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Abstract: As an important route for disease transmission, bioaerosols have received increasing
attention. In the past decades, many efforts were made to facilitate the development of bioaerosol
monitoring; however, there are still some important challenges in bioaerosol collection and detection.
Thus, recent advances in bioaerosol collection (such as sedimentation, filtration, centrifugation,
impaction, impingement, and microfluidics) and detection methods (such as culture, molecular
biological assay, and immunological assay) were summarized in this review. Besides, the important
challenges and perspectives for bioaerosol biosensing were also discussed.
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1. Introduction

Bioaerosols within the diameter of 100 µm mainly refer to bacteria, viruses, fungi, and
some microbial fragments suspended in the air [1–3]. The size of bioaerosols containing
fungi, bacteria, and viruses generally range from 1 to 30 µm, from 0.25 to 8 µm and less than
0.3 µm, respectively [4,5]. According to the report from the World Health Organization,
lower respiratory infections remained the world’s most deadly communicable disease and
were ranked as the 4th leading cause of death, resulting in 2.6 million deaths in 2019 [6].
Severe Acute Respiratory Syndrome (SARS) in 2003 [7,8], H1N1 Influenza in 2009 [9,10],
Middle East Respiratory Syndrome in 2013 [11–13], and Coronavirus (COVID-19) pan-
demic in 2019 [14–16] could also be spread through bioaerosols, which pose a great threat to
global public health. Therefore, it is vital to monitor bioaerosols containing microorganism
pathogens for prevention and control of the outbreaks of epidemic airborne diseases.

The collection and detection of bioaerosols are two important procedures for bioaerosol
monitoring. Since several good review articles have summarized bioaerosol collection [1–4,17,18]
and bioaerosol detection [1,19–21], the follow-up and emerging studies on bioaerosol collection
and detection are summarized and discussed in this review to broaden the sight of the scientists
and promote the studies on bioaerosol monitoring.

2. Bioaerosol Collection

The collection of bioaerosols is the essential prerequisite for pathogen detection, which
is also an important part of bioaerosol monitoring. The bioaerosol collection methods
basically rely on the physical properties of bioaerosols, such as weight and size. Currently,
available bioaerosol collection methods mainly include sedimentation, filtration, centrifu-
gation, impaction, impingement, and microfluidic chips. All these methods are able to
collect bioaerosols, but their performance is susceptible to factors, such as temperature,
humidity, airflow, etc. Some newly improved studies on bioaerosol collection methods are
updated and compared in this section.
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2.1. Sedimentation

Natural sedimentation was once used for bioaerosol collection since it was first pro-
posed by Koch in 1881 using nutrient agar plates to collect the settling bioaerosols con-
taining bacteria due to their own gravity, followed by incubation of the bacteria and
enumeration of the colonies. This sedimentation was demonstrated with low efficiency
by Sui et al. [22] by first using the aerosol generator to nebulize the bacterial suspension
at the concentration of 104 CFU/mL for mimicking bioaerosols containing bacteria in a
125-L tank, then placing the Luria-Bertani (LB) agar plates in the tank for 20 min, and
finally incubating the plate at 37 ◦C for 24 h to count the number of the colonies. The
results showed that only 26 bacterial cells were collected by this natural sedimentation.
Although the sedimentation method has shown its merits of low cost, easy operation, and
little impact on microbial activity, its practical applicability is greatly limited due to (1) low
collection efficiency, especially for bioaerosols with smaller size (<1 µm), (2) strong external
interferences, especially for complex environments, and (3) more importantly, increasing
microbial risk resulting from cultured pathogenic microorganisms.

