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Abstract: Although grinding is essential in the production of castings, the casting grinding process in
manufacturing is complicated and there are many difficulties, such as the large amount of noise in the
grinding environment, non-structural casting entities, and the inclination in the overall shape–time
variation. Even in the face of complex technology and a variety of difficulties, modern casting
grinding technology still demands large-batch production, low cost, fast response, thin brittleness,
high precision, etc. The grinding process has a long history. This paper focus on its development
from a human-operated, mechanical job, to an automatic grinding task based on compliant control
theory. However, the methods mentioned above can no longer satisfy the current production
need. In recent years, researchers have proposed intelligent grinding methods to meet the needs
of modern casting production, and provided various strategies and alternatives to the challenges
of machining accuracy, machining efficiency, and surface consistency. The research direction of
casting polishing has mainly focused on online robot detection, material removal prediction, constant
grinding contact force control, and high-precision matching. Although applications for online
detection and constant grinding contact force control exist in industry, there are challenges in material
removal prediction and three-dimensional high-precision matching. This paper also compares and
analyzes the advantages and disadvantages of different grinding methods, and puts forward some
research directions for future work, so as to promote more intelligent and efficient grinding of complex
castings in practical application.

Keywords: robot grinding; visual control; casting post-processing

1. Complexity Description of Casting Grinding Process

At present, the casting grinding process is faced with many challenges, such as the
large amount of noise in the grinding environment, non-structural casting entities, and
the inclination in the overall shape variation, which limit the development of the casting
grinding process. Therefore, the above problems need to be deeply analyzed.

1.1. Polishing Environment with Large Noise

Casting polishing is the main means of post-processing castings; however, dust gener-
ated in this process cannot be controlled, and large amounts of chromium dust and nickel
particles will cause harm to the environment [1]. Manual grinding causes respiratory tract
and lung diseases, and even pneumoconiosis, due to dust inhalation. Furthermore, artificial
polishing efficiency is low, the consistency of workpiece products is poor, and the scrap rate
is high. During mechanical grinding, high-density dust affects the equipment used in the
clamping operation. High-density dust adheres to the equipment, and the dust reduces the
accuracy and stability of the clamping equipment. When an intelligent grinding scheme is
adopted, it is a challenge to seal robots and sensing devices, and thus prevent dust from
entering. In addition, high-density dust blocks the surface of sensing devices, meaning
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they cannot accurately make judgements. At the same time, large vibrations have a serious
impact on field operations, as shown in Figure 1.
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hearing loss, and even cause perforation of the eardrum and deafness, resulting in a de-
cline in the quality of work. During mechanical grinding, the sound can exceed the alarm 

Figure 1. Casting post-processing site. (a) grinding scene (b) grinding effect (Based on practice,
vibration can easily occur when grinding the red area of the cavity). During manual grinding, there is
a long period of intense vibration exposure in the grinding process of hand-held workpieces, which
causes arm vibration syndrome and harm to workers’ physical health [2]. Frequent vibration will
also cause harm to the grinding workpiece and tools, because the tools and workpiece are vulnerable
to damage during large vibrations. During mechanical grinding, a large holding force is needed to
fix the casting workpiece, and this force may damage the casting part. A sensing device subject to
large vibration interference cannot accurately capture the workpiece to be polished, and acquired
data that contains a large amount of noise will affect the grinding accuracy. Large vibrations result in
a large amount of noise for the control of the end-effector and have an impact on the stiffness of the
equipment. Large vibrations also have a significant impact on the clamping of the workpiece, which
means the workpiece can easily become loose. Large vibrations can also result in the splashing of
hot debris.

In the process of grinding, the friction between the grinding head and the workpiece
produces a large quantity of hot debris splashing, as shown in Figure 2. During manual
grinding, a large quantity of thermal debris can block the sight of workers and seriously
affect the accuracy of the workpiece. A large quantity of thermal debris having a high
temperature can cause burns on the exposed skin of workers on site. A large quantity of
uncontrolled high thermal debris can cause vision loss to the eyes of workers on site; debris
accidentally flying into a human eye can seriously damage the lens and cause blindness [3].
Therefore, the grinding process is very precise and seriously affects the work efficiency.
During mechanical grinding, the splashing of high-caloric debris will cause scalding on
the surface of the nearby equipment, and an improper process can lead to the formation of
chip tumors on the surface of the workpiece. High-caloric debris can also easily damage
the outer layer of the power supply and the signal line. For the intelligent grinding system,
high-caloric debris can interfere with the ability of the intelligent sensing equipment to
obtain information. As a result, the obtained information may be incorrect and, therefore,
not applied. This may lead to inaccurate pre-judgment and inaccurate planning strategies,
causing sharp sound pulses at a minor level, or directly damaging the grinding equipment
at a serious level.
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the red part splashes on the green part).

The main cause of a sharp sound pulse is excessive grinding. In manual grinding, a
sudden sharp sound pulse stimulates workers’ ears, which can damage hearing and cause
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hearing loss, and even cause perforation of the eardrum and deafness, resulting in a decline
in the quality of work. During mechanical grinding, the sound can exceed the alarm of
the equipment, which can result in damage to workers’ health and equipment during the
operation of the equipment. For intelligent systems, due to the uncertainty in casting a
deformation structure, the prediction may not be accurate, and a sudden sharp sound pulse
can easily be produced. This can lead to damage to the equipment and the workpiece, and
serious accidents can be caused.

There is an urgent need for industrial robots to realize unmanned casting post-
processing because of the large amount of noise in the environment during casting post-
processing. It is necessary to study and analyze the technology to overcome the challenges
of high-density dust, large vibrations, splashing of high-temperature debris, and sharp
sound pulses during the grinding process. In addition to the challenges during the grind-
ing process, the non-structural characteristics in the solid design of castings and the time
variation in the overall inclined shape during the casting process have a serious impact on
the post-processing of castings.

