. The arrows in the graphs indicate the switching direction, while the sweep
rate was 10 mVs−1. Similar switching patterns were captured by beginning the sweeps from 0 V to
|Vmax| (not shown here). (b) 3D calculated maps of the conducting filament (CF) effective diameter
distribution for states A (+0.3 V), B (−0.05 V) and C (−0.4 V).

A compliance current (ICC) limit of 10−4 A was constantly applied in order to avoid
the hard breakdown of the dielectric. It is also interesting to notice that no electroforming
procedure was required prior to the memory device operation, which it is not the case
for the majority of SiO2-based resistive switching memories [12]. Although the origins
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of this effect are not fully understood, we believe that the granular-like structure of the
deposited film [13], which stems from the relatively high working pressures, leads to
the creation of a nanoporous dielectric structure that facilitates the ionic migration [14].
The SiO2 thin film was found also in the amorphous state [15], which is also associated
with the degree of porosity of a metal oxide thin film [16]. The sample operates under
the bipolar switching mode and exhibits a quite big switching ratio (~106), which is also
beneficial for multibit storing capabilities [17]. The transition from the high-resistance
state (HRS) to the low-resistance state (LRS) takes place at about VSET ~ 220 mV while
the opposite transition manifests at VRESET ~ −50 mV. In addition, the sample exhibits
a transition slope of ~10 mV/dec(A) (Supplementary Materials Figure S1) during SET
transition. Interestingly, the sample without the presence of the 15 nm layer of TiN and
only the employment of Pt NPs as BE presents a steeper transition slope (~1 mV/dec(A)—
not shown here) where the reference sample with only 40 nm TiN as BE exhibits smoother
transitions (~30 mV/dec(A)) [15]. It is thus apparent that not only the material selection
(bulk metal or NPs) as well as the thickness of the BE decisively determine the switching
pattern. Although the origins of this effect are still under investigation, it is conceivable that
the surface roughness of the Pt NPs layer assist the creation of sharp edges that significantly
enhance the local electric field [18]. Moreover, as can be ascertained from the TEM plan view
image of the Pt NCs (inset of Figure 1a), the NCs do not exhibit any preferred morphology
and several irregular shapes can be detected, which could likewise impact the electric field
distribution. Moreover, the thermal conductivity values of the BE has a pronounced impact
on the local Joule heat distribution [19], as is disclosed later in the analytical modeling
section. The result of the abovementioned factors is the enhanced thermal accelerated
migration of silver ions that could interpret the steeper transition slopes.

The cycle-to-cycle (temporal) and device-to-device (spatial) responses divulged no
significant degradation of the hysteresis patterns after the application of 300 consecutive
DC cycles (Figure 2a) or by measuring 100 different memory cells on the same sample
(Figure 2b), respectively. In both cases, a large switching ratio is maintained (~105), while as
concerns the spatial distribution, low coefficients of variance (σ/µ) were measured for both
the HRS and LRS, thus indicating the small dispersion of the respective I–V characteristics.
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Figure 2. (a) I–V cycling behavior during the application 300 consecutive hysteresis loops and
(b) cumulative distribution functions (CDF) of both low-resistance state (LRS) and high-resistance
state (HRS) responses during DC consecutive operation from 100 different memory cells on the same
sample. The resistance values were extracted at a read out voltage of 100 mV.

3.2. Pulsed I–V Characteristics

The switching dynamics of our prototype was examined by enforcing square pulses
of 100 ns width and ±0.5 V amplitude in order to impose the SET and RESET transitions,
respectively. The results presented in Figure 3 indicate that a delay time (tSET) of ~80 ns
is required in order to detect a discernible current increase and a delay time of tRESET
~140 ns are required in order to reduce the operating current values. As far as the SET
transition is concerned, smaller delay times (tSET) are clearly recorded as we increase the
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pulse amplitude from 0.5 to 2.5 V (Supplementary Materials Figure S2). More specifically,
while a tSET ~50 ns is required in order to switch the memory device into the LRS under
the application of +0.8 V/100 ns square pulse, the same transition takes place at a tSET
~20 ns when a higher pulse, in terms of amplitude is applied (+2.5 V/100 ns). In order to
gain valuable insights into the origins of this effect, a series of measurements were carried
out by enforcing various positive square pulses, with amplitude ranging from 0.5 to 2.5 V
and step 100 mV [20]. The results depicted in Supplementary Materials Figure S3 reveal a
highly nonlinear connection between the pulse amplitude and the measured delay time,
which indicates that the SET kinetics is governed by ionic hopping procedures. The latter
mechanism exhibits a strong nonlinear relation from the local electric field and temperature
distributions and assists toward the accelerated migration of silver ions through the silica
matrix [21].