Recently, sedimentation is also used with electrostatic adsorption to collect the
bioaerosols [23–25]. An external electric field is often applied to attract or repel the
charged bioaerosols due to the electrostatic effect, thus resulting in the collection of
bioaerosols onto agar, liquid, and solid surfaces [26–29]. In theory, bioaerosols with
more electric charges are more easily subject to electrostatic sedimentation, and vice
versa. The corona discharge was reported to enable the bioaerosols to carry more electric
charges, thus making the bioaerosols more easily collected onto the electrodes [30–34].
An interesting electrostatic sedimentation method for the collection of the bioaerosols
was shown in Figure 1. A commercially available miniature air ionizer was used to
generate electrical charges through corona discharge. When the bioaerosols arrived at
the ionization region, they were charged by colliding with the charges and captured
by an electrostatic precipitator. The results showed that the collection efficiency of
the device in collecting biological particles of 1 µm was as high as 84 ± 7% [35]. The
electrostatic sedimentation has shown a higher collection efficiency due to electrostatic
attraction of charged bioaerosols, a better universality due to less impact from particle
size, and a stronger collection capacity due to continuous-flow capture of bioaerosols.
However, the activity of pathogenic microorganisms in the bioaerosols might be greatly
reduced due to the electric charges, and the extremely high voltage for corona discharge
is still a potential risk for practical applications.

2.2. Filtration

Filtration is frequently used to collect the bioaerosols [36,37]. The filters are often made
of different materials, including polycarbonate, cellulose ester, polytetrafluoroethylene,
polyvinyl chloride, nylon, gelatin, glass fiber, alumina nanofiber, and others [3,17,38].
According to the physical structure, the filters could be divided into three categories:
fibrous filter, porous membrane filter, and capillary pore filter. A typical example was
reported by Biswas et al. and shown in Figure 2A. A gelatin filter and a glass fiber filter
were compared for physical collection of the bioaerosols containing influenza viruses. The
atomizer was first used to aerosolize the viral solution to form the bioaerosols containing
viruses. After they were drawn through the filter, the bioaerosols were collected on the
dry film of the filter due to diffusion, interception, and impaction. Finally, the collected
bioaerosols were determined using viral isolation and real-time Reverse Transcription-
Polymerase chain reaction (RT-PCR). The results showed that both of the gelatin and glass
fiber filters had a high collection efficiency. Compared to the glass filter, the gelatin filter
had a lower stability but a higher virus recovery. However, only high concentrations
of bioaerosols containing viruses could lead to positive results [39]. Another interesting
example was reported by Jung et al. and shown in Figure 2B. The bioaerosols containing
bacteria were first negatively charged through collision with negative ions generated by
the ionizer at a constant voltage of −10 kV. When the charged bioaerosols passed through
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the positively charged polyester/aluminum filters, they were captured in the filters due
to electrostatic interactions. The results showed that this filter had a very high collection
efficiency (∼99.99%) for the bioaerosols with a geometric mean diameter of ~0.89 µm [40].
At present, many commercial filters were available, such as the button bioaerosol sampler
from SKC (Covington, NC, USA) and the GSP bioaerosol sampler from BGI (Waltham, MA,
USA) [2].
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Figure 1. The electrostatic sedimentation for collection of bacterial bioaerosols. (a) side view of
the device; (b) the aerosol sensing components; (c) isometric view of the device; (d) schematic
representation of the side view of the electrostatic precipitator situated at the bottom of the device.
Reprinted with permission from ref. [35]. Copyright 2021 Taylor & Francis.

The filtration method has shown its merits of small size, low cost, and easy operation.
However, it still has some limitations, such as (1) uncontrollable collection size due to
uneven pore size of the filters, (2) inaccurate collection efficiency due to incomplete elution
of the bioaerosols and easy blocking of the filters, and (3) low collection velocity due to the
fragility of the filters. Besides, the complexity of the air environment and the heterogeneity
of bioaerosol size also make the sampling difficult.

2.3. Centrifugation

The centrifugation method is also reported to collect the bioaerosols. In general, the
bioaerosols are injected into a special-structured chamber to form the swirling air, resulting
in the centrifugation of the bioaerosols into the collection wall or liquid due to their different
mass [41–45]. A typical example was reported by Jung et al. and shown in Figure 3. A stable
thin liquid film was first formed in a conical cyclone chamber due to the centrifugation and
gravity. When the bioaerosols were injected into the chamber, a helical cyclone was then
formed, and the bioaerosols were finally centrifuged into the liquid film, which was drained
out from the bottom, while the clean air was drained out from the top. The results showed
that this centrifugation method could collect >95% of the particles with a diameter of >0.5
µm and the bioaerosols containing Staphylococcus epidermidis and Micrococcus luteus [46].
Combined with the adenosine triphosphate-bioluminescence technique, this method was
able to detect the bioaerosols containing E.coli cells as low as 130 CFU/m3 [47].
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The centrifugation method has shown its merits of compact size, high efficiency, and
continuous-flow collection. However, it still has some limitations, such as (1) the low
collection efficiency for smaller bioaerosols (<1 µm), (2) the evaporation of the thin liquid
film, and (3) the difficult control of the gas and liquid flows.