1.2. Non-Structural Casting Entities

Castings usually have a three-dimensional surface structure, and there are a large
number of non-structural concave surfaces and non-parametric convex surfaces. The
concave surface cannot be easily polished inside by hand. Due to the large number of
concave surfaces, during mechanical grinding it is difficult to find the datum surface or fix
the combination surface that can be clamped. Furthermore, without a datum in machining,
it is difficult to ensure accuracy. In addition, when an intelligent grinding method is
adopted, data collection for concave surfaces having a large curvature can easily be blocked,
resulting in incomplete data collection.

As shown in Figure 3, the casting structure is complex and contains a large number
of features. Among these, the simple features of the circular surface in the figure are not
obvious, and there are a large number of non-structural surfaces [4]. In addition to casting
the convex outside surface, there are a large number of internal concave surfaces, which are
the most difficult structural concave surface. These surfaces reduce the measuring accuracy
and the grinding accuracy [5]. The existing method uses artificial measuring and polishing,
and the combination of mechanical and intelligent methods to conduct the processing is
still in the experimental stage.
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Due to the limitation of the non-structural curved surface casting process, the random
interference of casting burrs, flanging, sagging, etc. not only seriously affects the deter-
mination of the datum, but also leads to a sharp change in the load during the process
of grinding. Therefore, it is very important to accurately obtain 3D structure information
of machined parts prior to grinding. The obtained 3D structure information can then be
processed, and a planning grinding strategy can finally be adopted according to the actual
situation. There will also be a time change in the overall shape of the casting tendency in the
process of forming, which will increase the difficulty in the post-processing of the casting.
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1.3. Tendency for the Overall Shape to Change over Time

As the number of uses of sand molds and other molds increases, the bonding surface
of the mold and casting will change regularly due to wear or adhesion, causing thickness
change, tilt change, or overall scaling. In turn, this results in the loss of the original datum
and the overall deformation of the casting, as shown in Figure 4. There are clear edges and
corners in the (a) initial state mold cavity, and the deformation in (b) wear after a short use
of time will appear with the increase in the number of uses. The deformation in (c) after a
longer period of time and (d) failure status is too large and the shape in (a) is quite different.
When the deformation is small, the casting will not be scrapped directly, but it will pose a
challenge to the post-processing of the casting.
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When manual grinding, to ensure the overall shape of the casting subject to tilt time
change, workers need to judge whether deformation exists, and the form of deformation
according to measurements, and then use a means of material removal for post-processing
of the casting. The removal amount and removal method are determined according to
the workers’ measurement and past experience. Because a certain deformation exists,
excessive removal will directly lead to product scrapping. In mechanical grinding, it
is also necessary to judge this situation according to the measured deformation. When
removing materials for deformation correction, parameters of mechanical equipment need
to be modified. However, repeated modification of the equipment parameters and the
deformation judgment of castings will reduce the working efficiency and lead to product
scrapping due to errors [6]. Intelligent methods can accurately match and identify tiny
deformations and reach the accuracy of 0.052 mm [7]. However, judging and predicting the
grinding mode based on experience, like that of grinding workers, is still in the experimental
and verification stage.

Many challenges, such as the large amount of noise in the grinding environment, the
time variation in non-structural casting entities, and the inclination in the overall shape,
restrict the development of the casting grinding process. Non-structural castings and the
overall tendency in the shape are problems in the casting design and production process,
and a polishing environment subject to a large amount of noise is a problem in the post-
processing of castings. It is necessary for researchers to improve the detection methods
during casting and casting post-processing, and to use advanced industrial robots and
sensors combined with advanced algorithms to replace human detection.

2. Development History of Grinding Process
2.1. Initial Manual Polishing

In the Stone Age, stone grinding [8] was mainly used to make various knives, stone
axes, and other tools. In the Bronze Age [9], as the first country to employ copper smelting,
China mastered the advanced casting post-processing technology. The rasp was used to
compensate for casting defects, make the casting surface smooth, and make weapons and
tools sharper and more polished [10]. After entering the Iron Age, rotary grinding tools
appeared [11], which provided a reference for subsequent mechanical grinding. With the
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emergence of iron tools and rotary tools, and the advent of the first Industrial Revolution
after the emergence of the steam engine, the manufacturing materials were mainly cast iron.
Although casting products have changed, the grinding method still used manual grinding.
Siemens developed the generator in 1866, providing technical support for mechanical
grinding. In 1914, sandpaper developed by 3M in the United States resulted in a new
grinding tool for post-processing for castings. Development subsequently entered a period
of combining artificial and mechanical grinding in the post-processing of castings, which
has continued until now.

To date, few studies have been conducted on manual grinding technology. In 2021,
Zhao Jinghui et al. proposed and developed a hand-held rechargeable grinding tool that
can assist personnel in maintaining power equipment subject to corrosion of metal parts
and oxidation and heating of the contact surface, thus improving the grinding speed. In
2022, Whitmore, L et al. invented a precision grinding tool to be used for manual grinding
of samples; the tool can be prepared by a 3D printer [12] and can grind samples with a
surface accuracy of up to 10 µm.

Manual grinding is highly dependent on people, and its operating object is mainly
small-batch samples. Manual grinding is far from satisfying the requirements of high-
volume and low-cost workpiece grinding, and it is impossible to avoid the damage caused
by noise, vibration, and scratches in the grinding process [13].

