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Abstract: Three-dimensional vertical resistive random access memory (VRRAM) is proposed as a
promising candidate for increasing resistive memory storage density, but the performance evaluation
mechanism of 3-D VRRAM arrays is still not mature enough. The previous approach to evaluating
the performance of 3-D VRRAM was based on the write and read margin. However, the leakage
current (LC) of the 3-D VRRAM array is a concern as well. Excess leakage currents not only reduce
the read/write tolerance and liability of the memory cell but also increase the power consumption
of the entire array. In this article, a 3-D circuit HSPICE simulation is used to analyze the impact
of the array size and operation voltage on the leakage current in the 3-D VRRAM architecture.
The simulation results show that rapidly increasing leakage currents significantly affect the size
of 3-D layers. A high read voltage is profitable for enhancing the read margin. However, the leakage
current also increases. Alleviating this conflict requires a trade-off when setting the input voltage. A
method to improve the array read/write efficiency is proposed by analyzing the influence of the multi-
bit operations on the overall leakage current. Finally, this paper explores different methods to reduce
the leakage current in the 3-D VRRAM array. The leakage current model proposed in this paper
provides an efficient performance prediction solution for the initial design of 3-D VRRAM arrays.

Keywords: resistive random access memory (RRAM); 3-D integration; self-selective cell (SSC); sneak
path; leakage current

1. Introduction

Due to the high endurance, high nonlinearity, and robust read/write disturbance
immunity [1–3], resistive random access memory (RRAM) has received enormous attention
as one of the most promising candidates for the next generation of nonvolatile data storage
technology [4–7]. Different from the traditional charge-type memory, the read and write
operations of the RRAM are significantly affected by circuit-level factors such as the work-
ing mode and interconnection [8–11]. To further increase the storage density of resistive
random access memory, the 3-D VRRAM architecture is proposed, which increases the storage
density by stacking RRAM cells in the vertical direction. Most of the current research about
3-D VRRAM are based on the single memory cell level [12–17]. Therefore, it is significant
to estimate the performance of 3-D VRRAM at the array level [18,19]. Recently, the read
and write margin of 3-D VRRAM with a WL planar structure has been evaluated in a
few papers [20,21]. However, many opinions believe that the interconnection sneak path
in the 2-D and 3-D architectures is the limiting factor for establishing large-scale RRAM
arrays [22–24]. The reliability, array expansibility, and array read-write accuracy of RRAM
decreases significantly with the increase of the leakage current in the RRAM array [25].
A high leakage current generates additional power consumption, reducing the energy
efficiency ratio of the system [26]. The establishment of a leakage current model with
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excellent characteristics can help in the early design of RRAM chips. However, the leakage
current has not been fully analyzed in previous work.

This research proposes a direction for the design and the selection of the read/write
scheme in 3-D VRRAM arrays by analyzing the leakage current (LC). The remainder of this pa-
per is organized as follows. In Section 2, we presented the architecture of 3-D VRRAM,
analyzed the cause of leakage current, and described the voltage bias scheme used in the sim-
ulation. In Section 3, the SPICE simulation results are shown, and the factors that affect the
leakage current in the RRAM array are analyzed. Finally, Section 4 concludes this article.

2. Simulation Methods

Figure 1a illustrates the schematic of traditional 3-D VRRAM. This architecture uses
word lines (WL), select lines (SL), and bit lines (BL) to select RRAM cells in the array. WLs
are plane electrodes that intersect the pillar’s electrode. SLs are used to choose the target
column in the array. Moreover, the different pillars are also connected by BLs at the bottom
of the array.

Figure 1. (a) Schematic of traditional 3-D VRRAM and (b) schematic of HfO2/TaOx-based on a
built-in nonlinear 3-D VRRAM.