Pulse endurance and retention measurements were also performed on unstressed
memory cells in order to assess their behavior after the application of a train of pulses
(Figure 4). Square pulses of 1.5 V amplitude and 100 ns width were selected in order to
attain an initial memory window of ~104. Even though some variations are recorded after
the enforcement of 108 successive SET/RESET cycles, a switching ratio of 103 is preserved,
and this indicates the distinguishable nature of the two different resistance states. A
comparable pattern was captured during the evaluation of the retention performance,
where no remarkable fluctuations were measured for a period of 105 s and at elevated
temperatures (150 ◦C).
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3.3. Analytical Modeling

In order to elaborate on the underlying origins of the reported switching patterns
as well as the CF growth mechanism, we used a comprehensive numerical model that
was thoroughly presented in our previous work [15]. If we take into account that the
switching effect within our conductive bridge memories (CBRAM) configuration originates
from the anodic dissolution of metallic ions from the electrochemically active TE and their
respective cathodic reduction at the BE [22], we can argue that a metallic chain composed
of Ag nanoclusters (NCs) is progressively formed that is characterized as CF [23]. The
filamentary conjecture is also in line with the independence of the resistance values of
the LRS from the total device area, as can be ascertained from Supplementary Materials
Figure S4. In our model, we have incorporated a term related to the thermo-diffusion
flux of ions which is strongly affected by the local Joule heat distribution. Moreover, the
whole device structure is taken into account within our theoretical approach, as well as
the influence of the electrode material and thickness on the local temperature profiles. The
simulated two-dimensional (2D) cross-section profile in is presented at Supplementary
Materials Figure S5a, where also the selected boundary conditions can be found. Truncated-
cone CF was assumed during the numerical calculations in order to interpret the memristive
responses during DC triggering [24]. Although this specific choice seems arbitrary, the
simulation result reveals a quite good consistency with the respective experimental data.
Moreover, there are in the literature tangible experimental pieces of evidence as concerns
SiO2-based CBRAM that clearly indicate the existence of such types of CFs [25,26]. The
whole memristive behavior can be modeled by calculating the evolution over time of the
effective diameter (ϕ) distribution of the CF by employing the following three differential
equations [27,28]:

dϕ

dt
=

dϕ

dt

∥∥∥∥
dri f t

+
dϕ

dt

∥∥∥∥
di f f usion

+
dϕ

dt

∥∥∥∥
thermo−di f f usion

= Ae−
Edri f t−aqψ

kBT + Bϕ−1e−
Edi f f
kBT − Cϕ−1S

(
∂T
∂r

+
∂T
∂z

)
(1)

∇·σ∇ψ = 0 (2)

ρmCp
∂T
∂t

= ∇kth·∇T + σ∇|ψ|2 (3)

where α is the barrier lowering factor, Edrift is the energy barrier for ionic hopping, Ediff is
the diffusivity barrier, ψ is the electrical potential, kB is the Boltzmann constant, T is the ab-
solute temperature and S is the Soret coefficient [29]. In Supplementary Materials Table S1
the values for all parameters used in our model, including the A, B, and C fitting constants,
the electrical conductivity (σ), the mass density (ρm), the thermal conductivity (kth), the
activation energy of thermophoresis (ES) and the specific heat (Cp) can be found. Moreover,
the employed functions of thermal and electrical conductivity of the CF as a function of
its effective diameter are presented at Supplementary Materials Figure S5b. A numeri-
cal solver (COMSOL) was used in order to solve, simultaneously and self-consistently,
Equations (1)–(3). The results that are presented at Figure 1a point out the validity of our
theoretical approach while CFs with a diameter at the vicinity with the BE (ϕB) of 6 nm
was assumed (Supplementary Materials Figure S6). In Figure 1b, the 3D calculated maps of
the effective diameter distribution of the CF are depicted for three different bias conditions.
From these graphs, it is apparent that the switching effect originates from the modulation of
the ϕB near the BE since at this position the continuity of the CF starts to break. This result
is anticipated since the 15 nm thick TiN layer exhibits a thermal conductivity value of about
1 Wm−1K−1 [30], while the 40 nm thick Ag layer possesses a significantly larger thermal
conductivity value (~400 Wm−1K−1) [31]. It is thus obvious that the BE cannot efficiently
dissipate the generated heat induced from the local current distribution. As a result, a large
temperature gradient is formed that affects the stability of the CF. It is also interesting to
notice that Ag also exhibits a greater thermal conductivity value from the commonly used
electrode materials within valence change memories (VCMs) configuration (Pt, Au, Ti) [12].
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As a result, the dissolution of the CF takes place normally near the TE/CF interface [32].
Since the TE surface is exposed to the environment, this effect could potentially lead to the
device failure, due to the electrode delamination and the loss of the accumulated oxygen to
the ambient [33].

