
micromachines

Article

A Novel Method for Estimating and Balancing the Second
Harmonic Error of Cylindrical Fused Silica Resonators

Yunfeng Tao, Yao Pan *, Jianping Liu, Yonglei Jia, Kaiyong Yang and Hui Luo

����������
�������

Citation: Tao, Y.; Pan, Y.; Liu, J.; Jia,

Y.; Yang, K.; Luo, H. A Novel Method

for Estimating and Balancing the

Second Harmonic Error of Cylindrical

Fused Silica Resonators.

Micromachines 2021, 12, 380. https://

doi.org/10.3390/mi12040380

Academic Editor: Burak Eminoglu

Received: 20 February 2021

Accepted: 29 March 2021

Published: 1 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Advanced Interdisciplinary Studies, National University of Defense Technology,
Changsha 410073, China; taoyunfeng13@nudt.edu.cn (Y.T.); l_jianp@sina.com (J.L.);
jiayonglei17@nudt.edu.cn (Y.J.); yky208@nudt.edu.cn (K.Y.); luohui.luo@163.com (H.L.)
* Correspondence: panyao08@nudt.edu.cn; Tel.: +86-0731-8700-4196

Abstract: The cylindrical resonator gyroscope (CRG) is a type of Coriolis vibratory gyroscope which
measures the angular velocity or angle through the precession of the elastic wave of the cylindrical
resonator. The cylindrical fused silica resonator is an essential component of the CRG, the symmetry
of which determines the bias drift and vibration stability of the gyroscope. The manufacturing errors
breaking the symmetry of the resonator are usually described by Fourier series, and most studies
are only focusing on analyzing and reducing the fourth harmonic error, the main error source of
bias drift. The second harmonic error also is one of the obstacles for CRG towards high precision.
Therefore, this paper provides a chemical method to evaluate and balance the second harmonic
error of cylindrical fused silica resonators. The relation between the frequency split of the n = 1
mode and the second harmonic error of the resonator is obtained. Simulations are performed to
analyze the effects of the first three harmonic errors on the frequency splits. The relation between
the location of the low-frequency axis of n = 1 mode and the heavy axis of the second harmonic
error is also analyzed by simulation. Chemical balancing experiments on two fused silica resonators
demonstrate the feasibility of this balancing procedure, and show good consistency with theoretical
and simulation analysis. The second harmonic error of the two resonators is reduced by 86.6% and
79.8%, respectively.

Keywords: cylindrical resonator; chemical balancing; frequency split; second harmonic error

1. Introduction

The Coriolis vibratory gyroscope measures angular velocities or angles by the preces-
sion of the standing wave [1]. The cylindrical resonator gyroscope (CRG) and the hemi-
spherical resonator gyroscope (HRG) are two types of Coriolis gyroscopes, and they are
widely used in inertial navigation systems. HRGs have unparalleled precision guaranteed
by a highly symmetrical resonator with extremely small dissipation. The HRG CrystalTM

DUAL CORE made by Safran Electronics & Defense (Massy, France) has achieved a bias
stability of 0.0001◦/h over 100 h [2]. Inspired by these breakthroughs, HRGs have become
a topic of interest within the inertial community, with devoted researchers investigating
traditional size HRGs [3–6] and micro-version HRGs [7–9]. However, the complexity of the
manufacturing of HRGs has limited the mastering of this technology to a small number
of manufacturers.

Compared to HRGs, the CRGs are simpler to manufacture. Similar to HRGs, the key
component of a CRG is the cylindrical resonator, the quality factor and the residual imper-
fections of which generally determine the performance of the CRG. Many researchers have
been devoted to improving the quality factor of cylindrical resonators through the selec-
tion of resonator material, optimizing the structure, improving the processing technology
and applying special post-processing treatments [10–13]. Based on these improvements,
the quality factor of cylindrical fused silica resonator has achieved 2.89 million and still
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improving [14], which is sufficient for medium precision applications and makes CRGs a
promising candidate for tactical platforms and civil applications.