2.4. Impaction

The impaction method is based on inertia to collect the bioaerosols. Generally, the
bioaerosols are first drawn into a nozzle using a vacuum pump. Then, the bioaerosols are
impacted onto a solid collection medium (such as glass slide, agar plate, filter, gelatin, etc.),
which is perpendicular to the nozzle’s outlet. Finally, the bioaerosols with higher inertia are
captured onto the medium, while those with lower inertia flee with the air flow [43,48,49].
Usually, a single-stage impactor, which only needs a set of nozzles and a collection medium,
has its cut-off size. The bioaerosols larger than the cut-off size can be effectively collected
in the collection medium. While a multi-stage impactor is often used to study the size
distribution of bioaerosols due to the gradually smaller nozzles and continuous-flow
collection media. There are some commercially available impactors, such as Anderson
impactors (WesTech, Salt Lake City, UT, USA), Aerotech impactors (Aerotech Laboratories,
Coventry, UK), BioImpactor (AES, Combourg, France), and BioStage impactors (SKC Inc.,
Covington, GA, USA), etc. [2]. A typical example was shown in Figure 4A. The bioaerosols
containing Escherichia coli cells were continuous-flow collected by the impactor onto an
agarose gel with fluorescent dye and directly detected using a mini-fluorescence microscope
to take in situ fluorescent images. The results showed that the collection efficiency of this
impactor for the bioaerosols above a diameter of 0.84 µm was over 50% at the flow rate
of 10 L/min [50]. Another example was reported by Ozcan et al. and shown in Figure 4B.
An impaction method was combined with a digital holographic microscope for label-
free detection and automatic classification of the bioaerosols. The bioaerosols were first
collected in the substrate using the impaction method. Then, the microscope was used to
record the diffraction holograms with the amplitude and phase data of each individual
bioaerosol, which were further analyzed using an image processing software to classify
the bioaerosols into pre-trained classes based on the deep convolutional neural networks.
The results showed that this method could achieve > 94% classification accuracy for the
bioaerosols [51].
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At present, the impaction method has been widely applied to collect the bioaerosols
because it is cost-effective, easy-to-use, and without additional post-processing. However,
it also has some limitations, including (1) reduced collection efficiency due to the deposition
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of bioaerosols on the wall of impactors and the possible bounce of bioaerosols; (2) decreased
bioactivity because of the shear force on the bioaerosols, the impaction on the collection
medium and the desiccation of the bioaerosols; and (3) the difficulty of enumeration of the
colonies in the collection medium due to the overlap of microorganisms.

2.5. Impingement

The impingement method is similar to the impaction one, and the difference is the
use of a liquid collection medium. Usually, the bioaerosols are sucked into a chamber
through nozzles and captured by the liquid collection medium when they strike the
medium [52–55]. There are some commercial impingers, such as All-Glass Impinger (Ace
Glass Inc., Vineland, USA), SKC BioSampler (SKC Inc., Covington, GA, USA), Multistage
Liquid Impinger (Burkard Manufacturing Co. Ltd., Rickmansworth, UK), etc. A typical
impinger was shown in Figure 5A. It was able to collect 25% of the bioaerosols with the size
of <500 nm and 69–99% of those with larger sizes at the flow rate of 3.1 × 103 L/min [56]. As
shown in Figure 5B, the collection efficiencies of SKC BioSampler for aerosolized bacterial
species from 0.5 to 10 µm were studied using an Ultraviolet Aerodynamic Particle Sizer
unit. The results showed that the overall collection efficiencies of all viable biological
particles were 95.3%, 87.7%, and 65.5%, respectively, for different volumes of collection
liquids 20 mL, 10 mL, and 5 mL at the flow rate of 12.5 L/min [57].
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These impingers can collect the bioaerosols containing pathogenic microorganisms
in the liquid buffer solution, which can be directly detected without an additional elution
process. Although the impingement methods have been used as a reference in many
studies [58], there are some limitations for their practical applications, including: (1)
reduced viability due to the shear forces in the nozzles and the turbulence caused by the
air; (2) the evaporation of the liquid collection medium; and (3) the adherence of partially
collected particles onto the wall of the collection chamber.