3.4. Artificial Synaptic Activity

Within the brain configuration, the neurons encrypt information packages by emitting
small voltage pulses that are called action potentials or spiking neuronal signals. In con-
junction with the distribution of neurons within the brain structure, there is also a massive
grid of synaptic elements that form a quite complex biological neural network, which is
responsible for human perception, emotion, forgetting, learning and memory activities [34].
While neurons are responsible for the generation and propagation of action potential, the
synapses execute the signal process and storage processes. It is thus obvious that the
synapses rule the brain architecture and configure its structural plasticity and colossal
parallelism for the assigned tasks. Within the brain, there are two types of synapses: the
electrical synapses and the chemical synapses [35]. The pure electrical synapses represent
the direct contact between the pre- and post-synaptic neurons and operate with relatively
big frequency. However, they possess no flexibility and signal modulation properties and
they are commonly encountered at the early fetus stages, where there is a lack of large-scale
functional neural networks. In reality, the most ordinary type of synapses is the chemi-
cal synapses that exhibit a small gap (~20 to 50 nm) between the pre- and post-synaptic
membranes. As a result, the synaptic efficiency or the junction strength can be adapted
according to the activities of the interconnected neurons. This quite important effect is
behind all the biological processes that take place within the human brain.

3.4.1. Potentiation and Depression Responses

Figure 5 depicts the artificial PPF and PPD characteristics after the application of a
train of total of 60 pulses with various amplitudes (Supplementary Materials Figure S7).
During the execution of the PPF/PPD procedures, the second post-synaptic response
becomes larger/smaller in respect to the first signal, through the application of two similar
pre-synaptic stimuli. Our devices successfully reproduce these properties and also exhibit
some other interesting features. While under the application of small pre-synaptic pulses
of 100 mV amplitude a gradual modification of the post-synaptic current values is recorded
for both PPF and PPD processes, an abrupt response is measured when increasing the
pulse amplitude to 300 and 500 mV [36]. More specifically, after the application of 16 pre-
synaptic signals with amplitude +500 mV and 43 signals with an amplitude of +300 mV,
the post-synaptic response is quickly increased. A similar pattern takes place during the
implementation of the PPD protocol, where after the application of 10 pre-synaptic pulses
with amplitude −500 mV and 25 pulses of amplitude −300 mV, the current values are
abruptly reduced. These traits are in line with the respective responses acquired during
the application of DC signals since the SET transition takes place always at a higher bias
with respect to RESET transition. In addition, the higher the triggering amplitude the
smaller pulsing sequence is required in order to impose the targeted conductance state. The
above effects can be viewed as direct evidence during the implementation of bio-synaptic
properties [37].
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Figure 5. Distribution of the post-synaptic current responses during the implementation of the
(a) potentiation and (b) depression procedures, under the application of total 60 pre-synaptic pulses
with 100 ns width and amplitudes of ±0.1, ±0.3 and ±0.5 V, respectively.

3.4.2. STP and LTP Effects

In order to leverage from the abovementioned transient responses, we thoroughly in-
vestigated the memory loss properties of our devices. According to the well-known model
of Atkinson and Shiffrin, the human memory is composed of three different components:
the sensory part and the short-term and long-term memories [38]. The sensory memory
stores temporarily the incoming information from the vast network of the sensory systems
that possess the human body (i.e., tactile, auditory, visual, etc.). If the information packages
are received at a higher rate, sensory memory is transformed to short-term memory. Ac-
cordingly, a transition from short-term to long-term memory can be imposed by controlling
the properties of the pre-synaptic signals, such as the amplitude and the frequency [39]. In
order to monitor the transformation from STP to LTP, as far as the potentiation process is
concerned, we applied a train of pulses with different frequencies. As can be ascertained
from Figure 6a, our sample retains the current values of the post synaptic response even
in the case of reducing the frequency of the pre-synaptic signals from 1 MHz to 100 kHz.
The progressive growth of the measured current under the application of 1 MHz signals
is attributed to the enlargement of the effective diameter of the CF, as it is schematically
depicted in Figure 6c–e. Further experiments were also carried out by enforcing a different
number of pre-synaptic pulses (20, 40 and 60) with high frequency (1 MHz) and constant
amplitude of 500 mV and monitoring the current decay rate through the application of
95 pulses with a frequency of 100 kHz and same amplitude [40]. The results are presented
at Figure 6b, where the normalized current decay distribution is shown. An exponential
relaxation approach is followed in order to describe the memory loss properties [41]:

It = I0 + AIe(−
t
τ ) (4)

where It is the current value after the elapse of time t, I0 is the initial current value, AI
is a fitting constant and τ is the relaxation time. From the fitting results, we can draw
the conclusion that the number of successive stimulations has a direct impact on learning
efficiency. The extracted relaxation times suggest the successful emulation of the LTP effect
since a long-lasting memory performance is achieved and is enhanced as we increase the
number of the pre-synaptic signals [42]. From a physical point of view, we can argue that
the formation of relatively big and robust CF that cannot self-rupture, in terms of effective
diameter distribution, is the driving force for this effect [43].
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lected after applying a set of 95 pulses, with a frequency of 100 kHz, after the enforcement of 60 
pulses, with frequency 1 MHz; (c–e) schematic representation of the CF growth procedure during 
the application of the consecutive pulsing scheme. The symbol φ stands for the effective diameter 
of the CF. 

However, a different picture takes place when we enforce smaller pre-synaptic sig-
nals, in terms of amplitude. Although initially a gradual increase of the measured current 
values is recorded, during the application of high-frequency pre-synaptic signals (1 MHz), 
by reducing the frequency the current responses quickly decay (Figure 7a). This behavior 
is comparable with the memory forgetting pattern of the human brain and signifies the 
manifestation of the STP effect [44]. The respective relaxation times acquired through the 
fitting process are also compatible with this assumption (Figure 7b). It is also interesting 
to notice that the current values of the post-synaptic signals are not completely diminished 
to the initial off-state, fact that indicates the existence of an attenuated LTP. This behavior 
is attributed to the existence of small CFs with sub-nm scale diameters that exhibit unsta-
ble nature (Figure 7c–e). In any case, our prototypes can also reproduce the rich dynamics 
of the synaptic plasticity that exists within the biological brains and comprises temporary 
and more stable constituents (i.e., the STP and LTP) [45]. Similar patterns are observed for 
the emulation of short-term depression (STD) and LTD (not shown here).  

Figure 6. (a) Experimental verification of the paired-pulsed facilitation (PPF) effect by monitoring
the post-synaptic current response after the application of a train of 70 pulses with the same width
(100 ns), amplitude (0.5 V) and different frequency; (b) normalized current decay distribution as a
function of time demonstrating long-term plasticity (LTP) synaptic behavior. The data were collected
after applying a set of 95 pulses, with a frequency of 100 kHz, after the enforcement of 60 pulses, with
frequency 1 MHz; (c–e) schematic representation of the CF growth procedure during the application
of the consecutive pulsing scheme. The symbol ϕ stands for the effective diameter of the CF.

However, a different picture takes place when we enforce smaller pre-synaptic signals,
in terms of amplitude. Although initially a gradual increase of the measured current values
is recorded, during the application of high-frequency pre-synaptic signals (1 MHz), by
reducing the frequency the current responses quickly decay (Figure 7a). This behavior
is comparable with the memory forgetting pattern of the human brain and signifies the
manifestation of the STP effect [44]. The respective relaxation times acquired through the
fitting process are also compatible with this assumption (Figure 7b). It is also interesting to
notice that the current values of the post-synaptic signals are not completely diminished to
the initial off-state, fact that indicates the existence of an attenuated LTP. This behavior is
attributed to the existence of small CFs with sub-nm scale diameters that exhibit unstable
nature (Figure 7c–e). In any case, our prototypes can also reproduce the rich dynamics of
the synaptic plasticity that exists within the biological brains and comprises temporary and
more stable constituents (i.e., the STP and LTP) [45]. Similar patterns are observed for the
emulation of short-term depression (STD) and LTD (not shown here).
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pulses, with frequency 1 MHz; (c–e) schematic representation of the CF growth procedure during 
the application of the consecutive pulsing scheme. The symbol φ stands for the effective diameter 
of the CF. 