2.2. Mainstream Mechanical Grinding Process

As a result of the combination of the rotary grinding mode with a motor and pneumatic
source, pneumatic grinding equipment (e.g., Figure 5) and electric grinding equipment
(e.g., Figure 6) emerged. There are two ways of grinding with this equipment. In one,
when grinding large parts, the workpiece to be polished is fixed, and the electric grinding
equipment moves relative to the workpiece surface to complete grinding. In the other,
when working on small parts, the electric grinding equipment is fixed, and the grinding
is carried out by moving the workpiece to realize the relative movement of the rotating
grinding head.
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In 1875, Brown and Sheeper designed a sawing machine and universal grinder, and
the grinding method combined with mechanical equipment began to appear. This grinding
method, combining manual and equipment-based grinding, continues to this day. Special
grinding machines have been designed for special parts according to the principle of
the grinding machine [14]. In 1952, Massachusetts Institute of Technology successfully
developed the world’s first Computer Numerical Control (CNC) milling machine [15]. The
emergence of the CNC milling machine resulted in new mechanical grinding equipment
and a new process for post-processing grinding of castings. When a CNC milling machine
is used for casting post-processing, the workpiece to be polished is fixed to the standardized
clamping device in the workspace of the milling machine, and the grinding tool is controlled
by the CNC program for grinding processing [16]. Although the CNC milling machine
can be used in the post-processing grinding of castings, its working space is small and the
machine has poor flexibility. As a substitute for special machine tools, industrial robots are
increasingly being used in the field of grinding. In 1986, Tate, A. R. of MIT used robots to
realize automatic grinding of welds, and controlled the maximum normal force at 40 N
and the maximum frequency of reference force at 2.3 Hz [17]. Later, another researcher,
Peng J et al. [18], designed a passive grinding device, and studied the characteristics of
the grinding process and the influence of the deflection angle in the passive grinding
process. To meet the requirements of grinding complex parts, Guo Wanjin et al. from
Harbin Institute of Technology designed and developed a compound 5-Dof working robot
having large dexterity in its working space and dexterity in its attitude adjustment [19].

Table 1 scores the performance of different grinding methods. The average value
(Ep) of the table is evaluated according to the favorable grinding degree (0–5), where 0
represents very poor and 5 represents very good. Weight W: Stiffness W1 = 0.6, flexibility
W2 = 0.5, workspace W3 = 0.6, generality W4 = 0.7, cost W5 = 0.5.

Table 1. Comparison of conventional grinding machines with robotic grinding systems.

Universal
Grinding
Machine

Special
Grinding
Machine

Numerical
Control Grinding

Machine

Robot
Grinding
System

Stiffness 4 4 4 1
Flexibility 2 0 3 5
Workspace 1 1 2 5
Versatility 2 0 3 5

Cost 3 2 2 4
Synthesis

Evaluation value 6.3 4.1 8.2 11.6

The fuzzy mathematics weighted average evaluation value (Epw) and comprehensive
evaluation value (Ez) can be derived as follows:

Epw = Ep ×W (1)

EZ =
5

∑
i=1

(Epi ×Wi) (2)

The universal grinding machine has good performance in terms of rigidity and cost,
but poor flexibility and a small working space, which are not suitable for the diversified
needs of intelligent manufacturing. The CNC grinder has excellent performance in terms
of stiffness and precision; however, for the processing of large complex surface parts, the
cost of a high-precision CNC grinder is too high, and it is thus not suitable for procurement
by small and medium-sized enterprises. In addition to its low stiffness, the robot grinding
system has outstanding performance in terms of flexibility, workspace, versatility, and cost.
The casting post-processing grinding process of an integrated robot grinding system has
great development potential; however, the main structure design method used by grinding
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robots not only has a long design cycle, but also has poor grinding stability and stiffness,
which is not suitable for product promotion. Therefore, the end-effector with compliant
control theory combined with the grinding mode of industrial robots has been extensively
studied by researchers.

2.3. Polishing Mode Based on Modern Control Theory

In the process of grinding, the change in the force is the key to improving the grinding
performance to accurately control the force and displacement. It is difficult to control the
contact force between the end-effector and the workpiece. Researchers have conducted a
large number of studies on the control of grinding robot manpower, and found that there is
a large interaction force between the end-effector and the workpiece during grinding, and
that the control accuracy of this force will directly affect the machining accuracy [20–23]
and the position control of the robot. Therefore, the simultaneous control of position and
force is a challenge for grinding operations [24]. Researchers in the field of polishing
robots use active compliance control, passive compliance control, and active and passive
compliance control. The common means of active compliance control are power position
hybrid control [25–27] and impedance control [28–31].

In 1993, Perdereau, V proposed a hybrid robot position control scheme. Subsequently,
Zhou et al. proposed a hybrid control strategy of a grinding robot based on adaptive
impedance control [32]. Tian, Y et al. [33] recently designed a fuzzy force controller
that imitates human behavior in the process of rust removal. Subsequently, Zhao et al.
developed a force/bit disturbance rejection control strategy based on fuzzy Proportion
Integration Differentiation (PID). The proposed control strategy can achieve a force control
accuracy of 13.4% for the expected 15 N contact force, and a material removal depth of
0.0362 mm can reach a precision of 1.2 µm [34]. Zhu et al. proposed a dynamic control
method based on a one-dimensional force sensor PID controller. The roughness of the
polished surface Ra < 0.4 µm, the material removal depth is more stable, the deviation
remains at 0.003 mm, and the mean square deviation at 40 N is 0.37 N [32].