In this study, we propose another HfO2/TaOx-based built-in nonlinear 3-D VRRAM
(BNR) architecture [27]. Due to the institution of a high-performance self-selection cell
(SSC), the architecture only contains bit-lines and word-lines, as shown in Figure 1b, which
can achieve higher circuit efficiency and operation margins. The transmission electron
microscope (TEM) image of the built-in nonlinear 3-D VRRAM structure is depicted
in Figure 2. The resistance of 2-D RRAM is changed with the change in the conductive
filament (CF). However, the mechanism of the resistance of the memory cell in 3-D VRRAM
array is different. Under the action of the electric field, the vacancies in the barrier layer
shift under different bias voltages, and the width of the tunnel barrier change accordingly,
thereby changing the resistance of the RRAM device.

To facilitate this demonstration, we use a schematic diagram of the 3-D VRRAM
array to explain the cause of the leakage current, as shown in Figure 3. When the No. 1
device is selected, if the status of the No. 1 cell is HRS and the No. 2 to No. 4 cells are
in the LRS status, the black line indicates a complete current loop. However, the current
also flows through the No. 2 to No. 4 cells, as indicated by the red line, forming a sneak
path. As is well known, more sneak paths produce greater leakage current.
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Figure 2. TEM image of the HfO2/TaOx-based built-in nonlinear 3-D VRRAM structure.

Figure 3. Sneak path in 3-D VRRAM array.

Compared with the 2-D RRAM array [28,29], there are more sneak paths in the 3-D
RRAM array, so the leakage current in the 3-D VRRAM array passes through more RRAM
cells, resulting in greater additional energy loss. Therefore, it is important to evaluate
the leakage current in the early stages of 3-D VRRAM array design. The complete nonlinear
I-V characteristics of the RRAM device are not included in the SPICE simulation because
including them greatly reduces the simulation speed and requires more memory resources
to evaluate the performance of enormous array size. However, compared with other
work that used the simple analytic approximation model for the array investigation [30,31],
our HSPICE simulation method based on modular analysis is more accurate. We developed
a 3D circuit module, as shown in Figure 4 for the HSPICE simulation. The model proposed
in this article can be divided into four parts: the red resistor represents the selected RRAM
cell; the green resistors represent half-selected RRAM cells on the same WL; the yellow
resistors represent half-selected RRAM cells on the same BL; and the gray resistors represent
unselected RRAM cells.
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Figure 4. Spice model of the novel 3-D VRRAM array.

To analyse the leakage current of the 3-D VRRAM array, the model is simplified
to the circuit model shown in Figure 5. The left side shows the current path of the selected
RRAM cell, and the right side shows the sneak path that generates the leakage current.

Figure 5. Leakage current model of the 3-D VRRAM array.

Compared with other reported 3-D VRRAM structures, the structure we present
in this paper has a higher resistance (the resistance levels of HRS and LRS are 1012 Ω
and 109 Ω, respectively), as shown in Figure 6a. The wire resistance in the array is less
than 10 Ω, the voltage drop caused by the wire resistance is tiny. Consequently, the
influence of the wire resistance can be ignored in the analysis before the array size reaches
1 Gb. Moreover, the high resistance of the RRAM devices can ensure an outstanding read
and write margin in a large array. Therefore, in this structure, the leakage current is the factor
that requires more consideration in the array design compared to the operation margin.
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Figure 6. (a) Resistance distributions and (b) voltage distributions of 50 BNR devices.

We analyze the 1-bit operation scheme first and discuss the multi-bit operation scheme
later in this article. In the 1-bit write operation, only one WL and one BL are selected
to choose the selected device, and the other lines are unselected. The applied voltages at
the selected and unselected WLs and BLs for read and write operations are listed in Table 1.
For a read operation, a voltage of Vr is applied to the selected word line, while all other
lines are “0”. During the write operation, the WL and BL voltages of the selected RRAM
cell are set to Vw and 0, respectively, and all of the other lines apply a voltage of Vw/2
to prevent accidental writing.

Table 1. Read and write voltage scheme.