Although the cylindrical resonator is easier to manufacture compared with the hemi-
spherical resonator, the machining defects are always inevitable. These defects, especially
the asymmetrical distribution of mass and density, will cause the damping to differ from
location to location on resonator and the ideal single natural frequency to split [15]. The
circumferentially distributed imperfections originated from machining can be described
with Fourier series [16]. For the n = 2 mode, the first four harmonic errors of the Fourier
series will severely destroy the standing wave on the resonator. The fourth harmonic error
mainly leads to the frequency split of the n = 2 mode and the preferred angular location
of the standing wave, which results in the orthogonal error and bias drift of the resonator
gyroscope [17]. The first three harmonic errors lead to the undesirable oscillations, which
distort the detection signal. The undesirable oscillations are equivalent to the addition of
central angle-dependent damping to the vibration system. Consequently, the quality factor
varies with different central angles [18]. Therefore, the first four harmonic errors must be
decreased as much as possible within the limits of balancing methods to achieve higher
performance of CRGs.

Among the first four harmonic errors, the fourth harmonic error is extensively studied.
The fourth harmonic error mainly causes the frequency split of the n = 2 mode and is a
primary error source of the gyroscope. There are several ways to reduce the fourth harmonic
error, such as electrostatic trimming [19–21], mechanical trimming [22–24], femtosecond
laser trimming [25], chemical trimming [26,27], and ion beam trimming [28,29]. The
electrostatic trimming requires extra voltages which makes the circuit more complicated
and may introduce new noise and errors. The mechanical trimming may cause new defect
during the mechanical drilling and grinding. The laser trimming produces thermal stress
during the high-energy laser interacting with the resonator. The thermal stress leads to
the decreasing of the quality factor. Ion beam trimming can remove materials from the
resonator precisely. However, it is not suitable for the trimming of large frequency split.
The frequency split of the n = 2 mode can be reduced to mHz level using the appropriate
trimming technique.

The first three harmonic errors are a significant factor causing the deterioration of the
gyroscope performance. However, significantly little research has focused on the theoretical
aspects, identification methods and balancing techniques of the first three harmonic errors.
The precise determination of the first three harmonics requires complicated measuring
systems, and it is rather difficult to measure the value and direction of the first three
harmonics precisely. Therefore, attempts to explore the measuring and balancing methods
for the first three harmonic errors are rather rare. This study intends to focus on theoretical
aspects, measurement methods, and balancing methods of the second harmonic error. By
understanding the relationship between the first three harmonic errors with the symmetric
flexural modes of the resonator, we proposed a novel identification method for the second
harmonic error. Based on the balancing of the fourth harmonic error by chemical etching in
our previous work [30], we made a further modification to the chemical trimming theory.
The modified chemical trimming theory for the balancing of the second harmonic error
was experimentally verified. The performance of the resonator is further improved after
the chemical balancing of the second harmonic error.

This paper is organized as follows: Section 2 analyzes the influence of the unbalanced
mass on the quality factor. Section 3 deduces the relation between the frequency split of
n = 1 mode and the second harmonic error of the imperfect density. The impacts of the
first three harmonic errors on the frequency split of the n = 1, 2, and 3 modes is evaluated
by FEM analysis. Section 4 extends the chemical trimming method we applied for the
trimming of the n = 2 mode to the balancing of the second harmonic error and investigates
the dependence of the low-frequency axis of n = 1 mode on the heavy axis. Chemical
balancing experiments on two cylindrical fused silica resonators are demonstrated in
Section 5, followed by remarks and conclusion in Section 6.
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2. The Influence of the Unbalanced Mass on Quality Factor

A cylindrical resonator with a quality factor around 5 million is adequate for the
performance up to 0.01◦/h. The real obstacle in the way of inertial grade cylindrical
resonator gyroscopes comes from the unbalanced mass. As the first three harmonics of the
unbalanced mass lead to motion of the center of mass, the real quality factor depends on
the properties of the connection between the resonator and the base [31]. The quality factor
Qu induced by the unbalanced mass is given by:

1
Qu

=
1

2π

mu

Md
arctan

(
ωh ×ω2

Qh
(
ω2

h −ω2
2
)), (1)

where mu is the unbalanced mass of the resonator, Md is the modal mass of the resonator,
ωh and Qh is the frequency and the quality factor of the harmonic mode respectively, ω2 is
the natural frequency of the n = 2 mode.