2.6. Microfluidics

Microfluidic chips featured with miniaturization, integration, and multifunction have
been widely used in environmental monitoring [59,60], food safety [61–63], medical diag-
nosis [64–66], etc. Recently, microfluidic chips are increasingly exploited for bioaerosol
collection, which either relied on different structures of the microfluidic chips, such as the
staggered herringbone for generation of the chaotic vortex [67], the curved, circle or spiral
channels for production of the centrifugal forces [68], or combined with the traditional
bioaerosol collection methods to develop simpler, inexpensive, and portable methods [69].
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As shown in Figure 6A, a microfluidic chip with the staggered herringbone structures was
designed to enrich the bioaerosols containing Mycobacterium tuberculosis. Due to the
staggered herringbone structures, the chaotic flow was induced to create more chances
for the collision between the bacteria and the inside wall of channels, resulting in the
high capture efficiency (almost 100%) within 20 min [70]. As shown in Figure 6B, another
microfluidic chip with the curved microchannel was used to collect bioaerosols into liquids.
Due to the centrifugal and drag forces on the bioaerosols, the direction of bioaerosols was
changed towards the liquid. The results showed that the collection efficiency was ∼90%
for the bioaerosols containing S. epidermidis with a specific geometric mean diameter of
~0.79 µm [71]. Besides, in Figure 6C, a simple microfluidic chip combined with a microfilter
achieved a high collection efficiency of 99% for bioaerosols with a diameter < 1 µm [72].
The microfluidic chips have shown their merits, such as low cost, easy integration, and
automatic operation, but their low flow rate and short collection duration lead to the small
sampling volume.
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3. Pathogen Detection

The detection of pathogens is an effective method to quantify bioaerosols in the air,
which is also another important part of bioaerosol monitoring. The principle, advantages,
and disadvantages of pathogen detection methods are summarized in this section. Some
examples with different bioaerosol detection methods were compared in Table 1. All of
these methods are able to detect pathogens, but the molecular biological and immunological
detection methods are obviously faster than the culture method.

3.1. Microbial Culture

The microbial culture is the most common method for detection of the pathogens
in the bioaerosols [73–78]. Take pathogenic bacteria in the bioaerosols as an example.
After the bioaerosols are collected, they are first suspended in the buffer solution and then
surface plated on the agar plates, followed by incubation at the appropriate temperature
for sufficient time to form the visible colonies, which are finally counted to determine the
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concentration of the bioaerosols. Since there are often some non-target microorganisms in
the air, the non-selective culture medium can be used to cultivate all the microorganisms
in the bioaerosols, while the selective culture medium can be used to cultivate only the
specific microorganisms. An interesting study was reported by Schäfer et al. using the
agar plates to cultivate the bioaerosols containing bacteria at the proper temperature for
several days, which was further combined with subsequent colony counting procedures
to analyze the diversity of the target bacteria in the bioaerosols [79,80]. The microbial
culture is simple, accurate and effective; however, it has some limitations, including that it
is: (1) time-consuming (over 24 h); (2) not applicable for the non-cultural pathogens; (3) not
suitable for in-field applications.