Parameter Sel-WL Unsel-WL Sel-BL Unsel-BL

Read Vr 0 0 0
Write Vw Vw/2 0 Vw/2

The I-V characteristic of the HfO2/TaOx based built-in nonlinear 3-D VRRAM architec-
ture is shown in Figure 7. It can be seen from the figure that, when the compliance current
is set to 1 µA, the resistance switching window of the device is still very large, which
proves that it can normally work at currents of nA level. Compared with many RRAM
devices that need to work at µA currents, this device has the advantage of low power
consumption. Therefore, the leakage current must be strictly limited to avoid additional
power consumption and to maintain its low power consumption characteristics. It is worth
mentioning that, although the scan loop of the voltage is 0 V to 5 V, this does not indicate
that the device requires a 5 V write voltage. In fact, a pulse voltage of approximately 2.5 V
is sufficient to write to the device. Although the resistance ratio on the negative current
range is lower than the positive range, this does not affect the switching mode of the device
because all of the cells in the array are read in the positive range. When designing the
peripheral circuit, the designer only needs to pay attention to the window that displays the
forward curve.
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Figure 7. I-V characteristics of 3-D VRRAM cell.

The read and write voltage distribution of the novel BNR cell is shown in Figure 6b.
It can be seen from the Figure that the range of the write voltage is 1.8–2.5 V, so Vw
(write voltage) is set to 3 V in this simulation to obtain a 0.5 V liberality, while making
Vw/2 = 1.5 V to avoid intrusion to the half-selected area. To explore the effect of the read-
voltage on the leakage current, Vr (read voltage) is set to 1–1.5 V. Furthermore, we use the
worst cell patterns proposed in Table 2 to analyze the worst-case leakage current [32].

Table 2. Worst-case cell pattens.

Parameter WL Half-Selected BL Half-Selected Unselected

Read HRS LRS LRS LRS
Read LRS HRS HRS LRS

Write LRS LRS LRS

The leakage current (LC) is defined as the total leakage current from all sneak paths

LC = Iwhs + Ibhs + Ius (1)

where Iwhs denotes the leakage current of the half-selected area that shares the same WL
with the selected cell. Ibhs represents the leakage current of the half-selected area of the same
BL as the selected cell, and Ius represents the leakage current of the unselected area. Read
Margin (RM) is defined as the difference between the current when the RRAM cell is in a low
resistance state and when it is in a high resistance state, as shown in the following equation.

RM = ILRS − IHRS (2)

3. Results and Discussion
3.1. Error Rate

To analyze the leakage current in the 3-D VRRAM array, we performed numerous
HSPICE simulations for different factors by controlling the variables. In order to verify the
correctness of the simulation model proposed in this paper, we compared the simulation
results with the experimental results of the RRAM array and defined the Error-Rate (ER)

ER =
|Ilc exp − Ilc sim|

Ilc exp
× 100 [%] (3)
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where Ilc exp expresses the leakage current measured by experiments and Ilc sim represents
the leakage current obtained by simulation. The maximum error does not exceed 0.7%
when the array size is 32× 8× 8 and Vr = 1 V, which shows the simulation results are
in good agreement with the experimental results.

3.2. Array Size

This section discusses the comprehensive effects of the number of layers and the plane
size of the array on the leakage current in both read and write modes.

With a fixed Vr of 1 V, the leakage current of 3-D VRRAM array in various planar
array sizes (4 × 4~256 × 256) and layers (1~16) is shown in Figure 8a. It can be seen
from the figure that the leakage current is increased with the size of the planar array.
Moreover, the leakage current is more obviously affected by the size of the planar array
as the number of layers increases. This is because a larger number of layers corresponds
to a higher growth rate of the sneak path. Figure 8b shows the relationship between
the leakage current and the array size during a write operation. As with the read operation,
as the size of the planar array and the number of layers increases, the leakage current
of the write operation also increases significantly, and the leakage current of the write
operation is higher than that of the read operation. This occurs because, compared to the
read operation, the write operation applies a higher voltage. As shown earlier, the voltage
has a significant influence on the leakage current. Therefore, it is necessary to balance
the number of layers and the size of the planar array to minimize the leakage current when
designing the apparatus.

Figure 8. (a) Read leakage current under different array sizes and (b) write leakage current under
different array sizes (from 4× 4 to 256× 256 and 1~16 layers).