Grinding the workpiece to ensure accurate force control will reduce machining effi-
ciency. The control algorithm is much more complex than the passive compliant constant-
force mechanism. In addition, when the end-effector contacts the workpiece or the surface
is irregular, force overshooting will be inevitable and relatively large. Therefore, researchers
have used passive compliant mechanisms to develop end-effectors and conducted a large
number of studies. Mohammad et al. proposed a forced-end-effector design, which was
applied to the robot grinding system to make the grinding tool compliant and reduce the
impact of vibration [35]. Y.M. Li proposed a constant-force mechanism (CFM) based on
the combination of positive and negative stiffness mechanisms. The positive and nega-
tive stiffness of folded beam and bistable beam mechanisms was used to offset the zero
stiffness to produce constant force, as shown in Figure 7. The proposed CFM can produce
a stroke range of 2 mm in a constant-force mode [36], with a maximum of 12.63 N and a
minimum of 12.43 N, and a flatness of 98.41%. Qingsong Xu and his team at the University
of Macau proposed the design of an end-effector based on a constant-force mechanism
for robot grinding. The designed industrial robot drives the end-effector to polish, and
the end-effector passively adjusts the contact force. The precision of the force is ±0.3 N,
resulting in high consistency of the workpiece’s surface quality [37].

From the development of grinding robots mentioned above, it can be clearly seen that
the grinding robot is moving towards standardization. The control force and displacement
accuracy are the main research directions of end-effector design. The use of constant-force
grinding and constant-force clamping to precisely control the force greatly improve the
grinding accuracy and clamping stability. However, due to the limitation of material
properties and the size of the constant-force mechanism, the end-effector has insufficient
load, an overly complex structure, and insufficient plane stiffness when the end-tool moves.
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3. Demand Analysis of Grinding Technology for Modern Casting Production

As a result of the upgrading of industrialization and social progress, the market
demand has increased for a casting grinding process having a large volume, low cost, fast
response, high degree of precision, and thin brittleness.

3.1. Casting Scale Increase

China’s total foundry production reached 51.95 million tons in 2020 [38], an increase
of 6.6% year-on-year, despite the impact of COVID-19. The casting output and growth rate
in China in recent years and their changes are shown in Figure 8.

3.2. The Cost of Grinding Process Should Be Reduced

In the market, it is necessary to reduce the cost of post-processing of large quantities
of castings [39]. The cost can be roughly divided into four parts, as shown in Figure 9:
development and design, production preparation and processing, procurement of raw
materials and purchased parts, and management and sales [40]. The labor cost is not
negligible in the process of grinding. Since the Industrial Revolution, the demand of
enterprises for labor has been a topic of social concern, and technology also has an important
impact on people and enterprises. As a result of the adjustment in the global industrial
structure, especially in the situation of high-end competition in the manufacturing industry
all over the world, boosting the technology dividend instead of the demographic dividend
has become one of the main ways to reduce costs.
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Upgrading the traditional grinding industry with modern equipment is the source of
power and the necessary means of achieving a low cost. This is of great significance for
promoting the progress of grinding technology, improving the quality of workers, improv-
ing the efficiency of casting enterprises, optimizing the industrial structure adjustment,
and promoting the development of the manufacturing industry. At the same time, the
market for a process having a fast response, high precision, and thin brittleness also has
great expectations.

3.3. Technical Challenges of Complex Workpiece Grinding: Fast Response, Thin Brittleness, and
High Precision

Fast response, high precision, and thin brittleness are further demands of the market
on the basis of high volume and low cost, and they are also the aspects that researchers in
the laboratory are tackling at present.

The market requires low cost and mass post-processing of casting parts, and a fast
manufacturing speed can greatly shorten product processing time in batch casting produc-
tion and processing [37]. To achieve a high volume and low cost, a rapid pace of work
is required. In turn, this requires a fast response. Ensuring a fast response is one of the
problems that must be currently solved to improve the working speed. Without a fast
response, it is very difficult to achieve mass production of polished products or low-cost
production. Parts of the surface of the casting do not require high precision and can be
sacrificed to improve speed. Where the casting is assembled with other parts (Figure 10),
high precision is required. At the same time, parts generally processed by casting have a
thin surface, which is a characteristic of casting parts with thin brittleness. However, due
to the use of brittle materials and a complex surface, thin brittleness is more serious. At
present, most grinding technology is aimed at the heavier parts, so thin brittle workpieces
have resulted in new requirements for grinding technology. An accurate and fast response
in force control technology, and a more accurate perception and planning strategy for
grinding workpieces, are required.
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In traditional high-precision grinding, market demand has not been met due to low
efficiency, low accuracy, and damage to workers’ health. The market needs modern high-
precision grinding technology. Modern grinding technology uses visual processing to
achieve high-precision grinding; however, most of the grinding technology on the market
uses 2D vision. In grinding system, it usually use a 2D visual method for grinding the
workpiece, simple data relating to the workpiece can be easily acquired and processed.
However, if the shape is complex, the acquired data will not be complete, and blocking, low
precision, and path planning of the equipment will produce interference. The development
of 3D vision has occurred very rapidly, and some researchers have started investigating
the use of 3D vision in casting post-processing. However, problems of slow speed and
low accuracy still exist because only high-precision algorithm processing can be used to
obtain high-precision data; these data can then be used in the polishing and planning
of high-precision grinding of workpieces. High-precision calibration and a registration
algorithm are the necessary conditions for high-precision grinding. In recent years, in order
to make up for the deficiency of traditional grinding, researchers have undertaken a large
amount of exploration of intelligent grinding methods.
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4. Classification of Intelligent Grinding Methods

In order to make up for the shortcomings of traditional grinding methods, and to
im-prove the grinding efficiency and accuracy of castings, researchers have combined
intelligent sensing devices and artificial intelligence algorithms in terms of judgment and
prediction. The main achievements include grinding methods based on image vision, laser
sensing, data-driven grinding prediction, 2.5D local feature information, and comparison
between a design model and a 3D point cloud.