3.4.3. Synaptic Weight Modulation 
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quired after the application of a train of 120 square pulses with 100 ns width and 1 V 
amplitude. These pulse characteristics were chosen in order to detect discernible patterns 
on the extracted conductance values. The data were assembled from 20 different memory 
elements, on the same sample, whereas the recorded variations could be related to the 
random formation of the CF and the diameter-related uniformity issues of the Pt NPs [46]. 
The conductance modulation pattern takes place in two stages. Initially, a sharp in-
crease/decrease of the respective conductance values takes place after the application of 
12 potentiation/9 depression pre-synaptic pulses. Afterward, a plateau is recorded for 
both synaptic processes. This behavior is closely associated with the steep transitions dur-
ing that the hysteresis pattern presents and it is detrimental in terms of efficiency of the 
backpropagation algorithm at the training stage of deep neural networks (DNNs) [47]. 
Several optimization procedures have been proposed toward obtaining a more linear re-
sponse, such as the incorporation of bilayer structures [37], but at the expense of the capa-
bility of emulating the STP to LTP transition [48,49].  

Figure 7. (a) Experimental verification of the PPF to paired-pulse depression (PPD) transition effect
by monitoring the post-synaptic current response after the application of a train of 70 pulses with
the same width (100 ns), amplitude (0.5 V) and different frequency; (b) normalized current decay
distribution as a function of time demonstrating STP synaptic behavior. The data were collected after
applying a set of 95 pulses, with a frequency of 100 kHz, after the enforcement of 60 pulses, with
frequency 1 MHz; (c–e) schematic representation of the CF growth procedure during the application
of the consecutive pulsing scheme. The symbol ϕ stands for the effective diameter of the CF.

3.4.3. Synaptic Weight Modulation

Figure 8 highlights the artificial synaptic excitatory and inhibitory responses acquired
after the application of a train of 120 square pulses with 100 ns width and 1 V ampli-
tude. These pulse characteristics were chosen in order to detect discernible patterns
on the extracted conductance values. The data were assembled from 20 different mem-
ory elements, on the same sample, whereas the recorded variations could be related to
the random formation of the CF and the diameter-related uniformity issues of the Pt
NPs [46]. The conductance modulation pattern takes place in two stages. Initially, a sharp
increase/decrease of the respective conductance values takes place after the application of
12 potentiation/9 depression pre-synaptic pulses. Afterward, a plateau is recorded for both
synaptic processes. This behavior is closely associated with the steep transitions during
that the hysteresis pattern presents and it is detrimental in terms of efficiency of the back-
propagation algorithm at the training stage of deep neural networks (DNNs) [47]. Several
optimization procedures have been proposed toward obtaining a more linear response,
such as the incorporation of bilayer structures [37], but at the expense of the capability of
emulating the STP to LTP transition [48,49].
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scribe the dynamics of the whole effect. The drop of the SRDP index is strongly correlated 
with the structural properties of the CF. From our analysis, we have calculated the values 
of 90 and 110 ns for the τ1 and τ2 times, respectively, which are in line with the relaxation 
times of the CF that were reported in our previous work [15]. This outcome indicates that 
the state stability of the CF does not only influences the memory-related properties but 
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Figure 8. (a) Profile of the pre-synaptic voltage signals during the application of a train of 120 pulses
with ±1 V amplitude, 100 ns width and 1 µs delay time. The sign of the pulse sequence was
inverted after the application of 60 identical pulses. (b) Continuous modulation of the post-synaptic
conductance during the potentiation and depression procedures. The data were collected by using a
read voltage pulse of 100 mV/100 ms.

3.4.4. Spike-Dependent Plasticity Effects

Taken into account that spiking neural networks (SNNs) are more promising in terms
of low power consumption and enhanced capabilities of processing real-time patterns [50],
we examined the manifestation of various spike-dependent plasticity effects from our
devices. Firstly, we investigated the implementation of the SRDP effect by enforcing a pair
of square pulses with the same amplitude and width but different delay time ∆t (from 100
to 900 ns) [51]. The results are presented at Figure 9a,b, while more synaptic profiles can be
found at Supplementary Materials Figure S8. The distribution of the SRDP index, which is
presented at Figure 9c, can be well fitted by applying the following expression [52]:

SRDP = C1e(−
t

τ1
)
+ C2 e(−

t
τ2
) (5)

where C1 and C2 are fitting constants and τ1 and τ2 are the respective time scales that
describe the dynamics of the whole effect. The drop of the SRDP index is strongly correlated
with the structural properties of the CF. From our analysis, we have calculated the values
of 90 and 110 ns for the τ1 and τ2 times, respectively, which are in line with the relaxation
times of the CF that were reported in our previous work [15]. This outcome indicates that
the state stability of the CF does not only influences the memory-related properties but
also provides unique opportunities toward emulating a broad range of biological synaptic
properties since the SRDP can be regarded as an extended form of the Hebbian-type spike-
time-dependent plasticity, which is associated with the learning and forgetting tasks of the
memory [53].
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(c) Distribution of the spike-rate dependent plasticity (SRDP) index (In/I1) calculated by two con-
secutive pulses with time interval 100 ≤ Δt ≤ 900 ns (I1, 1st post-synaptic current; In, nth post-synap-
tic current, n = 1, 2, 3, …, 17). 
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by applying a set of square pulses with increasing amplitude (from 0.5 to 2.5 V), SNDP by 
enforcing an array of square pulses with different pulse number (from 1 to 54) and SDDP 
by implementing a set of square pulses with enlarging width (from 100 to 500 ns). The 
results are presented in Figure 10, and more measurements can be found in Supplemental 
Materials Figures S9–S11. It is interesting to notice that all indexes related to these three 
biological effects exhibit a discernible growth that is related to the respective learning pro-
cedures of the STP through consecutive rehearsal routines [54]. On the other hand, the 
SRDP index is clearly reducing, suggesting that it is linked with the forgetting tasks of the 
STM. These results can be interpreted in terms of modulating the effective diameter of the 
CF and are of great importance for the realization of memristive neural networks with 
inherent neuromorphic properties. 

Figure 9. Demonstration of the PPF effect as a function of the time interval between the pre-
synaptic pulses. Seventeen different pulse intervals were tested by applying two successive pulses of
0.5 V/100 ns; (a,b) depict the post-synaptic responses for a delay time of 100 and 200 ns, respectively.
(c) Distribution of the spike-rate dependent plasticity (SRDP) index (In/I1) calculated by two consec-
utive pulses with time interval 100 ≤ ∆t ≤ 900 ns (I1, 1st post-synaptic current; In, nth post-synaptic
current, n = 1, 2, 3, . . . , 17).

Three other types of spike-dependent plasticity were investigated, including SVDP
by applying a set of square pulses with increasing amplitude (from 0.5 to 2.5 V), SNDP by
enforcing an array of square pulses with different pulse number (from 1 to 54) and SDDP
by implementing a set of square pulses with enlarging width (from 100 to 500 ns). The
results are presented in Figure 10, and more measurements can be found in Supplemental
Materials Figures S9–S11. It is interesting to notice that all indexes related to these three
biological effects exhibit a discernible growth that is related to the respective learning
procedures of the STP through consecutive rehearsal routines [54]. On the other hand, the
SRDP index is clearly reducing, suggesting that it is linked with the forgetting tasks of
the STM. These results can be interpreted in terms of modulating the effective diameter of
the CF and are of great importance for the realization of memristive neural networks with
inherent neuromorphic properties.
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tic pulses. Twenty-one different pulse amplitudes were tested by applying two successive pulses 
of 100 ns width and delay time, while (a) and (b) depict the post-synaptic responses for pulse am-
plitude of 0.6 V and 0.8 V ns, respectively. The amplitude of the first pre-synaptic pulse was al-
ways kept constant at 0.5 V. (c) Distribution of the spike-voltage dependent plasticity (SVDP) in-
dex (In/I1) calculated by two consecutive pulses with amplitude 0.5 ≤ Vp ≤ 2.5 V (I1, 1st post-synap-
tic current; In, nth post-synaptic current, n = 1, 2, 3, …, 21). Demonstration of the PPF effect as a 
function of the number of pre-synaptic pulses. Seven different pulse sequences were tested by 
applying pulses of 0.5 V amplitude, 100 ns width and delay time, while (d) and (e) depict the post-
synaptic responses by enforcing a total number of the pulse train of 6 and 12, respectively. The 
train of the pulses was enforced after the application of a single pulse of 0.5 V amplitude and 100 
ns width, while the delay time was set to 1 μs. (f) Distribution of the spike-number dependent 
plasticity (SNDP) index (In/I1) calculated by the number of spikes (n = 1, 2, 6, 12, 24, 36, 54). 
Demonstration of the PPF effect as a function of the width of two consecutive pre-synaptic pulses. 
Nine different pulse durations were tested by applying pulses of 0.5 V amplitude and 100 ns delay 
time, while (g) and (h) depict the post-synaptic responses for a pulse width of 150 and 200 ns, re-
spectively. The width of the first pulse was always kept constant at 100 ns. (i) Distribution of the 
spike-duration dependent plasticity (SDDP) index (In/I1) calculated by the number of spikes (n = 1, 
2, 3, …, 9). 
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From the above-reported results, it is apparent that the dynamics of the CF formation 