3.3. Read Voltage

The maximum read voltage can approach half of the write voltage to prevent any
storage state interference. Previous studies have shown that the read margin of the RRAM
array increases as the read voltage rises. Nevertheless, in the experiment, we found that,
as the read voltage increases, the leakage current of the 3-D RRAM array also increases
and that excessive leakage current cannot be tolerated when designing the 3-D VRRAM
array. Therefore, before designing a 3-D VRRAM array, the impact of operating voltage
on leakage current must be evaluated to determine the operating voltage of the array.
This section discusses the relationship between reading margin, leakage current, and read
voltage in detail.

Figure 9 shows the curve of RM and LC under different read voltages when the ar-
ray size is 64× 64× 8. With the increase in the read-voltage from 1 V to 1.5 V, although
the read margin is increased, the corresponding leakage current also increases about 2.1 nA,
indicating that the additional energy consumption of the array increases. Although a lower
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read voltage reduces the overall leakage current and power consumption, it also signifi-
cantly reduces the read margin of the 3-D VRRAM array and may result in an excessively
small read current. This might bring a great challenge to read comparison and sensitivity
amplifiers. Therefore, a balance between leakage current and read margin is considered
during the 3-D VRRAM array design.

Figure 9. (a) RM under different read voltages and (b) LC under different read voltages.

Comparing the effect of the array size and the read voltage on the leakage current
of the memory, it can be found that the read voltage has a greater effect on the leakage current
compared to the array size. This is because, for the 3-D VRRAM array, the read voltage is a
global variable that affects all memory cells, and the expansion of the array size causes the
sneak path to increase so that the read voltage has a greater impact on the leakage current.

3.4. Multi-Bit Operation

In the read operation, multiple bits can be read in parallel. The relationship between
LC and the number of parallel read bits is shown in Figure 10. The number of layers
has a much greater impact on the leakage current than the number of bits, as shown in
Figure 10a. Figure 10b shows that the leakage current slightly decreases as the number
of parallel operation bits increases because, as the selected memory cell increases, the sneak
paths in the array decreases. For a 16-layer array, the decrease in the leakage current due
to a greater number of selected cells is about 3.5 pA (from 24 to 28-bits write). However,
as the number of parallel operations increases, the operating margin decreases. Therefore,
it is essential to trade off the number of bits in the parallel reading. However, Figure 10
suggests that 28-bits parallel reading is feasible.
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Figure 10. (a) The leakage current of multi-bit (from 24 to 28) parallel read under different layers
(from 2 to 16), (b) the leakage current under various parallel reading bits when the number of stacked
layers is 16 (planar array size is 256× 256).

4. Conclusions

This article analyzes the leakage current of 3-D VRRAM array, which not been fully
analyzed in previous research. The influence of the design parameters of the 3-D VRRAM
array on the leakage current is summarized in Table 3 and Figure 11. The results show that
the growth rate of the leakage current increases as the size of the array increases. Moreover,
the operating voltage has a great influence on the leakage current, although a high operation
voltage is beneficial to improving the operating margin, the leakage current increases
as well, which leads to a decrease in the reliability of the array. Therefore, while ensuring
the operation margin, the operation voltage should be reduced as much as possible. Multi-
bit operation is an attractive way to decrease the generation of leakage current. It can be
seen from the Figure 11 that the read voltage has the greatest influence on the leakage
current, and the multi-bit operation has the least influence on the leakage current. Therefore,
in the design of the array, it is necessary to minimize the working voltage and to increase
the number of parallel operation bits without affecting the function, so that the array
can achieve higher performance and lower energy consumption. This paper provides
a guideline for the design of a 3-D RRAM array.

Figure 11. The influence intensity of design parameters on leakage current.
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Table 3. Summary of the influence of the design parameters on the leakage current.