4.1. Judgment of Grinding Position Based on Image Vision

Manual grinding can be based on the actual situation, in which observation and
measurement need to be made after the completion of a process, and the subsequent
grinding strategy can be adjusted after real-time comparison of drawings and the size. With
the extensive use of machine vision, humanoid real-time feedback and intelligent planning
of the grinding strategy can be realized. With the support of artificial intelligence technology,
vision sensors have been applied in a wide range of intelligent applications, which have
played a positive role in inspiring the improvement in the grinding process [41]. Vision
sensors have the advantages of non-contact detection, high precision, strong repeatability,
fast speed, good stability, and low cost [42].

In 1981, Moravec proposed a corner detector for binocular vision image matching [43],
and Harris proposed the Harris corner operator for image matching. In the early 21st
century, a large number of correlation methods emerged. In 2001, a digital phase-shifting
shadow technique was proposed, which takes only one image: the projection of the ref-
erence raster line on the surface of the deformed object. The phase shift is calculated by
moving the virtual reference grating in its plane [44]. In 2010, Mohammadi proposed
projecting the Moire grating on the surface of the object; the change in the shape of the
object surface causes the phase change in the grating fringe, and the specific change in
the phase can be extracted to obtain the three-dimensional in-formation of the object sur-
face [45]. In recent years, there have also been many applications in industrial robots and
grinding-related fields. Fang et al. proposed an active vision measurement framework
for industrial robots, which is based on the motion planning technology of base sampling;
the pictures taken by a camera at a certain frequency can be used for point cloud recon-
struction of the measured workpiece [46]. Deng et al. developed an automated robotic
repair system, which can complete defect detection and polishing within 3 min, and realize
the surface burr removal process in the range of 60 cm × 60 cm and two elliptic ranges
(the long axis is about 12 cm and the small axis is 7 cm) [47]. Tian, Y et al. [33] proposed a
method to identify rust as a key technology in the process of rust removal. Rust detection
is performed automatically by processing a series of camera images, and the visual servo
control framework for the process of rust removal is shown in Figure 11.
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In the process of grinding, the estimation of material removal and tracking of the
grinding track directly affect the grinding accuracy. At present, in order to obtain the actual
material removal amount, the main method uses offline or online measurement to establish
a mathematical prediction model. In recent years, researchers have conducted a large of
amount research on the estimation of material removal using image vision. Joshi et al. used
a machine vision method to acquire and recognize texture features of surface images on
polished surfaces, and used a regression model based on machine vision parameters to
evaluate surface roughness [48]. Wang et al. used a two-dimensional convolutional neural
network learning algorithm to monitor the material removal method, and extracted the
features of color, texture, and shape from visual signals. These features constitute a two-
dimensional feature matrix as the input parameter, and the material removal rate in the belt
grinding process as the output parameter. This method can be used to predict the material
removal rate of different sand belt specifications and different grinding parameters [49],
and is suitable for the regression prediction of the material removal rate under typical
working conditions.

Li et al. studied the mechanical spark generation of seven metals, namely, Q235 steel,
304 stainless steel, TC4 titanium alloy, 6061 aluminum alloy, H62 bronze alloy, AMAK3 zinc
alloy, and AZ31B magnesium alloy. The relationship between the physical and chemical
properties of friction sparks and their generation was evaluated. For 6061 aluminum alloy,
H62 bronze alloy, AMAK3 zinc alloy, and AZ31B magnesium alloy, no bright friction sparks
were observed at the maximum friction velocity of 12 m/s and the maximum surface
pressure of 3.75 N/mm2, due to low hardness, high thermal conductivity, low melting
point, and lack of carbon [50].

The results show that the estimation of material removal and tracking of the grinding
track directly affect the grinding accuracy in the grinding process. Only the method based
on machine vision can produce obvious friction sparks for metals having higher hardness,
because soft metals cannot be predicted by the obvious external picture phenomenon;
hence, there are limitations. The data-driven approach of multi-information fusion provides
another approach for prediction with more complete information. The judgment grinding
based on visual sensing can be used for the grinding work of industrial structures, but its
robustness is affected to a certain extent due to the complex grinding environment and
insufficient environmental illumination.

4.2. Judgment of Grinding Position Based on Laser Sensing

In the process of casting grinding, uncertain and strong disturbances, such as tempera-
ture, noise, vibration, dust, and light, are inevitable, and limit the popularization and use
of vision sensors. Laser sensors can make up for some of the above deficiencies, especially
those caused by dust [51].

As early as in the 1970s, Nitzan et al. used the distance and intensity information of
the laser ranging system to describe indoor scenes, and the stability and reliability of laser
ranging were fully verified [52]. Laser scanning technology has been further developed in
the field of surveying and mapping. In the 1980s and 1990s, Kak proposed the installation
of a monocular laser vision sensor at the end of a robot to scan the surface of the object being
measured. Lindstrand studied the laser measurement method for measuring the diameters
of pipes and bars in the steel industry. Early applications were characterized by low
accuracy, slow processing speed, and vulnerability to environmental interference. In recent
years, researchers have studied the industrial applications of laser sensors. Xu Xiaohu
from Huazhong University of Science and Technology used laser sensors to optimize the
traditional hand–eye calibration algorithm and all its aspects [53–57], and established a
hand–eye calibration model based on the tool center coordinates to accurately obtain the
spatial pose relationship between the robot and the laser scanner, as shown in Figure 12.
The fitting error was calculated as F = 0.060 mm. More importantly, the entire automatic
calibration process lasts only 20 s when a proper path is planned, which greatly saves
calibration time. A. Seidel tried to use a cooperative laser profilometer to obtain geometric
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shapes at the clamping position, and used an adaptive milling path planning method to
automatically offset changes in the position and shape of parts caused by accidents [58].
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Laser sensors have also been widely used in the field of grinding. Gao, Y et al. carried 
out research on robot grinding technology for welding pretreatment technology of large 
parts [59], and adopted a laser profilometer for on-site measurement, planning and pro-
cessing. At AUTOMATICA 2018 in Munich, Fraunhofer IPA and PILZ, a member of the 
Ros Industrial Consortium, presented an on-site measure–plan–process grinding robot, as 
shown in Figure 13. On the basis of previous research, Ge et al. further proposed and 
constructed a robot welding-line grinding system based on laser sensors [60]. A sensing 

Figure 12. Robotic milling process system.