According to Equation (1), the unbalanced mass and the characteristics of fixation
between resonator and base both affect the quality factor Qu.

The real quality factor Qr for a assembled resonator is then:

1
Qr

=
1

Qn
+

1
Qu

, (2)

where Qn is the nominal quality factor of the n = 2 mode.
For the resonator with nominal quality factor Qn over one million, the real quality

factor Qn approximately equal to unbalanced quality factor Qu. The position of the standing
wave hinges on the central angle of the second harmonic error under external vibrations,
and the increasing rate of the vibration amplitude of the standing wave is proportional
to the value of the second harmonic error. The value and direction of the first and the
third harmonics can be identified by measuring the amplitude and the central angle of the
standing wave under transverse vibration of the base [32]. Due to the presence of the first
three harmonic errors, the resonator gyroscope is sensitive to external vibrations causing
the deterioration in the bias drift and random walk.

3. Theory and Simulation Aspects of the Second Harmonic Error on Frequency Split
3.1. Relationship between the Second Harmonic Error and the Frequency Spilt of the n = 1 Mode

The effective sensing element of a cylindrical resonator is the resonator shell. Therefore,
the ring model is applied to describe the characteristics of a cylindrical resonator.

The cross-section of a thin circular ring with axial length L is shown in Figure 1.
The mass point mi is attached at the central angle ϕi. The imperfections of the resonator
are modeled by the circumferentially varied density. The density of a resonator with
imperfections can be expressed by Fourier series and only take the first three harmonic
errors in the case:

ρ(ϕ) = ρ0 + ρ1 cos(ϕ) + ρ2 cos(2ϕ) + ρ3 cos(3ϕ) + · · · , (3)

where ρ is the equivalent density of the imperfect resonator, ρ0 is the density of the perfect
resonator, ρi is the i-th harmonic error of the imperfections, and ϕ is the central angle.

The natural frequency of the cylindrical resonator in the n-th mode is given by [33]:

ω2
n1,n2 = ω2

n0/

1 + ∑
i

mi/M0 ±
α2

n − 1
M0(α2

n + 1)

(∑
i

mi cos 2nϕi

)2

+

(
∑

i
mi sin 2nϕi

)2
1/2

, (4)

where ωn1, ωn2 is the natural frequency of the n-th mode for an imperfect resonator, ωn0 is
the natural frequency of a perfect resonator, mi is the attached point mass, ϕi is the central
angle of point mass mi, M0 is the mass of the perfect resonator, and αn is the amplitude
ratio of the radial and the tangential vibration.
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The frequency split is defined as the frequency difference between the natural frequen-
cies of the n-th mode. Therefore, the frequency split can be calculated from Equation (4):

∆ωn = ωn1 −ωn2 =
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∑
i
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)2
+

(
∑
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]1/2
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, (5)

where ∆ωn is the frequency split of the n-th mode in rad/s.
As the number of discrete mass points increases, the mass defect can be expressed as

an integration over the central angle ϕ:

∆ωn =

[(∫ 2π

0
ρ(ϕ) cos(2nϕ)dϕ

)2

+

(∫ 2π

0
ρ(ϕ) sin(2nϕ)dϕ

)2
]1/2
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n − 1
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[
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(
α2
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. (6)

Substituting Equation (3) into Equation (6), we can obtain the relationship between ρ2
and the frequency split of the n = 1 mode ∆ω1:

∆ω1 = ω10

(
α2

1 − 1
)
|ρ2|π/

[
M0

(
α2

1 + 1
)]

. (7)

Note that the frequency split of the n = 1 mode ∆ω1 is proportional to the second
harmonic error ρ2. In other words, we can reduce the second harmonic error by frequency
tuning of the n = 1 mode. Once the frequency split of the n = 1 mode decreases, the second
harmonic error decreases accordingly. The frequency split of the n = 1 mode is readily
measurable by the system developed for the measurement of the n = 2 mode, therefore, this
new method avoids developing a special measurement system for the determination of
the second harmonic error by vibration coupling. This novel method provides an effective
and practical approach to identify the second harmonic error of the resonator which makes
the balancing possible. The frequencies of the resonator in the FEM analysis and our
experiments were given in Hz, therefore, we calculate the frequency split of the n-th mode
∆fn in Hz, and ∆f n = ∆ωn/2π.

