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Abstract: Diffractive multi-beams based on 1 × 5 and 2 × 2 binary Dammann gratings applied to
a spatial light modulator (SLM) combined with a nanostructured S-wave plate have been used to
generate uniform multiple cylindrical vector beams with radial and azimuthal polarizations. The
vector quality factor (concurrence) of the single vector vortex beam was found to be C = 0.95 ± 0.02,
hence showing a high degree of vector purity. The multi-beams have been used to ablate polished
metal samples (Ti-6Al-4V) with laser-induced periodic surface structures (LIPSS), which confirm
the polarization states unambiguously. The measured ablation thresholds of the ring mode radial
and azimuthal polarizations are close to those of a Gaussian mode when allowance is made for the
expected absolute intensity distribution of a ring beam generated from a Gaussian. In addition,
ring mode vortex beams with varying orbital angular momentum (OAM) exhibit the same ablation
threshold on titanium alloy. Beam scanning with ring modes for surface LIPSS formation can
increase micro-structuring throughput by optimizing fluence over a larger effective beam diameter.
The comparison of each machined spot was analysed with a machine learning method—cosine
similarity—which confirmed the degree of spatial uniformity achieved, reaching cosθ > 0.96 and
0.92 for the 1 × 5 and 2 × 2 arrays, respectively. Scanning electron microscopy (SEM), optical
microscopy and white light surface profiling were used to characterize and quantify the effects of
surface modification.

Keywords: multiple beam generation; spatial light modulator; cylindrical vector; concurrence;
ablation threshold; LIPSS

1. Introduction

The ability to create complex spatial and vector optical fields is accelerating the
progress of scientific fields such as encoding information in optical communications [1],
sub-diffraction high-resolution imaging [2], particle acceleration [3], improving stability of
NL filamentation in dielectrics [4] and sophisticated control of light–matter interactions
such as an optical spanner [5,6]. Such states of light, also able to carry high levels of orbital
angular momentum (OAM), can be created externally from a Gaussian beam with uniform
polarization by the use of spatial light modulators, spin–orbit components such as liquid
crystal Q plates [7,8], nanostructured S-waveplates [9] and complex metasurfaces [10]. Very
recently, however, a meta-surface (J plate) using intracavity in a compact laser has led to
direct control of the angular momentum of visible light with OAM quantum numbers
l >100 as well as non-symmetric vector vortex beams lasing simultaneously on independent
OAM states with ∆l = 90 apart [11]. This remarkable development is set to continue [12].

While Gaussian beams are often linearly polarized, the use of cylindrical vector
vortex (CVV) beams in ultrafast laser–material ablation can yield complex features through
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laser-induced periodic surface structures (LIPSS) [13], which are both polarization and
fluence dependent. Inhomogeneous polarization states, such as radial and azimuthal
polarization, which have a phase singularity and hence an intensity null on axis, have
been used to improve laser cutting [14] and, more recently, in producing bio-mimetic
surfaces with femtosecond pulses combined with Q plates. The use of single beam can
severely limit processing speed; hence the creation of parallel beams can reduce fabrication
time significantly whether using a fixed diffractive optical component (DOE) [15] or a
programmable spatial light modulator (SLM), demonstrated first on surfaces [16,17] and in
material inscription [18,19]. Cylindrical vector beams can be used to create more complex
surface plasmonic structures than linearly polarized Gaussian beams [20]. For a given pulse
energy, the ring modes reduce maximum fluence on target so that higher pulse energies
can be used, increasing light usage and speeding up processing. Ring modes can also
reduce the wall angle during laser drilling [14]. The laser cutting efficiency for a radially
polarized beam was shown to be higher than a circularly polarized Gaussian beam [21].
A clearer outline of the ablated zone with less debris was found while using ring mode
vortex ablation [22]. The extension to multi-VV beams is therefore important, but the beam
quality of these cylindrical vector (CV) beams also needs to be measured.

While computer-generated holograms (CGHs) calculated by inverse Fourier trans-
forms (IFTs) [23] generate a 0–2π phase map, multi-spot uniformity can still be an issue [24].
One of the most efficient ways to improve the uniformity of multi-spots can be realized by
iterative design of sub-wavelength metasurfaces [25]. By contrast, binary-phase holograms,
such as Dammann gratings, are much simpler and can produce equal-intensity spots
at diffractive orders with good uniformity [26,27] due to their phase changes involving
only 0 and π. In this paper, an SLM addressed with binary-phase computer-generated
holograms, combined with a nanostructured geometric phase plate, has been used to
generate single and multiple uniform 1 × 5 and 2 × 2 arrays with plane-wave radial and
azimuthal polarizations. LIPSS patterns were imprinted on titanium (Ti-6Al-4V) samples,
which confirmed the vector polarization states. A careful analysis of theoretically expected
and experimentally measured ring and Gaussian mode intensity distributions allowed a
comparison of ablation thresholds with scalar and vector ring beams, which indicate that
the ablation threshold is mode independent for picosecond laser ablation on the titanium
alloy Ti-6Al-4V.