and annihilation processes dictate the whole memristive pattern. A direct comparison 
with reference samples can be found in our previous works, in terms of resistive and syn-
aptic performance properties. The comparative advantage of the NPs’ incorporation is the 
ability to emulate both STP and LTP artificial synaptic responses in one single switching 
mode [55,56]. Similar results have been also reported for other material configurations 
[57–59]. Moreover, we have to underline that Pt NPs facilitate the charge transfer from the 
BE to SiO2, since a lower interface barrier is formed [60], in terms of height, which in-
creases the transmission probability for electron tunneling. This assumption is also in line 
with the experimental data of the retention performance (Figure 4b), thus highlighting the 
acceptable behavior of our prototype. Additionally, in our previous work, we have dealt 

Figure 10. Demonstration of the PPF effect as a function of the amplitude between the pre-synaptic
pulses. Twenty-one different pulse amplitudes were tested by applying two successive pulses of
100 ns width and delay time, while (a,b) depict the post-synaptic responses for pulse amplitude
of 0.6 V and 0.8 V ns, respectively. The amplitude of the first pre-synaptic pulse was always kept
constant at 0.5 V. (c) Distribution of the spike-voltage dependent plasticity (SVDP) index (In/I1)
calculated by two consecutive pulses with amplitude 0.5 ≤ Vp ≤ 2.5 V (I1, 1st post-synaptic current;
In, nth post-synaptic current, n = 1, 2, 3, . . . , 21). Demonstration of the PPF effect as a function of the
number of pre-synaptic pulses. Seven different pulse sequences were tested by applying pulses of 0.5
V amplitude, 100 ns width and delay time, while (d,e) depict the post-synaptic responses by enforcing
a total number of the pulse train of 6 and 12, respectively. The train of the pulses was enforced after
the application of a single pulse of 0.5 V amplitude and 100 ns width, while the delay time was set to
1 µs. (f) Distribution of the spike-number dependent plasticity (SNDP) index (In/I1) calculated by
the number of spikes (n = 1, 2, 6, 12, 24, 36, 54). Demonstration of the PPF effect as a function of the
width of two consecutive pre-synaptic pulses. Nine different pulse durations were tested by applying
pulses of 0.5 V amplitude and 100 ns delay time, while (g,h) depict the post-synaptic responses for a
pulse width of 150 and 200 ns, respectively. The width of the first pulse was always kept constant at
100 ns. (i) Distribution of the spike-duration dependent plasticity (SDDP) index (In/I1) calculated by
the number of spikes (n = 1, 2, 3, . . . , 9).

4. Discussion

From the above-reported results, it is apparent that the dynamics of the CF formation
and annihilation processes dictate the whole memristive pattern. A direct comparison with
reference samples can be found in our previous works, in terms of resistive and synaptic per-
formance properties. The comparative advantage of the NPs’ incorporation is the ability to
emulate both STP and LTP artificial synaptic responses in one single switching mode [55,56].
Similar results have been also reported for other material configurations [57–59]. Moreover,
we have to underline that Pt NPs facilitate the charge transfer from the BE to SiO2, since a
lower interface barrier is formed [60], in terms of height, which increases the transmission
probability for electron tunneling. This assumption is also in line with the experimental
data of the retention performance (Figure 4b), thus highlighting the acceptable behav-
ior of our prototype. Additionally, in our previous work, we have dealt with similar
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issues, regarding the charge transfer properties of Pt and Ta NCs within the TiO2 dielectric
matrix [61].

Although the impact of Ag active TE on SiO2-CBRAMs has been studied by other
groups [62,63], the main contribution of the present work is the demonstration of a relatively
sharp transition slope, low VSET voltage and huge memory window. Moreover, we have
to underline the completely forming-free nature of the proposed memory concept that is
always beneficial in terms of periphery circuit design. Our results are also in line with
first-principle calculations from the literature [64], where the formation of silver ions is
directly associated with the oxygen content of the metal oxide film. This result could
interpret the forming free nature of our full stoichiometric memory devices.