3.2. FEM Analysis of the First Three Harmonic Errors

It is widely recognized that the 2k-th harmonic error mainly contributes to the fre-
quency split of the n = k mode. FEM analysis on our structured resonators is employed to
investigate the quantitative relationship between the first three harmonic errors and the
n-th (n = 1, 2, 3) mode. The half-section view of the cylindrical fused silica resonator is
shown in Figure 2. The resonator shell is the main sensing element whose imperfections
have a significant impact on the gyroscope performance. The suspension and the bottom
plate is the elastic suspension, the stiffness of which can be adjusted by changing the



Micromachines 2021, 12, 380 5 of 15

thickness or the size of the eight holes on the bottom plate for different designs. The inner
stem is used to mount the resonator on a base [12].
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Figure 2. The description of the cylindrical fused silica resonator.

The parameters of the material and the structure of the resonator are listed in Table 1.

Table 1. Material and structure parameters of the resonator.

Perfect density 2203 kg/m3

Young’s modulus 71.7 GPa
Poisson’s ratio 0.17

Inner radius of resonator shell 12 mm
Thickness of resonator shell 1.2 mm

The modes of vibration of a resonator without density errors is simulated, and the
n = 1, 2 and 3 modes are shown in Figure 3a. Note that even the resonator without density
errors has a frequency split around 0.1 Hz due to the mesh error of an irregular bottom
plate. This frequency split is caused by the quality of the grids in the FEM model. Therefore,
the zero-closed frequency splits which smaller than 0.1 Hz stems from the grids instead of
the harmonic errors.
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Figure 3. (a) The first three vibration modes of a cylindrical resonator. (b) The distribution of the first
three nonuniform density when ∆ρi = 0.05%.

According to Equation (3), the density of the resonator is set as a continuous function
of central angle ϕ in the FEM model. To investigate the impact of the first three harmonic
errors on frequency splits separately, three functions of nonuniform density are employed
as follows:

ρ(ϕ) = ρ0 + ρi cos(iϕ) i = 1, 2, 3. (8)
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The degree of imperfections ∆ρi is ρi/ρ0. The circumferential distribution of imperfect
density on resonator when ∆ρi = 0.05% is given in Figure 2. The distribution cycle of
density with the first three harmonic errors is 2π, π, and 2π/3, respectively.

The effects of the first three harmonics of density on the frequency split of the
n = 1, 2, and 3 modes are investigated. As shown in Figure 4, the frequency split of the
n = 1 and the n = 3 mode increases with the increasing first harmonic error, while the
frequency split of the n = 2 mode remains small (around 0.0095 Hz) when the value of
imperfect density is lower than 100 kg/m3 and ∆ρi = 4.5%. Moreover, the growth rate of
the frequency split of the n = 1 mode (shown in grey line) is much faster than that of the
n = 3 mode (shown in blue line). The first harmonic error has a larger impact on n = 1 mode
than the other two, and the frequency split of n = 1 mode is approximately proportional
to the square of the first harmonic error when the second harmonic error is more than
15 kg/m3, as shown in the curve fit of ∆f 1.
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Figure 5 shows that the frequency split of the n = 1 mode increases rapidly with the
growth of the second harmonic error, while that of the n = 2 and the n = 3 mode increase
only mildly. For example, the frequency split of n = 1 mode reaches 38.67 Hz when ρ2
is 65 kg/m3, while the frequency split of the n = 2, 3 mode is only 1.19 Hz and 0.99 Hz,
respectively. The frequency split of n = 1 mode is severely affected by ρ2 compared with
the other two modes, even when the defect is small. Moreover, ∆f 1 grows linearly with
the increase of ρ2, as illustrated by the grey line and the least-square fit. Therefore, this
simulation result is consistent with (5). Nearly 95% of the frequency split ∆f 1 comes from
the second harmonic error when ∆ρ2 is 2.95%. The frequency split ∆f 1 can be used for the
evaluation of the second harmonic error. As we obtain the frequency split ∆f 1, the value of
the ρ2 can be calculated from the fitted formula.