2. Experimental
2.1. Experimental Setup

Figure 1 shows a schematic of the experimental setup. The ultrafast laser system
used for this research is a custom-made Nd:VAN seeded regenerative amplifier laser
(High-Q IC-355-800 ps, Photonic Solutions, Edinburgh, Scotland), with horizontal linear
polarization: τ = 10 ps, λ = 1064 nm, PRF = 10 kHz, and M0

2 = 1.3. The output is attenuated,
then passes through a beam expander (M ≈ ×3), reflected from two plane mirrors (M2
and M3) for controlling the beam path and illuminated at low AOI on a reflective phase-
only SLM, Hamamatsu X10468-03 (800 × 600 pixels and dielectric coated for 1064 nm,
Hamamatsu, UK). A combined hologram with a desired Dammann grating and Fresnel
lens was applied on the SLM, the latter used to defocus the diffracted beams relative to
the central zero order to improve array uniformity. The beams were then passed through
a nanostructured S-wave plate (SWP; RPC-1030-10-109, Altechna, Vilnius, Lithuania) to
modulate the polarization state to radial or azimuthal by rotating the SWP fast axis. The
SWP was carefully placed at the 4f image plane of lens L2, where the various diffracted
Gaussian spots overlapped precisely, thus generating the required array of vector vortex
beams. The SWP, a 25 mm fused silica disk, inscribed up to 10 mm in diameter, was
mounted on a fine x,y translator for accurate centering. The optic axis was marked, thus
allowing variation from full vector to scalar beams when rotating the optic. The distance
between the SWP and SLM2 was minimized, so that the beams very nearly overlapped
on SLM2. The angular offset between the diffracted beams with the 1 × 5 array was
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∆θ ~ 1 × 10−3 radian, so that with an SWP–SLM2 separation of 180 mm, the maximum
offset of the outer spots at SLM2 was ∆s = ±0.4 mm, 5% of the spot diameters at the
SLM (8 mm).
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Figure 1. (a) Experimental setup with an S-wave plate. (b) Experimental concept. (c) Operations of
the S-wave plate and the expected output with the addressed computer-generated hologram (CGH)
on the spatial light modulator (SLM). A polarizer (PL) could be inserted ahead of lens L3 and CCD
camera for polarization analysis.

A flip mirror was placed after the S-wave plate to direct the beams to a CCD-based
beam profiler (SP620U, Spiricon, Jerusalem, Israel) with a focusing lens (L3, f = 500 mm)
and polarizer (PL) used to analyse the polarization states at the Fourier plane. With the flip
mirror removed, a 4f imaging system (L4 and L5, f = 400 mm) imaged the SLM complex
field to the input aperture of a galvo scanner (Nutfield-XLR8-14, Hudson, NY, USA) via
periscope mirrors M4 and M5 and focused with a flat field f-theta lens (f = 100 mm, Linos).

The samples were mounted on a precision 5-axis (x, y, z, u, v) motion control system
(A3200 Ndrive system, Aerotech) for precise location of the focal plane. Polished Ti-6Al-4V
and thin-film chromium on glass were used as sample substrates.

Calculation of the Dammann gratings was accomplished in MATLAB, with numerical
data used from Zhou et al. [28]. With the nanostructured S-wave plate positioned close to
the SLM and low angles of diffraction, multi-cylindrical vector beam arrays were generated.

2.2. Measurement of Single Vector Vortex Beam

While the beam quality factor for Gaussian and multi-mode beams is well understood,
these beams are scalar with fixed polarizations. On the other hand, complex beams such as
VV beams with varying spatial polarizations can be represented on a high-order Poincare
sphere, with scalar R, L polarized vortex beams at the poles and pure vector beams around
the equator [29]. Analysis of these beams requires a more detailed method beyond passing
through a polarizer.