3.2. Molecular Biological Detection

Molecular biological detection methods have made considerable progress over the past
decades [81,82]. PCR is the representative method for molecular biological detection, which
is able to quantitatively and specifically detect various pathogens in the bioaerosols [83–89].
After the bioaerosols were collected and lysed to release the nucleic acids from target
microorganisms, the nucleic acids were denatured, annealed, and extended to achieve
their amplification. Hernández et al. used real-time PCR to rapidly detect Enterococcus
faecalis, which were collected in a filter, with high sensitivity and good specificity [90].
For those bioaerosols containing RNA viruses, after RNA was extracted and reversely
transcribed into DNA, the same procedure could be performed as DNA. The SARS-CoV-2 is
a kind of RNA virus and could be detected using reverse transcription PCR (RT-PCR) [91].
Aoki et al. combined an IgG assay with RT-PCR to detect the SARS-CoV-2. The results
showed that this combination of RT-PCR and IgG assay could improve the robustness for
laboratory diagnosis of COVID-19 [92]. Recently, microfluidic chips, which are able to
integrate mixing, washing, incubation, reaction and detection onto a single chip, are often
used with molecular biological assays for detection of pathogens in the bioaerosols [93].
As shown in Figure 7, a microfluidic device was combined with a photothermal system to
capture, lyse, and detect the bacteria in the bioaerosols. The bioaerosols were first captured
by the microfluidic herringbone chip and then irradiated with a 532 nm laser, resulting
in a photothermal effect of spherical gold nanoparticles in the chip and thus the thermal
lysis of bacteria. Finally, the extracted biomacromolecules were analyzed for quantitative
detection of bioaerosols [94]. A thermoplasmonic-assisted dual-mode transducer was
presented to detect the SARS-CoV-2 viruses in 30 min, where an amplification-free-based
direct viral RNA detection and an amplification-based cyclic fluorescence probe cleavage
detection were combined and demonstrated as a potential tool for fast clinical infection
screening and real-time environmental monitoring [95]. Besides, some other molecular
biological detection methods were also applied to detect the SARS-CoV-2 viruses [96,97].
Liu et al. developed a 3D printed microfluidic chip to detect the SARS-CoV-2 viruses using
a Flinders membrane for nucleic acid extraction, recombinase polymerase amplification,
and loop-mediated isothermal amplification for sensitive detection, a smartphone-based
platform for colorimetric signal monitoring. The result showed that this microfluidic chip
was able to detect SARS-CoV-2 as low as 100 GE/mL [98].
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In theory, conventional PCR is not able to discriminate viable and non-viable mi-
croorganisms, resulting in possible overestimation of pathogenic microorganisms in the
bioaerosols. In recent years, some specific intercalating photo-reactive reagents were re-
ported to pretreat the bacterial cells to form covalent bonds with the DNA of dead cells,
so that only the DNA of live cells could be amplified and detected using PCR. Propidium
monoazide (PMA) and ethidium monoazide (EMA) are two effective intercalating reagents,
which only permeate cells with disrupted cell membrane, rendering the DNA unavailable
for amplification [99–101]. Chen et al. developed a PMA-quantitative PCR method, which
was able to quantify the viable bacteria in the bioaerosols with the linear range of 104 to
1010 CFU/mL [102]. However, the PMA and EMA at higher concentrations are toxic, thus
limiting their practical applications.

Compared to the microbial culture, the molecular biological detection methods are of
rapid detection, high sensitivity, and good specificity, and have been widely applied for
detection of pathogens in the bioaerosols. However, they also have some limitations, includ-
ing (1) high skill due to complex nucleic acid extraction; (2) potential cross-contamination
due to the leakage of nucleic acid templates; (3) laboratory dependence due to benchtop
instrument.

3.3. Immunological Detection

The immunological detection methods are based on the antibody-antigen reaction.
In the past decades, various biosensors for detection of the pathogens in the bioaerosols
have received increasing attention due to their outstanding features of low cost, fast
response, miniature size, and easy integration, and have been considered as a promising
candidate for in-field applications in many fields, such as biomedical diagnostics, food
safety, environmental monitoring, and so on [45,103,104].