Parameter Array Size ↑ Read Voltage ↓ Multi-Bit ↓
LC ↑ ↓ ↑

Author Contributions: Conceptualization, F.Z. and Z.C.; methodology, Z.C.; software, Q.H., R.S.
and Z.C.; validation, Q.H., R.S., Q.R. and Z.C.; formal analysis, C.Z. and Z.C.; investigation, Z.C.;
resources, F.Z. and L.L.; data curation, C.Z. and Z.C.; writing—original draft preparation, Z.C.
and R.S.; writing—review and editing, Z.C.; visualization, Z.C.; supervision, F.Z. and L.L.; project
administration, F.Z.; funding acquisition, F.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by National Key Research Plan of China (grant number
2018YFB0407500), by the Strategic Priority Research Program of the Chinese Academy of Sciences
China (grant number XDB44000000), and by the National Natural Science Foundation of China (grant
number 61720106013).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, H.; Yu, S.; Gao, B.; Huang, P.; Kang, J.; Wong, H.-P. HfOx based vertical resistive random access memory for cost-effective

3D cross-point architecture without cell selector. IEEE Int. Electron Devices Meet. 2012, 20.7.1–20.7.4. [CrossRef]
2. Luo, Q.; Xu, X.; Liu, H.; Lv, H.; Gong, T.; Long, S.; Liu, Q.; Sun, H.; Banerjee, W.; Li, L.; et al. Demonstration of 3D vertical RRAM

with ultra low-leakage, high-selectivity and self-compliance memory cells. IEEE Int. Electron Devices Meet. 2015, 10.2.1–10.2.4.
[CrossRef]

3. Baek, I.G.; Park, C.J.; Ju, H.; Seong, D.J.; Ahn, H.S.; Kim, J.H.; Yang, M.K.; Song, S.H.; Kim, E.M.; Park, S.O.; et al. Realization
of vertical resistive memory (VRRAM) using cost effective 3D process. IEEE Int. Electron Devices Meet. 2011, 31.8.1–31.8.4.
[CrossRef]

4. Huang, P.; Liu, X.Y.; Chen, B.; Li, H.T.; Wang, Y.J.; Deng, Y.X.; Wei, K.L.; Zeng, L.; Gao, B.; Du, G.; et al. A Physics-Based Compact
Model of Metal-Oxide-Based RRAM DC and AC Operations. IEEE Trans. Electron Devices 2013, 60, 4090–4097. [CrossRef]

5. Shen, Z.; Zhao, C.; Qi, Y.; Mitrovic, I.; Yang, L.; Wen, J.; Huang, Y.; Li, P.; Zhao, C. Memristive Non-Volatile Memory Based on
Graphene Materials. Micromachines 2020, 11, 341. [CrossRef] [PubMed]

6. Huo, Q.; Song, R.; Lei, D.; Luo, Q.; Wu, Z.; Wu, Z.; Zhao, X.; Zhang, F.; Li, L.; Liu, M. Demonstration of 3D Convolution Kernel
Function Based on 8-Layer 3D Vertical Resistive Random Access Memory. IEEE Electron Device Lett. 2020, 41, 497–500. [CrossRef]

7. Banerjee, W. Challenges and Applications of Emerging Nonvolatile Memory Devices. Electronics 2020, 9, 1029. [CrossRef]
8. Wong, H.-P; Lee, H.; Yu, S.; Chen, Y.; Wu, Y.; Chen, P.; Lee, B.; Chen, F.T.; Tsai, M. Metal–Oxide RRAM. Proc. IEEE 2012, 100,

1951–1970. [CrossRef]
9. Lim, E.W.; Ismail, R. Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey. Electronics 2015, 4,

586–613. [CrossRef]
10. Ielmini, D. Modeling the Universal Set/Reset Characteristics of Bipolar RRAM by Field- and Temperature-Driven Filament

Growth. Proc. IEEE 2012, 100, 1951–1970. [CrossRef]
11. Deng, Y.; Huang, P.; Chen, B.; Yang, X.; Gao, B.; Wang, J.; Zeng, L.; Du, G.; Kang, J.; Liu, X. RRAM Crossbar Array With Cell

Selection Device: A Device and Circuit Interaction Study. IEEE Trans. Electron Devices 2013, 60, 719–726. [CrossRef]
12. Pérez-Bosch Quesada, E.; Romero-Zaliz, R.; Pérez, E.; Kalishettyhalli Mahadevaiah, M.; Reuben, J.; Schubert, M.; Jiménez-Molinos,

F.; Roldán, J.; Wenger, C. To ward Reliable Compact Modeling of Multilevel 1T-1R RRAM Devices for Neuromorphic Systems.
Electronics 2021, 10, 645. [CrossRef]