Recently, a new approach using a quantum tool was applied to measure the vector
purity of a vector vortex beam [30–32]. In a similar manner, we measured the vector
purity of our vector vortex beam based on the setup in [32] using the S-wave plate (with
topological charge q = 1/2), a quarter-wave plate (only used for circular polarizations), a
half-wave plate and a second SLM (with encoded hologram, Hamamatsu X13138-5785).
The experimental setup is shown in Figure 2a. On-axis intensity was recorded using a
CCD camera (Spiricon SP620U) by rotating the half-wave plate angle (θ1) and encoded
hologram angle (θ2). Figure 2b shows the experimental normalized intensity measurement
for six polarization states and six orbital angular momentum (OAM) states. The vector
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purity (vector quality) of a beam can be determined by entropy of entanglement (E) or
concurrence (C) [30], where the concurrence C can be calculated using

Re(C) = Re
(√

1− s2
)

(1)

where Re means the real part and s is the length of the Bloch vector, which is defined as [30]

s =

(
∑

i
σi

2

)1/2

(2)
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Figure 2. (a) Optical setup for vector purity measurement. SWP, S-wave plate; QWP, quarter-wave
plate; and HWP, half-wave plate. The focal length for the focus lens is 500 mm (20 µJ/pulse, 10 kHz).
(b) Normalized experimental measured intensities with a combination of a quarter-wave plate and
half-wave plate. The concurrence of the vector beam was calculated by the measurements in the
outlined red dash lines, OAM projections (horizontal) or polarization projections (vertical).

Here i = 1,2,3 and σi are the expectation values of the Pauli operators, representing a
set of normalized intensity measurements. The Pauli operators σi are computed from I and
can be derived from [30]:

σ1 = (I13 + I23)− (I15 + I25) (3)

σ1 = (I14 + I24)− (I16 + I26) (4)

σ1 = (I11 + I21)− (I12 + I22) (5)

where Iij is the intensity measured on the CCD camera with associated polarization and
OAM basis state. For the on-axis intensities measured on a CCD camera, the Re is superflu-
ous; thus, Equation (1) can be simplified to C =

√
1− s2. Using Equation (1), we found the

concurrence (C) for our single vector vortex beam to be C = 0.95 ± 0.02 (1σ), close to an
ideal vector vortex beam, C = 1. Hence the VV beam after the SWP is quite pure.

By placing the quarter-wave plate (QWP) ahead of the S-wave plate with fast axis
angle α = ±45◦, the output beams from the S-wave plate are left- and right- handed
circularly polarized scalar vortex beams. The beam mode from vector to scalar can be
obtained by rotating the QWP fast axis angle from 0◦ to 45◦. Therefore, we measured the
concurrence from a single scalar vortex beam with l = 1, C = 0.14 ± 0.01, to vector beam
C = 0.95 ± 0.02. The results are shown in Figure 3.
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Figure 3 shows that the experimental results do diverge from the theoretical curve
expected with an incident perfect Gaussian beam, whereas for our beam, M0

2 = 1.3. The
fact that C 6= 0 for a scalar vortex beam while C = 0.95 instead of unity is a reflection
of the limitations of initial laser beam quality and the aberrations introduced by optical
surfaces, alignment errors and SLM flatness issues. For example, it was not sensible to add
the correction file to SLM2 for the data of Figure 3, which are designed for a phase-only
correction, and hence a possible source of error.

3. Results and Discussion
3.1. Ablation Test on Ti-6Al-4V and Cr Thin Film with Gaussian and CV Beam

The ablation threshold fluence for a Gaussian beam can be obtained from the equa-
tion [33]

D2 = 2ω2
0 ln(F0/Fth) (6)

where D is the ablated crater diameter,ω0 is the beam waist radius, F0 is the peak fluence
and Fth is the threshold fluence of the material. This threshold is also pulse number
dependent due to incubation [33]; when focused by the flat field f-theta lens (f = 100 mm),
the measured Gaussian beam diameter was 2ω0 = 22.0 + 0.2 µm.

3.1.1. Intensity Comparison of Gaussian and CV Beams

The intensity of Gaussian and CV beams have been modelled and compared with
calculations using MATLAB. The equation used to describe the ring beam amplitude is
given by [34]

E(r, θ, 0) = E0
1√
l!