The thermal runaway effect induced from the local Joule heat distribution as well as
the ionic displacement rate is regarded as two crucial factors that define the kinetics of
the resistive switching effect [65,66]. All of these effects are incorporated in our model
that relies on the size-dependent melting procedure of Ag NCs that are produced due to
material precipitation as a result of the enhanced solid-solubility of Ag [67]. An interesting
effect arises here, since the melting point of metallic NCs presents a strong dependence
on their diameter [68]. As a result, the melting temperature is quickly falling, while the
diameter of the NCs is getting smaller. This phenomenon has a direct impact on the
evolution of the switching effect, as well as its volatile or non-volatile nature [15]. More
specifically, if the local temperature profiles exceed the meting point of the formed Ag NCs,
a transition from threshold to bipolar switching can take place. The melting point of 6 nm
Ag NCs has been estimated at around 700 K [69,70], while, during set transition, lower
temperature values are developed within our device active core (Figure 11a). For that
reason, a negative bias is required in order to break the CF continuity and create a tunneling
gap, since the imposed local temperature distribution now exceeds the melting point of the
Ag NCs (Figure 11b). Interestingly, by employing a thicker layer of TiN (40 nm) as BE the
simulation outcome predicts even smaller temperature values during the SET transition
due to the increased thermal conductivity value of the thicker TiN film (Supplementary
Materials Figure S12). On the other hand, the incorporation of only the layer of 5 nm thick
Pt NPs yields in relatively high local temperature distributions that can melt the respective
Ag NCs even at a positive bias (Supplementary Materials Figure S13). This effect originates
from the small thermal conductivity value of Pt NPs, which is one order of magnitude
smaller than 15 nm TiN and two orders of magnitude smaller than the 40 nm TiN [71,72].
Similar effects have been reported in the literature regarding the impact of the BE thickness
on the manifestation of various switching modes [73].
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By combining the layers of Pt NPs and 15 nm TiN, we limit the generated heat due
to the relatively bigger thermal conductivity value of the latter film, and, at the same
time, we leverage from the surface roughness of the Pt NPs toward the local electric field
enhancement. Moreover, the increased local temperature accelerates the ionic migration
rate. The common denominator of all of these effects is the manifestation of a bipolar
switching mode with intermediate transition slopes that is beneficial toward emulating
not only the STP and LTP biological responses but several types of spike-dependent
plasticity characteristics.

5. Conclusions

In conclusion, we demonstrated that a broad range of artificial synaptic property
characteristics can be emulated by SiO2-based memristors, with Pt NPs as BE, after the
application of low-power pulses. The intermediate transition slope permits the manifesta-
tion of both STP and LTP effects, while four different types of spike-dependent plasticity
were successfully reproduced by our device. Fruitful insights regarding the influence of the
BE configuration on the whole memristive pattern by the application of a self-consistent
numerical model are presented, including the key role of the ionic diffusivity and the
thermal conductivity of the operating electrodes. Our results indicate that, with proper
material engineering, it is feasible to emulate a wide range of neuromorphic properties that
are quite important for the hardware-based realization of memristive neural networks that
will operate with the spike-time dependent plasticity algorithm.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
66X/12/3/306/s1, Figure S1: Distribution of the transition slope. Figure S2: Measured transient
current responses as a function of the pulse amplitude. Figure S3: Distribution of the SET process
switching time. Figure S4: Area dependence of the resistance states for both HRS and LRS. Figure S5:
Cross-section representation of the simulated memory cell and distribution of the electrical and ther-
mal conductivity of the Ag-based CF. Figure S6: Calculated distributions of the applied bias, bottom
diameter of the CF and total resistance. Figure S7: Distribution of the pre-synaptic pulse profiles
during the implementation of the potentiation and depression procedures. Figure S8: Measured tran-
sient current responses as a function of the pulse delay time. Figure S9: Measured transient current
responses as a function of the pulse amplitude. Figure S10: Measured transient current responses
as a function of the pulse number sequence. Figure S11: Measured transient current responses as a
function of the pulse width. Figure S12: 3D calculated maps of the localized temperature distribution
of 40 nm TiN layer. Figure S13: 3D calculated maps of the localized temperature distribution of 5 nm
Pt NPs layer. Table S1: Model parameters values.
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