Laser sensors have also been widely used in the field of grinding. Gao, Y et al.
carried out research on robot grinding technology for welding pretreatment technology of
large parts [59], and adopted a laser profilometer for on-site measurement, planning and
processing. At AUTOMATICA 2018 in Munich, Fraunhofer IPA and PILZ, a member of
the Ros Industrial Consortium, presented an on-site measure–plan–process grinding robot,
as shown in Figure 13. On the basis of previous research, Ge et al. further proposed and
constructed a robot welding-line grinding system based on laser sensors [60]. A sensing
device and a self-made grinding tool were integrated at the end of the robot for the grinding
operation. After rough grinding, the weld height was kept at about 0.1 mm, and the average
surface roughness after fine grinding was 0.351 µm.
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The polishing robot based on a laser sensor has a unique advantage in the face of the
harsh grinding environment in a factory, i.e., it is not affected by the environmental light,
and the precision can also meet the requirements for the post-processing of casting parts.
The grinding accuracy can be predicted online by a data-driven prediction method.

4.3. Abrasive Quantity Prediction Based on Data-Driven

Grinding surface roughness is considered to be one of the key indicators of machining
quality [61]. However, due to the randomness and complexity of abrasive particle distribu-
tion, it is difficult to predict. In order to accurately estimate the roughness of the polished
surface, it is necessary to obtain the amount of material removed by grinding in many ways.
The amount of material removed by grinding is related to multiple parameters [62], such as
feed speed, rotational speed, contact stress, grinding time, workpiece material, geometric
characteristics of the workpiece, and condition of the grinding head. In order to obtain
the desired amount of removed material, the above parameters should be optimized and
combined [63].
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4.3.1. Model-Based Material Prediction

The most widely used model-based method is the Preston equation, according to
which the material removal rate during grinding is proportional to the pressure and the
relative velocity between the medium and the workpiece. However, due to the lack of a
method to measure relative speed and pressure, this empirical law has not been applied to
finishing [64]. Preston’s law is expressed as:

dV
dt

=
1
k

F ∗ v (3)

where dV/dt is the surface indent distance (mm/s), t is time, V is indicates volume. 1/k is
the unit of Preston coefficient k, F is the contact force, v is the relative speed between the
workpiece and the tool. [65].

Equation (3) was studied by researchers, and Castillo-Mejia proposed a correlation
expression of the local material removal rate in grinding based on the Preston equation.
Lee et al. [66] established a model of the grinding material removal rate based on the
Preston equation for independently changing pressure and speed in real time. In the
above study, the Preston coefficient, grinding force, and rotational speed were regarded
as constant values. During the grinding process, the grinding head grinds the workpiece,
and the material properties of the workpiece surface change with the accumulation of heat.
Therefore, material removal cannot be accurately predicted using a constant polishing
coefficient, K. Pan R et al. [67] proposed extraordinary k-constructed correction functions
based on interface friction coefficients and verified their validity by experiments. In actual
grinding, the tool and workpiece do not have a single point of contact, but have regional
contact, which is inconsistent with Preston’s hypothesis. Calculations using the classical
Preston hypothesis will lead to inaccurate estimates of material removal [68]. Therefore,
based on Hertz contact theory and a local area grinding model, Wang et al. further predicted
the cutting depth of robot belt grinding [69] and found that when the cutting depth was
about 0.3 mm, the prediction error was less than 3.1%. Compared with the simplified
Hertz theory model, the root mean square value and mean absolute percentage error of
the material removal model proposed by Zhu et al. were reduced from 2.401 to 1.725 and
18.426 to 14.942%, respectively, considering the elastic deformation of contact. As a result of
the widespread use of artificial intelligence, many methods based on data-driven material
removal prediction have been proposed to solve the material removal prediction problem.

4.3.2. Data-Driven Prediction of Material Removal

Due to the complexity of the grinding process, some of its parameters cannot be
accurately detected in real time, which limits the application of model-based methods in
engineering implementation. An increasing number of researchers are using data-driven
methods to predict material removal.

As early as 2005, the data-driven method was applied to predict material removal.
Panda D predicted the material removal rate using an artificial feedforward neural net-
work [70]. Mathew, J. et al. used an artificial neural network to analyze the material removal
amount and established a parameter optimization model [71]. Wang et al. proposed a
material removal prediction algorithm using neural networks and genetic algorithms [72].
In order to ensure the whole process of grinding work detection, it is necessary to build
a real-time monitoring welding seam clearance prediction system. Thus, David Jin Hong
studied a deep learning vision system to automatically detect the grinding end-points of
welds in the grinding process and monitor the geometric changes in the grinding welds.
The deep learning method, which conducts end-to-end processing on a large number of
experimental grinding data, can obtain good material removal prediction results [73]. In or-
der to improve the accuracy of the polishing robot, Zhang et al. combined acoustic sensing
and the XGBoost algorithm to predict the material removal in sand belt polishing [74], with
an average absolute percentage error of 4.373%.
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When predicting material removal in grinding, the model-based method mainly
focuses on the basic parameters in the grinding process; thus, the model-based method
yields high-precision material removal results. However, many factors affect the prediction
of grinding materials. The data-driven method represented by neural networks provides a
solution for processing and analysis.