(√
2

r
ω0

)l
exp

(
− r2

ω2
0

)
exp(ilθ) (7)

where E0 and ω0 refer to the amplitude of the normalized electric field and Gaussian beam
waist, respectively; l is the topological charge; and θ is the phase angle, ranging from
0 to 2π. By setting l = 0, one obtains the Gaussian amplitude distribution, while setting
l =1, the ring mode amplitude for CV beam profiles is obtained. The intensity distribution
for l =1 is given by I = E* ∗ E, which immediately yields

I(r) = E∗∗E = 2I0

(
r2

ω2
0

)
exp

(
−2

(
r2

ω2
0

))
(8)



Micromachines 2021, 12, 376 6 of 15

where I0 is the peak intensity of the Gaussian from which the CV beam is transformed.
This function goes to zero at r = 0, as expected. To find the ring maxima, we differentiate
Equation (4), and setting the derivative to zero, we find the simple solution

r =
ω0√

2
(9)

for the position of the ring maxima, whereω0 is the 1/e2 Gaussian beam waist. Setting this
value of r into Equation (8), we arrive at the absolute peak intensity of the ring beam, given
by I (r = ω0√

2
) = I0/e, where e = 2.718 is the natural logarithm. By integrating Equation (8)

round 2π to obtain the total pulse power P, we obtain

P(ring) = 4πI0

∫
r

(
r

ω2
0

)
exp

(
−2
(

r
ω0

)2
)

dr =
I0(πω0)

2

2
(10)

Similarly, P(Gauss) = 2πI0
∫

r exp
(
−2
(

r
ω0

)2
)

dr = I0(πω0)
2

2 , confirming that these

beams have the same power or pulse energy.
Figure 4 shows the shows the simulated intensity distributions of the Gaussian and ring

CV beam (l = 1) in MATLAB. The simulated ratio of peak intensities is IntensityPG
IntensityPCV

= 2.7(~e),
in agreement with what is expected. Hence, if the ablation threshold is unaltered by the
ring intensity distribution, the pulse energy of the CV beam should be 2.7 times higher
than the Gaussian beam for the same effect. The simulations in MATLAB will be used for
onward comparison with experimental results.
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3.1.2. Single-Beam Ablation Threshold with Gaussian and Ring Modes

One might expect the ablation threshold to be independent of spatial mode and
incident polarization near normal incidence. However, this was not found to be the case
recently with femtosecond ablation on dielectrics with ring mode beams [34]. This potential
variation of threshold was therefore worth checking with picosecond exposure. With the
SWP removed, a scalar vortex beam with l = 1 should have the same intensity distribution
as a radially or azimuthally polarized beam. A single spot above the ablation threshold
on thin-film chromium on glass while scanning at high speed with a vortex beam and
radially polarized beam is shown in Figure 5 with optical images superimposed. For these
states, the phase correction file was added to the SLM, which is not perfectly flat. The
pulse energy was 22 µJ/pulse at 10 kHz repetition rate and scan speed of 400 mm/s. The
similarity of the ablated spots was observed in both states. These have similar dimensions,
as expected, although some slight distortion remains.
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Figure 5. Single-pulse ablation with (a) a vortex beam (l = 1) and (b) a CV beam (radial) on a
Cr-coated thin film. By overlapping the two images, the beam size for l = 1 and the CV beam is
similar (30 µJ, 10 kHz, 500 mm/s).

Figure 6 shows the relevant plots for obtaining the threshold energies (hence fluences)
required for single-pulse modification on both titanium alloy and chromium thin film.
With the Gaussian beam, D2 versus ln(E) yields the gradient m = 2(ω0)2, allowing the peak
fluence to be calculated. However, for the ring mode, at fluence threshold, a thin ring with
diameter D0 =

√
2ω0 would be ablated, while above this threshold, the ring width will

expand with increasing fluence. Hence, the appropriate plot for the ring beam is D2–D0
2 =

D2 − 2ω0
2 versus ln(E), yielding the threshold ablation energy for the ring mode (l = 1) at

the cut-off.
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Figure 6. (a) Plot of squared diameter D2 versus ln(E) for Gaussian beam ablation threshold fluence
calculation of Ti-6Al-4V with single pulse. (b) Plot of D2–D0

2 versus ln(E) for radially polarized
CV beam ablation threshold energy calculation of Ti-6Al-4V with single pulse. (c) Plot of squared
diameter D2 versus ln(E) for Gaussian beam ablation threshold fluence calculation of Cr-coated
thin film with single pulse. (d) Plot of D2–D0

2 versus ln(E) for CV beam ablation threshold fluence
calculation of Ti-6Al-4V with single pulse.