13. Zhao, X.; Song, P.; Gai, H.; Li, Y.; Ai, C.; Wen, D. Li-Doping Effect on Characteristics of ZnO Thin Films Resistive Random Access
Memory. Micromachines 2020, 11, 889. [CrossRef] [PubMed]

14. Kvatinsky, S.; Ramadan, M.; Friedman, E.G.; Kolodny, A. VTEAM: A General Model for Voltage-Controlled Memristors.
IEEE Trans. Circuits Syst. II Express Briefs 2015, 62, 786–790. [CrossRef]

15. García-Redondo, F.; Gowers, R.P.; Crespo-Yepes, A.; López-Vallejo, M.; Jiang, L. SPICE Compact Modeling of Bipo-
lar/U2015nipolar Memristor Switching Governed by Electrical Thresholds. IEEE Trans. Circuits Syst. I Regular Pap. 2016, 63,
1255–1264. [CrossRef]

16. Jiménez-Molinos, F.; Villena, M.A.; Roldán, J.B.; Roldán, A.M. A SPICE Compact Model for Unipolar RRAM Reset Process
Analysis. IEEE Trans. Electron Devices 2016, 63, 1255–1264. [CrossRef]

17. Kvatinsky, S.; Friedman, E.G.; Kolodny, A.; Weiser, U.C. TEAM: ThrEshold Adaptive Memristor Model. IEEE Trans. Circuits Syst.
I Regular Pap. 2013, 60, 211–221. [CrossRef]

18. Bai, Y.; Wu, H.; Wu, R.; Zhang, Y.; Deng, N.; Yu, Z.; Qian, H. Study of Multi-level Characteristics for 3D Vertical Resistive
Switching Memory. Sci. Rep. 2013, 4, 5780. [CrossRef]

http://doi.org/10.1109/IEDM.2012.6479083.
http://dx.doi.org/10.1109/IEDM.2015.7409667.
http://dx.doi.org/10.1109/IEDM.2011.6131654.
http://dx.doi.org/10.1109/TED.2013.2287755
http://dx.doi.org/10.3390/mi11040341
http://www.ncbi.nlm.nih.gov/pubmed/32218324
http://dx.doi.org/10.1109/LED.2020.2970536
http://dx.doi.org/10.3390/electronics9061029
http://dx.doi.org/10.1109/JPROC.2012.2190369
http://dx.doi.org/10.3390/electronics4030586
http://dx.doi.org/10.1109/TED.2011.2167513
http://dx.doi.org/10.1109/TED.2012.2231683
http://dx.doi.org/10.3390/electronics10060645
http://dx.doi.org/10.3390/mi11100889
http://www.ncbi.nlm.nih.gov/pubmed/32987957
http://dx.doi.org/10.1109/TCSII.2015.2433536
http://dx.doi.org/10.1109/TCSI.2016.2564703
http://dx.doi.org/10.1109/TED.2014.2387429
http://dx.doi.org/10.1109/TCSI.2012.2215714
http://dx.doi.org/10.1038/srep05780


Micromachines 2021, 12, 614 11 of 11

19. Zhang, L.; Cosemans, S.; Wouters, D.J.; Govoreanu, B.; Groeseneken, G.; Jurczak, M. Analysis of vertical cross-point resistive
memory (VRRAM) for 3D RRAM design. IEEE Int. Memory Workshop 2013, 4, 2014. [CrossRef]

20. Yu, S.; Deng, Y.; Gao, B.; Huang, P.; Chen, B.; Liu, X.; Kang, J.; Chen, H.; Jiang, Z.; Wong, H.-P. Design guidelines for 3D RRAM
cross-point architecture. Int. Symp. Circuits Syst. 2014, 421–424. [CrossRef]

21. Chen, P.; Li, Z.; Yu, S. Analysis of vertical cross-point resistive memory (VRRAM) for 3D RRAM design. IEEE Trans. Very Large
Scale Integr. Syst. 2016, 24, 3460–3467. [CrossRef]