Electrochemical biosensors are one of the most common biosensors, which convert
biological signals into electrical ones, including impedance, current, potential, etc., resulting
from enzymatic catalysis, redox reaction, and antigen-antibody binding, etc. An interesting
study on electrochemical biosensors was shown in Figure 8A using single-walled carbon
nanotubes (SWCNTs) to detect Bacillus subtilis in the bioaerosols. The bioaerosols containing
Bacillus subtilis were captured by the polyclonal antibodies immobilized on the SWCNTs-
based biosensor, resulting in the change in the electric resistance, which was measured
using a potentiostat. This electrochemical biosensor was able to detect Bacillus subtilis from
102 to 1010 CFU/mL within 10 min with the detection limit of 102 CFU/mL [105].
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The field effect transistor (FET) biosensors are based on the measurement of drain
current and have been reported to detect the pathogens in the bioaerosols [30]. The metal
gates in metal-oxide-semiconductor FET structures were often replaced by ion-sensitive
membranes (ISMs) and reference electrodes modified by biological elements (such as
antibodies and antigens). When the charged biological targets were recognized to form
the complexes on the ISMs, or the biological targets on the ISMs induced biochemical
reactions to produce ionic products (such as H+). As a result, the density of surface charges
on the ISM was changed, resulting in the change in the ISM potential and thus the change
in drain current. Therefore, the drain current was measured to quantitatively determine
the number of targets. As shown in Figure 8B, Lee et al. reported a two-channel carbon
nanotube FET (CNT-FET) to simultaneously detect the bioaerosols containing two different
fungi collected by the impinger. When the negatively charged fungi were conjugated with
the antibodies immobilized on the CNT-FET, a negative gating effect was applied to the
CNT channel, resulting in an increase in the current. This CNT-FET biosensor was able to
simultaneously detect Alternaria alternate and Aspergillus niger from 101 to 106 pg/mL [106].
Besides, as shown in Figure 8C, a real-time monitoring system for the bioaerosols containing
influenza H3N2 viruses was designed by integrating a FET sensor, a microfluidic chip, and
a bioaerosol-to-hydrosol air sampler. When the bioaerosols containing H3N2 viruses were
collected into the buffer solution by the air sampler and injected into the microfluidic chip,
the viruses were captured by the antibody-modified FET sensor, resulting in the discrete
conductance changes. The results showed that when the concentration of viruses increased
10 times, the FET sensor response increased about 20–30% [107].

Piezoelectric biosensors are based on the change of the mass and have been used in
the fields of analytical chemistry, environmental monitoring, and gas detection. Quartz
crystal microbalance (QCM) biosensors and surface acoustic wave (SAW) biosensors are
two main kinds of piezoelectric biosensors. The QCM biosensor measures the change in
the frequency of quartz crystal resonator resulting from the mass change. Generally, the
antibodies are modified onto the gold surface of the quartz crystal resonator to specifically
capture the targets in the bioaerosols, resulting in the increase in the mass on the surface
and thus the decrease in the resonation frequency [108,109]. Skladal et al. proposed a
QCM biosensor, which was able to detect the bioaerosols containing Escherichia coli with
a lower detection limit of 1.45 × 104 CFU/L in 16 min [110]. The SAW biosensor mainly
consists of a piezoelectric material, an interdigital transducer, and an oscillation circuit,
and measures the change in the viscoelasticity, mass, or frequency of a liquid [111–114].
As shown in Figure 8D, Mitsubayashi et al. developed an enhanced SAW biosensor for
sensitive detection of the bioaerosols containing the house dust mite (HDM) allergens.
First, the surface of the SAW transducer was modified with a self-assembled monolayer
of the mixture of ORLA85, 6PEG-thiol and capture antibodies. Then, the HDM allergens,
Dermatophagoides farinae, were dropped and incubated for 10 min. After washing with PBS,
the HRP modified detection antibodies were dropped and incubated for 10 min to label
the targets. Finally, the substrate was added and catalyzed by HRP for 2 min to produce
the precipitates on the surface of SAW biosensor, resulting in the change in the velocity of
the surface acoustic wave and thus a phase shift. The results showed that the precipitates
greatly increased the mass on the surface of the SAW biosensor, and this SAW biosensor
had a detection limit as low as 35 pg/mL [115].
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Surface plasmon resonance (SPR) biosensors rely on the change of refractive index
resulted from the mass accumulation at the sensing surface to quantify the targets from
small molecules to the whole microbes, such as proteins, viruses, bacteria, and so on [116].
Similarly, the biological components were immobilized on the surface of the SPR sensor,
followed by reaction with the targets, leading to the change of the mass on the surface [117].
Agranovski et al. reported an SPR biosensor for rapid detection of the bioaerosols contain-
ing bacteria. The SPR sensor was first modified with the biotinylated rabbit polyclonal
anti-E. coli antibodies. Then, the E. coli cells were specifically captured by the antibodies
onto the surface. The change of the refractive index was finally measured to determine
the concentration of the target bacteria. This SPR biosensor could detect the bioaerosols
containing E. coli from 1.5 × 103 to 1.5 × 108 CFU/mL [118]. Wang et al. developed a
succinimidyl-ester-functionalized plasmonic biosensor for accurate and fast detection of
total bioaerosols in different environments, which could be a reliable candidate for air qual-
ity assessment. The detection limits of this biosensor for bioaerosols containing Escherichia
coli and Bacillus subtilis were 0.5119 and 1.69 cells/mL, respectively [119].