From Figure 6, the threshold ablation energy for Ti-6Al-4V with a Gaussian beam
mode and CV beam mode is 0.63± 0.1 µJ and 1.77± 0.1 µJ, respectively. Hence, the ratio of
the cut-off energy is 1.77 µJ/0.63 µJ = 2.8 ± 0.1, close to the value e = 2.72 calculated above,
required to bring peak intensity in the ring and corresponding peak fluence to that of the
Gaussian peak. The single-pulse threshold fluence of the Gaussian and CV beams from
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the above calculation is Fth = 0.32 ± 0.02 J/cm2 and 0.31 ±0.02 J/cm2, respectively—in
excellent agreement. As the cut-off energy for a Cr-coated thin film with a Gaussian beam
mode and CV beam mode is 2.67 ± 0.2 µJ and 6.22 ± 0.2 µJ, respectively, the ratio of the
cut-off energy is 6.22 µJ/2.67 µJ = 2.3 ± 0.2, lower than expected, but this substrate may be
more sensitive to CV beam azimuthal intensity non-uniformity. The corresponding ablation
thresholds of the Cr thin film with Gaussian and CV single pulse are 1.38 ± 0.02 J/cm2 and
1.73 ± 0.02 J/cm2, respectively—not in agreement within the quoted uncertainties—so that
in this case, these have been underestimated. The best focal plane for micro-structuring on
the thin film with ring modes is fairly close to that of the Gaussian since we are dealing
essentially with collimated beams. The best plane was determined by optimizing the
substrate height to yield the roundest ablation spots, and the remaining aberrations cause
non-uniform cylindrical intensity and ablation, observed on the sensitive thin film. This
may explain why the ablation threshold with Gaussian and vortex beams do not agree
within the experimental error.

We modelled ring beams with higher l values and the resulting intensity distributions.
The details are shown in Table 1. These functions show that peak ring intensities drop with
increasing topological charge l—while the peak radii increase. Integrating these functions
round 2π, all yield the same power (P = I0πω0

2/2) or pulse energy. Again, ω0 is the
Gaussian beam 1/e2 radius, from which these intensity profiles are generated, and I0 the
Gaussian peak intensity.

Table 1. Calculated intensity distributions with different topological charges m and corresponding
radius r, where the ring intensity is maximum. Here, ω0 and I0 is the beam waist radius and the peak
intensity of the Gaussian mode, respectively.

Topological Charge l r (Ipeak) Intensity Expression Peak Intensity

1 ω0√
2

2Ipeak ∗ r2

ω2
0
∗

exp
(
−2 r2

ω2
0

) I0
e

2 ω0
2Ipeak ∗ r4

ω4
0
∗

exp
(
−2 r2

ω2
0

) 2I0
e2

3
√

3ω0√
2

4
3 Ipeak ∗ r6

ω6
0
∗

exp
(
−2 r2

ω2
0

) 9I0
2e3

4
√

4ω0√
2

2
3 Ipeak ∗ r8

ω8
0
∗

exp
(
−2 r2

ω2
0

) 32I0
3e4

Figure 7 shows the ablation plots of D2–D0
2 vs. ln(E) for l = 1 and l = 2 vortex beam.

The threshold ablation energy for Ti-6Al-4V for vortex beams with l = 1 and l = 2
was 1.77 ± 0.1 µJ and 2.41 ± 0.1 µJ, respectively; hence the ratio of the cut-off energy is
2.41 µJ/1.77 µJ = 1.36 ± 0.1. This is close to the value e/2 ≈ 1.35, which can be calculated
from Table 1. Hence the ablation threshold of titanium alloy for l = 2 is similar to that for l
= 1. Relative to the Gaussian beam, the ratio of the cut-off energy l = 1 is 1.77 µJ/0.63 µJ =
2.81 ± 0.1, slightly higher than expected (e ≈ 2.7), while for l = 2, the ratio is 2.41 µJ/0.63
µJ =3.81 ± 0.1, close to that expected (e2/2 ≈ 3.7) from Table 1.
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Figure 7. (a) Plot of squared diameter D2–D0
2 (or D2–2ω0

2) versus ln(E) for vortex beam (l = 1) ablation threshold fluence
calculation of Ti-6Al-4V with single pulse. (b) Plot of D2–D0

2 (or D2−4ω0
2) versus ln(E) for vortex beam (l = 2) ablation

threshold energy calculation of Ti-6Al-4V with single pulse.