22. Chen, Y.; Lin, C.; Chang, Y. Post-Moore Memory Technology: Sneak Path Current (SPC) Phenomena on RRAM Crossbar Array
and Solutions. Micromachines 2021, 12, 50. [CrossRef]

23. Zhou, J.; Kim, K.; Lu, W. Crossbar RRAM Arrays: Selector Device Requirements During Read Operation. IEEE Trans. Electron Devices
2014, 61, 1369–1376. [CrossRef]

24. Levisse, A.; Giraud, B.; Noël, J.P.; Moreau, M.; Portal, J.M. SneakPath compensation circuit for programming and read operations
in RRAM-based CrossPoint architectures. Non-Volatile Memory Technol. Symp. 2015, 1–4. [CrossRef]

25. Burr, G.W.; Shenoy, R.S.; Virwani, K.; Narayanan, P.; Padilla, A.; Kurdi, B.; Hwang, H. Access devices for 3D crosspoint memory.
J. Vacuum Sci. Technol. B 2014, 32, 040802. [CrossRef]

26. Young-Fisher K.G.; Bersuker, G.; Butcher, B.; Padovani, A.; Larcher, L.; Veksler, D.; Gilmer, D.C. Leakage Current-Forming
Voltage Relation and Oxygen Gettering in HfOx RRAM Devices. IEEE Electron Device Lett. 2013, 34, 750–752. [CrossRef]

27. Luo Q.; Xu, X.; Gong, T.; Lv, H.; Dong, D.; Ma, H.; Yuan, P.; Gao, J.; Liu, J.; Yu, Z.; et al. 8-Layers 3D vertical RRAM with excellent
scalability towards storage class memory applications. IEEE Int. Electron Devices Meet. 2017, 2.7.1–2.7.4. [CrossRef]

28. Jo, S.H.; Kumar, T.; Narayanan, S.; Nazarian, H. Cross-Point Resistive RAM Based on Field-Assisted Superlinear Threshold
Selector. IEEE Trans. Electron Devices 2015, 62, 3477–3481. [CrossRef]

29. Xu, C.; Niu, D.; Muralimanohar, N.; Balasubramonian, R.; Zhang, T.; Yu, S.; Xie, Y. Overcoming the challenges of crossbar resistive
memory architectures. In Proceedings of the IEEE 21st International Symposium on High Performance Computer Architecture
(HPCA), Burlingame, CA, USA, 7–11 February 2015; pp. 476–488. [CrossRef]

30. Jo, S.H.; Chang, T.; Kim, K.; Gaba, S.; Lu, W. Experimental, modeling and simulation studies of nanoscale resistance switching
devices. IEEE Conf. Nanotechnol. 2009, 493–495.

31. Chen, A. A Comprehensive Crossbar Array Model With Solutions for Line Resistance and Nonlinear Device Characteristics.
IEEE Trans. Electron Devices 2013, 60, 1318–1326. [CrossRef]

32. Choi, S.; Sun, W.; Shin, H. Analysis of Read Margin and Write Power Consumption of a 3-D Vertical RRAM (VRRAM) Crossbar
Array. IEEE J. Electron Devices Soc. 2018, 6, 1192–1196. [CrossRef]

http://dx.doi.org/10.1109/IMW.2013.6582122
http://dx.doi.org/10.1109/ISCAS.2014.6865155
http://dx.doi.org/10.1109/TVLSI.2016.2553123
http://dx.doi.org/10.3390/mi12010050
http://dx.doi.org/10.1109/TED.2014.2310200
http://dx.doi.org/10.1109/NVMTS.2015.7457426.
http://dx.doi.org/10.1116/1.4889999
http://dx.doi.org/10.1109/LED.2013.2256101
http://dx.doi.org/10.1109/IEDM.2017.8268315.
http://dx.doi.org/10.1109/TED.2015.2426717
http://dx.doi.org/10.1109/HPCA.2015.7056056
http://dx.doi.org/10.1109/TED.2013.2246791
http://dx.doi.org/10.1109/JEDS.2018.2873016

	Introduction
	Simulation Methods
	Results and Discussion
	Error Rate
	Array Size
	Read Voltage
	Multi-Bit Operation

	Conclusions
	References