The simulation result shown in Figure 6 indicates that the frequency split of the
n = 3 mode is proportional to the square of the third harmonic error. The influence of ρ3 on
the n = 1, 2 mode is rather small compared that on the n = 3 mode. The frequency split of
the n = 1 mode keeps almost unchanged at 0.089 Hz. And the frequency split of n = 2 mode
stay constant at 0.0096 Hz. Therefore, it is reasonable to consider that the third harmonic
error has no impact on the frequency split of the n = 2, 3 mode. The frequency split of
n = 3 mode is approximately proportional to the square of the third harmonic error when
the second harmonic error is more than 40 kg/m3, as shown in the curve fit of ∆f 3.
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Figure 7 depicts the impact of ρi on the frequency split ∆f n with the same magnitude
of the harmonic error. It can be seen in Figure 6 that the second harmonic error has the
most significant impact on the frequency split of all three modes, especially the n = 1 mode.
In fact, the second harmonic error accounts for the largest proportion of ∆f 1. The ∆ρi is
usually small, no larger than 5%. As shown in Figure 6, the frequency split of the three
modes is 19.352 Hz, 0.296 Hz and 0.592 Hz, respectively, when the second harmonic error
is 32 kg/m3 (where ∆ρ2 is 1.45%). In contrast, the first and the third harmonic error have
little influence on ∆f 1. The frequency split ∆f 1 caused by the second harmonic error is
133 times and 215 times that of the first and third harmonic error when ∆ρi is 1.45%. As
the harmonic error reaches 65 kg/m3 (where ∆ρi is 2.95%), the frequency split ∆f 1 under
harmonic errors ρ1, ρ2, and ρ2 is 0.374 Hz, 38.672 Hz and 0.091 Hz, respectively. Hence, ρ1
and ρ3 make far less contribution to ∆f 1 compared with ρ2. Therefore, it is convenient to
determine the value of the second harmonic error by measuring the frequency split of the
n = 1 mode.
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Table 2 presents an overview of the qualitative impact of the harmonic errors of the
imperfect density on the frequency splits of the three modes. The second harmonic error
can be identified by the frequency split ∆f 1. However, there is no significant difference
of the first three harmonic errors on the frequency split of the n = 2 and the n = 3 modes.
The relations between the harmonic errors and the frequency split are also listed. There
is a linear relation between the second harmonic error and the frequency split ∆f 1. The
third harmonic error makes no significant impact on the frequency split of the n = 1 and
the n = 2 mode. By contrast, the relation of the rest is quadratic or quadratic like.

Table 2. Contribution of the first three harmonic errors on each mode when ρi = 100 kg/m3 and the relations between the
frequency splits and the first three harmonic errors.