3.2. LIPSS Formation on Titanium Alloy with CV Beams

Figure 8 shows optical images of LIPSS formation with linearly polarised Gaussian
and vortex beams with l = 1 and l = 3. The ablated widths were 20 µm, 45 µm and 82 µm
with scan speeds s = 20 mm/s, 33 mm/s and 36 mm/s, respectively. Processing rates or
area coverage were therefore increased by a factor of 3.7 (l = 1) and 7.4 (l = 3), respectively.
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3.3. Multiple Cylindrical Vector (CV) Beam Generation

Two binary gratings on the SLM, 1 × 5 and 2 × 2 Dammann gratings, were generated
by MATLAB and were used to create uniform multiple cylindrical vector beams with the
S-wave plate. The transition points within a single period as described in [28] were used
for the 1 × 5 Dammann grating and 2 × 2 Dammann grating generation. Figure 1c shows
the details of the generated Dammann gratings. A Dammann grating consists of many
grating unit cells, each having two grey levels (normally white and black, corresponding to
0 and π). The intensity and uniformity of the output beam arrays based on a Dammann
grating is affected by the grey level values of the grating unit cell. The uniformity of the
parallel spots generated can be measured with the equation η = σi

ai
, where σi and ai are the

standard deviation and the arithmetic mean of the ablated spot diameters, respectively.
The uniformity of the spots reached the highest at the grey level of 107 (for the Hamamatsu
10468-03, the full 2π phase modulation corresponds to grey level 212), which was derived
from the machined results. Thus, the grey level value of 107, which corresponds closely
to π, was selected for both Dammann gratings used in this study to achieve the highest
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uniformity. The measured diffraction efficiency of the calculated 1 × 5 Dammann grating
and 2 × 2 Dammann grating with a grey level value of 107 is 86% and 84%, respectively.
Multiple cylindrical vector beams can then be generated by combining the optimized
binary Dammann grating on the SLM with the S-wave plate. However, the 0th order is
still present at the centre of the beam array. The residual zero order of a diffractive pattern
can degrade the uniformity of a parallel machined pattern as it will typically have higher
power compared with that of the other diffractive orders. We eliminated the zero order by
adding a CGH, Fresnel lens (FZL), to effectively place the 0th order well away from the
processing plane, bringing its peak fluence below the ablation threshold [27].

3.4. Parallel Processing on a Ti-6Al-4V Surface Using Uniform Multiple Cylindrical Vector
Beam Arrays

As shown in Figure 9, multiple laser beam spots (1 × 5 and 2 × 2 arrays) were
machined on polished Ti-6Al-4V with radial and azimuthal polarizations. Here, laser
repetition rate was set at 10 kHz with a 40 µJ/pulse and 45 pulses per spot. The images
show the measured intensity profiles in (a), analysed through a polarizer (b), while the
plasmonic LIPSS are shown in the corresponding SEM images (c) and (d).
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a polarizer analyser. The white arrow represents the direction of the fast axis of the polarizer analyser. (c) Machined
uniform 1 × 5 vector beam arrays on a Ti-6Al-4V sample. The diameter of each spot is approximately 40 µm. (d,e) The
SEM images (10 kHz, 40 µJ/pulse, 45 pulses). Azimuthally polarized uniform 2 × 2 vector beam array: (a’) beam profiler
image; (b’) beam profiler image with a polarizer analyser. The white arrow represents the direction of the fast axis of the
polarizer analyser. (c’) Machined uniform 1 × 5 vector beam arrays on a Ti-6Al-4V sample. The diameter of each spot is
approximately 40 µm. (d’) The SEM images (10 kHz, 40 µJ/pulse, 45 pulses). The scale bar in the SEM images is 10 µm.

The above LIPSS generation confirms the polarization states when one assumes that
these low-frequency LIPPS form at right angles to the local electric vectors. The multiple
CV spots produced by this method compare reasonably well to other SLM-based methods
of parallel CV spot generation [21]. However, perfect LIPSS structures were not achieved
in this work. This is likely due to the beam mode issue, some residual beam distortion and
setup alignment error.

3.5. Similarity of Each Spot: Cosine Similarity

Cosine similarity is a method to measure the similarity between two non-zero vectors
of a product or image. If the cosine angle of two non-zero vectors of 0◦ for an image is 1, it
would mean that they have the same magnitude and direction, so the compared images
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are the same. To compare the similarity of the machined diffractive spots, a MATLAB code
based on the cosine similarity method was used. The similarity can be defined as

Similarity = cos(θ) =

→
A ·
→
B

||
→
A|| ||

→
B ||

=
∑n

i=1 AiBi√
∑n

i=1 A2
i

√
∑n

i=1 B2
i

(11)

where A and B are two vectors of attributes of the image, and Ai and Bi are components
of vectors A and B, respectively. As the SEM images are grey level, a MATLAB code was
used to generate a grey-scale histogram of the images. These grey-scale histograms can be
compared using MATLAB to create a cosine similarity.