3.4. Others

There are also some other methods for detection of the pathogens in bioaerosols, such
as flow cytometry [120], laser induced fluorescence [121,122], laser induced breakdown
spectroscopy [123], epifluorescence microscopy [124,125], matrix-assisted laser desorp-
tion/ionization time of flight (MALDI-TOF) [126], Raman spectroscopy [127], transmission
electron microscopy [128], scanning electron microscope [129], ATP-based bioluminescence
assay [130], etc.

Adenosine triphosphate (ATP), as an energy substance, is commonly found in live
cells [131]. The ATP-based bioluminescence assay is based on the measurement of the
light resulted from the reaction between luciferin and luciferase. Based on the known
relationship between the light intensity and the ATP concentration, the concentration of
target microorganisms in the bioaerosols could be obtained. As an available and affordable
method, the ATP-based bioluminescence assay has been extensively applied for rapid
detection of the pathogens in the bioaerosols [55,132,133]. As shown in Figure 9A, Jung
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et al. used the ATP-based bioluminescence assay for real-time detection of the bioaerosols.
The luciferase-luciferin mixtures were first dropped and immobilized on the glass-fiber
pad. After the bioaerosols were collected using wet cyclone and lysed using thermal lysis,
the lysed sample was dropped to the pad every 2 min. The bioluminescent intensity of the
pad was finally measured using the photomultiplier tube. This bioluminescence assay was
able to detect the bioaerosols with pathogenic microorganisms as low as ∼130 CFU/m3

in seconds [47]. Besides, as shown in Figure 9B, the bioaerosols containing bacteria were
first charged by the negative ions and then collected in a flowing liquid containing cell
lysis buffer and ATP bioluminescence reagents. After the liquid was delivered to the
microfluidic chip, the collected bacteria were dissolved by the cell lysis buffer, and ATP
was extracted and detected by the bioluminescence detector. The total detection time was
30 s at a liquid flow rate of 800 µL/min [34].

Table 1. Comparison of bioaerosol detection methods.

Detection Method Target Detection Range Detection Time LOD References

Culture Enterococcus - 24 h 103 CFU/mL [76]

PCR Enterococcus faecalis 1.5 × 103–1.5 × 108

CFU/mL 72 min 1.5 × 103 CFU/mL [90]

RT-PCR Bovine viral diarrhea
virus

5.2 × 100–5.2 × 108

RNA molecules <30 min 5.2 RNA molecules [134]

RT-PCR Influenza virus 3.7 × 104–3.7 × 106

TCID50/mL <50 min 3.7 × 104

TCID50/mL [135]

Chemiluminescence
immunoassays Legionella 8 × 103–8 × 106

cells/mL 1 h 1 × 103 cells/mL [104]

Chemiluminescence
immunoassays

Dermatophagoides
farinae 0.49–250 ng/mL - 0.49 ng/mL [136]

Electrochemical
biosensor Escherichia coli DH5a 103–108 CFU/mL 20 min 150 CFU/mL [137]

Electrochemical
biosensor Bacillus subtilis 102–1010 CFU/mL 10 min 102 CFU/mL [105]

FET biosensor Alternaria alternate 101–106 pg/mL - 10 pg/mL [106]

QCM biosensor Cat allergens 5.2 × 100–1.6 × 105

ng/L 30 min 5.2 ng/L [108]

QCM biosensor Escherichia coli 1.45 × 104–1.45 ×
106 CFU/L 16 min 104 CFU/L [109]

SAW biosensor Dust mite allergens 100–103 ng/mL 24 min 6.1 ng/mL [111]

SAW biosensor Dust mite allergens 1.0–3000 ng/mL 20 min 6.3 ng/mL [112]

SAW biosensor Dust mite allergens 0.3–1000 ng/mL 36 min 2.5 ng/mL [113]