Mode The First Harmonic Error The Second Harmonic Error The Third Harmonic Error

n = 1
Contribution 1.35% 98.51% 0.14%

Relation Quadratic Linear Nearly no impact

n = 2
Contribution 0.24% 99.45% 0.31%

Relation Approximate Quadratic Quadratic Nearly no impact

n = 3
Contribution 3.49% 83.95% 12.56%

Relation Quadratic Approximate Quadratic Quadratic

4. Method of Reduction of the Second Harmonic Error
4.1. Chemical Balancing of the Second Harmonic Error

The chemical balancing procedure utilizes hydrofluoric acid to remove mass from
fused silica resonators, which was first proposed by Basarab et al. [27,34] and extended in
our previous work [30]. However, these studies have emphasized the chemical balancing
on the fourth harmonic errors. Although Basarab et al. had presented brief examples for the
treatment of other harmonic errors, the principles and properties of the chemical balancing
on the second harmonic error need further investigation. In particular, the removal of
the k-th harmonic error results in the generation of the ik-th (i = 2, 3, 4 . . . ) harmonics.
This means the change in the second harmonic error also alters the fourth harmonic error,
which may result in a larger frequency split of the n = 2 mode and dramatically degrade
the performance of the resonator. Fortunately, by carefully selecting the chemical balancing
parameters, it is possible to reduce the second harmonic error without introducing new
harmonic errors.
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Although the basic chemical trimming theory and its application on the fourth har-
monic error balancing has been built and analyzed in our previous work [30], the properties
of the chemical trimming theory in the second harmonic error case have not been illus-
trated and verified on cylindrical resonators. Therefore, we make efforts to figure out the
relationship between the balancing mass and the balancing parameters.

As shown in Figure 8, the cylindrical fused silica resonator is partially soaked in the
hydrofluoric acid at inclined angle α. Angle β is the included angle of the line segment OA
and OB. R is the inner radius of the resonator shell, d is the thickness of the resonator shell,
and h is the immersed depth of the resonator. Point O is the center of the resonator top
surface. Point A is the lowest position of the immersed part, and point C is the intersection
point of the line segment OA and the liquid level.
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Figure 8. Schematic view of the chemical balancing: (a) The front view; (b) The half-section view.

According to the multi-mode trimming theory [35–37], the second harmonic error
could be balanced by removing mass from two positions starting from the heavy axis where
the value of the second harmonic error reaches maximum. The mass element removed by
chemical balancing from the two positions can be express as:

dm = 2vρ(C0(α, β) + C2(α, β) cos 2ϕ +C4(α, β) cos 4ϕ)dϕ, (9)

where v is the etching rate of the hydrofluoric acid on fused silica in µm/min, C0(α, β),
C2(α, β), C4(α, β) are the coefficients of Fourier series given in [30], and the coefficients
higher than four is omitted in this case.

As Equation (9) suggests, the removal of the second harmonic error could lead to
the variation of the fourth harmonic error. However, it is possible to select the inclined
angle α and the included angle β such that C4(α, β) = 0. Under this condition, the existing
fourth harmonic error is immune to the balance of the second harmonic error. The desired
parameters α, β lie on the intersecting lines of the zero-value surface in blue and the curved
surface in red, as shown in Figure 8. There are three intersecting lines with numerous
combinations of α and β. The larger angle β means the deeper immersed depth during
chemical balancing, and the larger inclined angle α means that the resonator is more
perpendicular to the liquid level. Taking both the experimental apparatus and the resonator
structure into consideration, the angle α, β is finally set as 1.22 rad and 1.05 rad, which is
marked green in Figure 9.
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In the practical balancing process, the resonator is etched at inclined angle α and
immersed depth h. According to balancing setup shown in Figure 7, the immersed depth
can be expressed as:

h = (R− R cos β) cos α. (10)

Taking the selected parameters α and β into Equation (10), the immersed depth h is
2.25 mm in this case.

4.2. Determination of the Trimming Positions

One crucial problem to be solved is the determination of trimming positions when
balancing the second harmonic error. It has been demonstrated that the trimming positions
of the fourth harmonic error should be located at the principal axis of the lower natural
frequency of the n = 2 mode [38]. However, the trimming positions of the n = 1 mode has
rarely been discussed in the open literature. In this section, simulation analysis is presented
for investigation of the trimming positions of the n = 1 mode.

As shown in Figure 10, angle σ is the circumferential location of the heavy axis, where
the second harmonic error reaches the maximum. Angle ψ is the circumferential location
of the low-frequency axis of the n = 1 mode, where the natural frequency reaches the
minimum. Angle θ is the intersecting angle between the low-frequency axis and the heavy
axis. We define the clockwise direction as the positive direction.
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The relation between the angle ψ and σ is demonstrated by varying the angle σ and
then locating the low-frequency axis. Figure 11 illustrates that the low-frequency axis
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coincides with the heavy axis. The angle of the low-frequency axis of the n = 1 mode is
proportional to the angle of the heavy axis with a slope of 1.001. The intersecting angle
θ ranges from 0 to 1 degree when σ increases from 0 to 90 degrees. These slight variations
of the intersecting angle θ mainly stem from simulation errors. Therefore, the defect mass
could be removed from the direction of the low-frequency axis.