4.4. Grinding Method Based on 2.5D Local Feature Information

Two-dimensional image information is concentrated on the plane, and the depth
information provided by robot grinding is not accurate. Therefore, more accurate 2.5D
information has the advantage of representing 3D objects, thus improving the chance of
reliable recognition [75].

In 2008, Verma, A proposed a 2.5D processing feature recognition system. It was used
to screen out 2.5D part features to determine the machining direction [76]. In 2009, Siebert
et al. extended the 2D SIFT algorithm to 2.5D for application [77]; the proposed algorithm
can be directly matched using local features of 3D rotation invariance. Zhang Yuwei et al.
proposed a method to reconstruct the underlying 3D shape from a 2.5D bas-relief, and
optimized the face shape through normal transfer and Poisson surface reconstruction [78].
Zhang et al. constructed a 2.5D height field for portrait relief to enhance the appearance
of the portrait [79], and the 2.5D technology was applied to the processing of the portrait
relief. The technology can also be applied to the surface grinding of a portrait relief.

Figure 14a shows the data template of a workpiece to be polished obtained by a
sensing device; Figure 14b shows the local template features of the workpiece to be polished;
Figure 14c shows the approximate location of B in a rough registration; and Figure 14d
shows the precise location of B in A through fine registration. After registration, it is
convenient for grinding tools to plan the machining route of the workpiece, which can
greatly improve the machining accuracy. High-precision matching is essential for automatic
grinding.

Micromachines 2022, 13, x FOR PEER REVIEW 16 of 25 
 

 

Figure 14a shows the data template of a workpiece to be polished obtained by a sens-
ing device; Figure 14b shows the local template features of the workpiece to be polished; 
Figure 14c shows the approximate location of B in a rough registration; and Figure 14d 
shows the precise location of B in A through fine registration. After registration, it is con-
venient for grinding tools to plan the machining route of the workpiece, which can greatly 
improve the machining accuracy. High-precision matching is essential for automatic 
grinding. 

(a)

(c) (d)

(b)

 
Figure 14. Local feature based matchingMatching of local features. (a) Workpiece data template 
(b) Local feature data template (c) Coarse alignment positioning (d) Fine alignment positioning 

The above grinding method based on 2.5D local feature information has low accuracy 
in the depth direction, and can be used for machining parts with low accuracy require-
ments. The disadvantage of using local information polishing is that additional steps are 
required to derive the surface information, and, like the 2D method, this requires repre-
sentation from a separate specific viewpoint. There are errors in other parameters calcu-
lated by the geometric reasoning method, and the feature recognition system based on a 
prompt requires prompt features in the workpiece. Therefore, 3D vision technology must 
be used for deep and accurate machining. 

4.5. Grinding Method Based on Comparison between Design Model and 3D Point Cloud 
In the grinding method based on the comparison between the design model and the 

3D point cloud, the 3D design model of the workpiece to be polished is subtracted from 
the real-time model of the detected workpiece [80], and the difference between the real-
time model and the original 3D digital model represents the part to be polished [81], as 
shown in Figure 15. Two sets of data are matched to facilitate the comparison of workpiece 
defect errors. Kuss, A proposed a method to detect the workpiece shape deviation to adapt 
to the robot grinding process. The method uses the model of product design to design 
dimensional tolerance specifications to predict possible changes in the workpiece geomet-
ric model, using the Iterative Closest Point (ICP) method to match each point cloud with 
the measurement point cloud from the workpiece [80]. In order to further improve effi-
ciency and accuracy, Wei proposed a method to automatically evaluate the machining 
allowance of casting parts. The scanned point cloud data were aligned with the design 
model through two stages of “initial alignment” and “best registration” to find the best 
registration and evaluate the machining allowance based on the registration results [82]. 

Figure 14. Local feature based matchingMatching of local features. (a) Workpiece data template (b)
Local feature data template (c) Coarse alignment positioning (d) Fine alignment positioning.

The above grinding method based on 2.5D local feature information has low accuracy
in the depth direction, and can be used for machining parts with low accuracy requirements.
The disadvantage of using local information polishing is that additional steps are required
to derive the surface information, and, like the 2D method, this requires representation
from a separate specific viewpoint. There are errors in other parameters calculated by
the geometric reasoning method, and the feature recognition system based on a prompt
requires prompt features in the workpiece. Therefore, 3D vision technology must be used
for deep and accurate machining.
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4.5. Grinding Method Based on Comparison between Design Model and 3D Point Cloud

In the grinding method based on the comparison between the design model and the
3D point cloud, the 3D design model of the workpiece to be polished is subtracted from the
real-time model of the detected workpiece [80], and the difference between the real-time
model and the original 3D digital model represents the part to be polished [81], as shown
in Figure 15. Two sets of data are matched to facilitate the comparison of workpiece defect
errors. Kuss, A proposed a method to detect the workpiece shape deviation to adapt
to the robot grinding process. The method uses the model of product design to design
dimensional tolerance specifications to predict possible changes in the workpiece geometric
model, using the Iterative Closest Point (ICP) method to match each point cloud with the
measurement point cloud from the workpiece [80]. In order to further improve efficiency
and accuracy, Wei proposed a method to automatically evaluate the machining allowance
of casting parts. The scanned point cloud data were aligned with the design model through
two stages of “initial alignment” and “best registration” to find the best registration and
evaluate the machining allowance based on the registration results [82].
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In terms of workpiece grinding, Hu et al. developed a robot deburring and cham-
fering system [83], in which the human operator can select any feature on the Computer
Aided Design (CAD) model and export the selected feature for the tool path of trajectory
generation. However, artificial feature selection was inefficient. Zhang et al. proposed
an adaptive grinding method for precision casting of blades with geometric deviation [5].
The measured data of blades were matched with the design model, and the corresponding
matching matrix was solved to determine the position of the cast blades. In order to further
improve the accuracy of automatic laser deburring of ceramic cores, Huang et al. proposed
a point cloud registration method combining global and local feature information [84], and
the final overall error was less than 35 µm.