To decrease the measurement error, each machined spot image was taken with the
same magnification factor to ensure that the details were clearly presented. The first spot
of each kind of polarization was selected as a reference in the 1 × 5 and 2 × 2 spot arrays.
Then, the other spots were compared to the reference spot. For example, the results of
comparison of the reference spot with the second spot would be group 1, the results of the
reference spot with the third spot would be group 2, and so on. Therefore, 10 result groups
can be achieved in the comparison of 1× 5 spot arrays, and 6 result groups can be achieved
in 2 × 2 spot arrays. The details of the similarity results for the two spots are provided
in Figure 10, showing a high degree of similarity in the array spots micro-machined with
azimuthal polarization.

Micromachines 2021, 12, x  11 of 15 
 

 

of each kind of polarization was selected as a reference in the 1 × 5 and 2 × 2 spot arrays. 
Then, the other spots were compared to the reference spot. For example, the results of 
comparison of the reference spot with the second spot would be group 1, the results of the 
reference spot with the third spot would be group 2, and so on. Therefore, 10 result groups 
can be achieved in the comparison of 1 × 5 spot arrays, and 6 result groups can be achieved 
in 2 × 2 spot arrays. The details of the similarity results for the two spots are provided in 
Figure 10, showing a high degree of similarity in the array spots micro-machined with 
azimuthal polarization. 

. 

Figure 10. Examples of grey-scale histograms that can be extracted from the SEM images for azi-
muthal polarization. (a) Measured area (inside of the red dash line). (c) The grey-scale histogram 
extracted from (a). (d) The grey-scale histogram extracted from (b). 

A summary of the comparison of similarities is shown in Figure 11a,b, with very en-
couraging results. Using the ablated patterns to estimate similarities and hence indicating 
the uniformity of arrays and their corresponding intensity distributions is a novel ap-
proach, complementing polarization analysis. 

Figure 10. Examples of grey-scale histograms that can be extracted from the SEM images for
azimuthal polarization. (a) Measured area (inside of the red dash line). (c) The grey-scale histogram
extracted from (a). (d) The grey-scale histogram extracted from (b).

A summary of the comparison of similarities is shown in Figure 11a,b, with very
encouraging results. Using the ablated patterns to estimate similarities and hence indicating
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the uniformity of arrays and their corresponding intensity distributions is a novel approach,
complementing polarization analysis.
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For high similarity, the cosine angle should be close to 1 and the values should have
a small spread. Based on the histogram data in Figure 11, the similarity of each spot in
the 1 × 5 cylindrical vector beam arrays and the 2 × 2 cylindrical vector beam arrays are
high, with cosine similarity 0.9 ≤ cosθ ≤ 0.995. As the cosine angle is >0.9, the compared
spots can be regarded as almost the same. By comparing with the machined spot size of
polished material surface, the beam arrays produced were found to have a good similarity
with spots within 10% of each other in terms of structure.

The azimuthal polarization in the 1 × 5 array has cosθ > 0.975, while radial is consis-
tently lower, >0.96. On the other hand, this trend is reversed with the 2 × 2 array, where
radial similarity demonstrates cosθ > 0.98, while azimuthal can drop to cosθ = 0.9.

4. Laser Surface Texturing
Continuous Scanning with Different Polarization States

The setup was configured to scan a series of line patterns, where polarization was
sequentially changed per line during scanning. Figure 12 shows optical micrographs of the
surfaces produced and confirms the polarization states with LIPSS orientations. The SEM
microscopic analysis confirmed the expected LIPSS orientations.
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muthal polarization (10 kHz, 40 μJ/pulse, 10 mm/s). (b) Optical micrograph of line patterns with Figure 12. Continuous scanning results with different polarization states. (a) SEM result of azimuthal
polarization (10 kHz, 40 µJ/pulse, 10 mm/s). (b) Optical micrograph of line patterns with side
illumination. (c) SEM result of radial polarization (10 kHz, 40 µJ/pulse, 10 mm/s). The red arrows
represent the laser scanning direction. The green arrows represent the E field. (d,e) Images at higher
magnifications of areas inside the blue and red squares, showing shark skin-like morphologies.
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The depth of the shark skin surface features, resulting from overscanning, were
approximately 100–150 nm deep.