SAW biosensor Dust mite allergens 102–3 × 103 ng/mL - 20.1 ng/mL [114]

SAW biosensor Dust mite allergens 0.08–1 ng/mL - 35 pg/mL [115]

SPR biosensor MS2 phage 2.2 × 106–2.2 × 1011

PFU/mL <1 min 1.12 × 106

PFU/mL [116]

SPR biosensor Escherichia coli 1.5 × 103–1.5 × 108

CFU/mL - 1.5 × 103 CFU/mL [118]

ATP-based
bioluminescence assay Escherichia coli 103–108 CFU/mL 5 min 2.32 × 103

CFU/mL [55]

ATP-based
bioluminescence assay Escherichia coli 3.7 × 101–3.7 × 107

CFU/mL 5 min 375 CFU/mL [47]
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This assay also showed its ability to distinguish the presence of viable but non-
cultivable microorganisms. However, this assay still suffered from some limitations, in-
cluding (1) significant reduction in the activity of luciferase due to prolonged exposure to
the liquid phase; (2) decreased detection accuracy and stability due to the presence of other
chemicals; (3) low selectivity for detection of the bioaerosols containing spores due to the
low level of ATP in spores.

4. Conclusions and Future Trends

The monitoring of bioaerosols containing pathogenic microorganisms is very im-
portant for prevention and control of airborne diseases. The collection and detection of
bioaerosols are the essential procedures for bioaerosol monitoring. The existing bioaerosol
collection and detection methods basically have an impact on the bioactivity of bioaerosols,
which should be further investigated to better understand the risk level of the bioaerosols
and even to develop the inactivation methods for bioaerosols.

For the collection of bioaerosols, the electrostatic sedimentation, the centrifugation,
the impaction, and the impingement methods might damage the bioactivity of collected
bioaerosols to a certain extent, which might result in the underestimation of the risk level of
bioaerosols. These methods have higher collection efficiency for collecting the bioaerosols
with micrometer-scale microorganisms due to their more charges or bigger mass. Besides,
these methods using liquid collection medium often have higher recovery than those using
solid medium because extra washing procedure is not required. Some samplers like PTFE
filters, gelatin filters, and cyclones were able to collect the SARS-CoV-2 viruses which
were followed by RT-PCR analysis [138]. Besides, the microfluidic chips have shown their
obvious advantages over the traditional methods and they are indeed promising to develop
online collection methods. However, the concentration of pathogen microorganisms in
the air is usually very low, and thus the collected bioaerosols are often few and cannot
be directly detected using the existing detection methods due to their limited sensitivity.
Therefore, a large volume of air samples might be used to collect enough bioaerosols for
downstream detection, and more efficient collection methods should be further investigated
and developed.

For the detection of bioaerosols, the microbial culture has high sensitivity and accuracy
but needs a long time to get final results. PCR is fast and sensitive but needs complex
DNA extraction procedures. Various biosensors with low cost, fast response, miniature
size, and easy integration, have received increasing attention and been considered as
effective tools for detection of bioaerosols. At present, bioaerosol monitoring generally
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includes two separate procedures: bioaerosol collection and pathogen detection and cannot
be achieved in real-time. The integration of bioaerosol collection and detection onto a
single chip is still a big challenge, but it is urgently demanded for online monitoring of
bioaerosols containing pathogenic microorganisms. Besides, dead and live microorganisms
always coexist in the bioaerosols, and most detection methods still cannot distinguish
between dead and live microorganisms, leading to overestimation of the pathogens in the
bioaerosols. Thus, it is vital to develop detection methods that are able to distinguish dead
and live microorganisms.

With rapid development of the Internet of Things (IOT), bioaerosol monitoring should
be tightly integrated with the IOT to achieve a more efficient response to the potential risks.
The detection results for bioaerosol monitoring can be combined with the collection data
(including environmental temperature, environmental humidity, sampling time, sampling
location, sampling person, sample ID, etc.) and detection data (including testing person,
testing time, testing method, etc.), and transmitted to bioaerosol monitoring cloud plat-
forms through wireless communication. The detection results can be dynamically analyzed
using artificial intelligence and big data technologies to predict the risk level of bioaerosols
and suggest the response to this risk.
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