Micromachines 2021, 12, x FOR PEER REVIEW 11 of 15 
 

 

As shown in Figure 10, angle σ is the circumferential location of the heavy axis, where 

the second harmonic error reaches the maximum. Angle ψ is the circumferential location 

of the low-frequency axis of the n = 1 mode, where the natural frequency reaches the min-

imum. Angle θ is the intersecting angle between the low-frequency axis and the heavy 

axis. We define the clockwise direction as the positive direction. 

 

Figure 10. The low-frequency axis of the n = 1 mode and the heavy axis of the second harmonic 

error. 

The relation between the angle ψ and σ is demonstrated by varying the angle σ and 

then locating the low-frequency axis. Figure 11 illustrates that the low-frequency axis co-

incides with the heavy axis. The angle of the low-frequency axis of the n = 1 mode is pro-

portional to the angle of the heavy axis with a slope of 1.001. The intersecting angle θ 

ranges from 0 to 1 degree when σ increases from 0 to 90 degrees. These slight variations 

of the intersecting angle θ mainly stem from simulation errors. Therefore, the defect mass 

could be removed from the direction of the low-frequency axis. 

 

Figure 11. Relation between the heavy axis and the low-frequency axis of the n = 1 mode. 

5. Results and Discussion 

Chemical balancing experiments on two cylindrical fused silica resonators are per-

formed. The frequency split and the direction of the low-frequency axis of the n = 1 mode 

are measured by the laser Doppler vibrometer (PSV-500). The resonator is excited by a 

loudspeaker. The axial vibration of the resonator shell is measured by the laser Doppler 

vibrometer. The natural frequency axis locates at the direction where the axial vibration 

reaches the maximum. Then, frequency sweeping is conducted in these directions. The 

direction of higher frequency is the high-frequency axis. The direction of lower frequency 

is the low-frequency axis. The frequency split is obtained by the frequency sweeping at 

the location which is the 22.5° (n = 2) or 45° (n = 1) apart from the low-frequency axis. The 

Figure 11. Relation between the heavy axis and the low-frequency axis of the n = 1 mode.

5. Results and Discussion

Chemical balancing experiments on two cylindrical fused silica resonators are per-
formed. The frequency split and the direction of the low-frequency axis of the n = 1 mode
are measured by the laser Doppler vibrometer (PSV-500). The resonator is excited by a
loudspeaker. The axial vibration of the resonator shell is measured by the laser Doppler
vibrometer. The natural frequency axis locates at the direction where the axial vibration
reaches the maximum. Then, frequency sweeping is conducted in these directions. The
direction of higher frequency is the high-frequency axis. The direction of lower frequency
is the low-frequency axis. The frequency split is obtained by the frequency sweeping at
the location which is the 22.5◦ (n = 2) or 45◦ (n = 1) apart from the low-frequency axis.
The natural frequencies and frequency split of the n = 1 and n = 2 modes are measured
respectively. The resonator is then transferred to the chemical balancing system. The
inclined angle α and the immersed depth h are set as 1.22 rad and 2.25 mm according to
theoretical analysis. The balancing time t depends on the etching rate v and the residual
frequency split of the n = 1 mode. The resonator is lifted by the electronic platform after
being etched for t/2 period, and is rotated 180 degrees for another t/2 period at the next
trimming position.The detailed balancing process on resonator R01 is shown in Figure 12.
Three rounds of chemical balancing experiments are performed on resonator R01. The
frequency split ∆f 1 linearly decreases with the total balancing time t. The frequency split
∆f 2 ranges from 0.075 Hz to 0.098 Hz during the balancing process.