5. Conclusions

The generation of uniform multiple radial or azimuthal polarized beam arrays with
1 × 5 and 2 × 2 ring beams was demonstrated by combining a nanostructured geometric
phase waveplate with a spatial light modulator addressed with Dammann array gratings.
Uniformity was improved by adding an FZP to defocus the zero order. Using a quantum
toolkit, the vector purity (concurrence and entropy) of the vector vortex beam was found
to be C = 0.95 ± 0.02. Ablation threshold measurements typically assume a Gaussian
beam profile. This method was modified to accommodate ablation with ring modes, which
demonstrated that when absolute intensity (fluence) is matched, the single-pulse ablation
thresholds are essentially unaltered. For example, the measured ablation threshold of
Ti-6Al-4V with Gaussian and CV single pulse was 0.32± 0.02 J/cm2 and 0.31 ± 0.02 J/cm2,
respectively, while the ratio of pulse energies was found to be 2.8, close to the theoretically
expected value of e = 2.72. In the case of chromium thin film on glass, the ratio was
2.3, lower than expected by 15%. This difference likely arises from the sensitivity of the
thin-film substrate to CV beam azimuthal intensity non-uniformity. The Cr thin-film single-
pulse ablation thresholds with Gaussian and CV single pulse were 1.38 ± 0.02 J/cm2 and
1.73 ± 0.02 J/cm2, respectively, not in agreement within the uncertainties, so that in this
case, these were underestimated. The vortex beam divergence is higher than Gaussian,
with a beam quality factor M2 = M0

2 + mod l [34], so that with l = 3, M2 = 1.3 + 3 = 4.3. The

Rayleigh length here for the Gaussian beam (with radius 0.4 cm), ZR = πω2
0

λ /M0
2 ~ 36.5 m,

while with l = 3, M2 = 4.3 and corresponding ZR (l = 3) ~11.0 m, still very significant. The
resulting full-angle beam divergence θFA = (2ω0/ZR) = 0.22 mR (Gaussian) and 0.72 mR
(l = 3), respectively. Over the beam paths here of a few metres (and with the use of 4f
optics), this expansion was not an issue.

The expected ring intensity distribution (radial/azimuthal polarization) created from
a Gaussian was modelled, and it indicated that the ring peak intensity reaches I0/e, where
I0 is the Gaussian peak intensity and e is the natural logarithm. The ring maximum
also occurs at r = ω0√

2
. The threshold ablation energy for Ti-6Al-4V for vortex beams

with l = 1 and l = 2 was 1.77 µJ and 2.41 µJ, respectively; hence the ratio of the cut-off
energy is 2.41µJ/1.77µJ =1.36 ± 0.1. This is close, allowing for experimental error, to
the value e/2 ≈1.35, expected theoretically; hence the ablation thresholds are similar
to those for the Gaussian beam. Relative to the Gaussian beam, the ratio of the cut-off
energy for comparing l = 1 is 1.77 µJ/0.63 µJ = 2.81 ± 0.1, slightly higher than expected
(e ≈ 2.7), while for l = 2, the ratio is 2.41 µJ/0.63 µJ = 3.82 ± 0.1, close to that expected
(e2/2 ≈ 3.7). Hence, the ablation thresholds of Ti-6Al-4V with picosecond pulse length
ring beams of different l are very similar. Physically, this is to be expected since peak
intensity and fluence (along with material physical properties) determine the ablation
threshold. If the ablation threshold were dependent on intensity distribution, a change
in the light–matter coupling would be inferred. This appears unlikely. However, recent
results with femtosecond laser pulses on dielectrics give ablation thresholds depending on
beam mode [35]. With ultrafast pulses, heat diffusion is minimized along with melting, so
that ablation becomes a deterministic process dependent on the peak intensity (fluence)
and material physical properties. Ashkenasi et al. demonstrated the equivalence of ablation
thresholds independent of Gaussian beam diameter [36].

The method of cosine similarity was used to analyse the comparison of each spot.
The beam arrays produced were found to have a very high similarity with spots within
10% of each other in terms of structure. This indicates that excellent repeatability was
achieved. The machined footprints have the desired polarization state as confirmed by
LIPSS. Complex shark skin-like LIPSS appear with specific laser parameters during beam
scanning due to the overlap of vector fields. The complex LIPSS generated by overlaid
polarization states are a composite topography, rather than being wiped and reset by each
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other, and 5 × 5 or even more ring mode spots can be machined if enough laser energy
is applied. Recently, multiple parallel spots have been employed, with a cooled SLM,
operating at a high average power at the 100 W level and demonstrating multi-beam
thin-film patterning at 80 cm2/s [37]. Our approach, presented in this work, has potential
application in multiple ring mode laser processing with an SLM under high average power.

Scanning polished titanium samples (Ti-6Al-4V) with ring modes with identical peak
intensities of a Gaussian accelerates LIPPS surface processing significantly, so that beam
shaping, using higher available powers, can increase surface processing speed. The method
used in this research has potential applications in large-area LIPSS generation for laser
security marking, material wettability modification as well as multiple micro-drilling.
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