As shown in Figure 13a, the initial natural frequency of the n = 1 mode of resonator
R01 is 3223.438 Hz and 3088.526 Hz, respectively, with an initial frequency split of up
to 134.912 Hz, which implies the second harmonic error of resonator R01 is large. After
several rounds of chemical balancing, the lower natural frequency increases to 3291.431 Hz
and the higher natural frequency increases to 3309.424 Hz. The frequency split of the
n = 1 mode decreases to 17.993 Hz with a drop of 86.6% compared to the original frequency
split. Meanwhile, the vibration velocity at the low-frequency axis increases markedly from
0.433 µm/s to 11.54 µm/s, and the vibration velocity at the high-frequency axis increases
from 1.327 µm/s to 5.16 µm/s.
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Experimental results on another same-structure resonator R02 are shown in Figure 13b.
The initial natural frequency of resonator R02 is 2872.925 Hz and 2836.133 Hz, respectively,
with an initial frequency split of 36.792 Hz. After one round of chemical balancing, the
lower natural frequency increases to 2874.658 Hz and the higher natural frequency increases
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to 2867.261 Hz. The frequency split of the n = 1 mode reduces to 7.397 Hz with a drop
of 79.8%. Meanwhile, the velocity of vibration at the high-frequency axis increases from
4.22 µm/s to 9.36 µm/s. The velocity of vibration at the low-frequency axis increases from
6.49 µm/s to 14.88 µm/s.

The reason for the dramatic increase in the velocity of vibration could be that, as the
second harmonic error decreases, the vibration of the resonator is also less coupled with
the base, resulting in less energy dissipation from the base. Meanwhile, the etching rate
v remains constant during the balancing experiments. Hence, the mass etched per unit
time is the same, which means that the frequency split of the n = 1 mode is proportional to
the second harmonic error of the defect mass. The linear relation between the frequency
split of n = 1 mode and the etched mass obtained from balancing experiments is consistent
with the theoretical calculation.

The natural frequency and frequency split of the two resonators before and after
chemical balancing are shown in Figure 13c,d. The natural frequency of the n = 2 mode
decreased after chemical balancing. It is noticed that, although we chose a set of balancing
parameters for the second harmonic error that theoretically has no impact on the fourth
harmonic error, ∆f 2 still has a slight change with the balancing of the second harmonic
error. The fluctuation of the ∆f 2 mainly stems from the following two aspects: one is
the inevitable error during the measurement of the low-frequency axis of the n = 1 mode.
Meanwhile, the control of the inclined angle, immersed depth, and rotating angle may
have a slight deviation from the ideal value. These possible sources of error could have
affected the fourth harmonic error of the resonator. However, the maximum variation of the
∆f 2 during the balancing of is about 0.024 Hz, which indicates that the change the fourth
harmonic error is quite small during the removal of the second harmonic error under the
selected balancing parameters where inclined angle α is 1.22 rad and the immersed depth h
is 2.25 mm.

The experimental results on resonator R01 and R02 illustrate that the second harmonic
error can be reduced from the direction of the low-frequency axis, and the frequency split
of the n = 1 mode can be a reference to the residual value of the second harmonic error.
The velocity of the vibration is significantly increased which benefits from the decline of
the second harmonic error. The performance of the resonator is further improved after
balancing on the second harmonic error. The balancing method of the second harmonic
error provides an effective and reliable guidance in the determination of the balancing
parameters on resonators with different structures.

6. Conclusions

In this paper, a new method to identify and reduce the second harmonic error is
proposed and verified. The results of the theoretical calculation clearly indicate that the
frequency split of the n = 1 mode is proportional to the second harmonic error. The
simulations have identified the effects of the first three harmonic error on the frequency
splits. The second harmonic error makes the major contribution to the frequency split of
the n = 1 mode. The second harmonic error can be calculated from the linear relation on
the ∆f 1. The chemical balancing parameters are specially selected to remove the second
harmonic error without affecting other harmonics. The second harmonic error of resonator
R01 and R02 is independently reduced by 86.6% and 79.8% when the inclined angle α is
1.22 rad and the immersed depth is 2.25 mm. Both the simulation and experimental result
confirms the linear relation between the frequency split of n = 1 mode and the second
harmonic error. This paper provides an effective and convenient approach to measure and
reduce the second harmonic error, by which the performance of the cylindrical resonator
gyroscope can be further improved.
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