Due to the uneven deformation of casting parts, the optimal machining route is
unknown. Therefore, the ideal grinding machining route can be used as a benchmark to
quantitatively measure the accuracy of different grinding paths, so as to determine which
registration method can grind paths with high precision. The key steps of grinding path
generation are shown in Figure 16.

The method based on the comparison of a design model and 3D point cloud data
has become an effective detection method for many digital design processes. Point cloud
matching is divided into two stages: rough matching and fine matching. Rough matching
algorithms include principal component analysis, four-point congruency, three-dimensional
normal distribution transformation, and local feature description, such as Fast Point Fea-
ture Histogram Feature. The precision of rough matching cannot reach the precision
specified in the manufacturing industry, so the precision must be further improved through
fine matching.
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The traditional fine matching algorithm is represented by the ICP algorithm. The
principle of the algorithm is that the rotation matrix R and translation vector T are obtained
by solving Formula (4) of the ICP algorithm for point set Pi and Xi.

∑2
=

N

∑
i=1
||Xi − (R•Pi + T)||2 = min (4)

The algorithm has a good registration effect for point clouds having a high overlap
rate and close initial position, but has shortcomings in terms of the amount of computation
required and the iterative convergence speed. With rough matching, the ICP algorithm can
solve the problems of a low degree of overlap and large difference in initial position. As a
result of the development of artificial intelligence algorithms, researchers have also carried
out a large amount of research on the intelligent registration of the point cloud based on
deep learning.

(A) Traditional point cloud registration method

Based on the traditional registration algorithm, the speed and accuracy of the algo-
rithm are further improved through analysis; the performance principle of the traditional
algorithm is shown in Figure 17 [85].

As early as 1992 Besl, P. J used a general ICP algorithm for accurate and efficient
registration of 3D shapes. An important application scenario of this algorithm is to register
the data repeatedly measured by the sensing device of rigid objects with the ideal geometric
model before shape inspection, so as to improve the accuracy of the sensing data [86]. The
main disadvantages of ICP are slow convergence [87], sensitivity to outliers, missing data,
and partial overlap. In 2013, Pauly M proposed Sparse ICP, which achieved robustness
at the cost of computational speed through Sparse optimization [88]. In 2021, Zhang
proposed a fast convergence robust registration method. It was proved that the classical
point-to-point ICP can be regarded as a domination–minimization (MM) algorithm, and an
Anderson acceleration method was proposed to accelerate its convergence [89]. In addition,
the Welsch function-based robust error measurement method [90] was also introduced to
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achieve accuracy that was similar to or better than that of Sparse ICP, while improving
speed by an order of magnitude. The fast convergent robust ICP registration method
provides theoretical and method support for the acquisition of perception data of the
grinding robot, and can further improve the complexity of the grinding workpiece.
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(B) Intelligent point cloud registration method

The method based on end-to-end learning can be used to solve the registration prob-
lem using an end-to-end neural network, as shown in Figure 18. The end-to-end learning
method transforms the registration problem into a regression problem, and the transforma-
tion estimation is embedded in the neural network.
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Due to the late development of intelligent point cloud registration methods, Qi pro-
posed a neural network named PointNet in 2017, which provides a unified framework for
applications such as classification, segmentation, and scene semantic analysis. According to
this framework, Yasuhiro Aoki proposed expanding the PointNet and LK algorithms into a
single trainable recursive deep neural network in 2019, opening up a new exploration path
for the application of deep learning in point cloud registration [91]. In 2020, Yuewang He
proposed a registration method combining PointNet++ and ICP. PointNet++ can extract
multiple features that are used as a basis for registration, using ICP algorithms to calculate
rotation and translation. Recently, some researchers proposed solutions for intelligent
registration. Liu et al. proposed a robust point cloud registration method based on deep
learning [92] called Point cloud Deep Cyclic Net, which uses the adjustment network based
on principal component analysis to quickly adjust the initial position between two pieces of
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the point cloud. Perez proposed a rigid point cloud registration method called Point Cloud
Registration Learning (PREL) [93], which allows the registration of point clouds with high
displacement or occlusion. The PREL algorithm does not need an iterative process and
estimates point distribution in a non-parametric way. In the highly occluded point set, the
ICP method showed an average root mean square error (RMSE) of 98.8, followed by a Deep
Closest Point of 32.51 and PREL of 0.75.

The study of relevant literature in the field of grinding indicates that the efficiency
of the three-dimensional neural network algorithm is lower than that of the traditional
registration algorithm. To date, although the intelligent registration algorithm has good
performance in terms of accuracy, the calculation time is long and the cost is high, whereas
the traditional algorithm is fast and efficient. As a result of the continuous progress in
intelligent technology and the updating of algorithms, intelligent registration algorithms
have more potential than the traditional registration algorithm.

The design model is used to compare the workpiece to be polished. As a result, some
defects to be polished are detected and the situation of the polished workpiece is obtained
in real time by the feedback of the sensing device. Starting from the design source, the
errors generated in other processes in the casting post-processing and polishing process are
reduced.

5. Summary and Prediction

The previous section can be summarized as shown in Figure 19. As demand changes
and modern technology advances, grinding methods are being developed.
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Different polishing methods have different advantages, but they also have disadvan-
tages, as shown in Table 2.

Table 2. Comparison of grinding methods.

Grinding Method Core Technology Advantage Shortcoming Literature

Manual grinding Human experience Flexible Inefficient and damaging to
the body [8–12]

Mechanical grinding Machine tool
equipment High precision Poor flexibility and

small space [14–17,19,94]

Grinding based on compliant
control theory

Force and position
control

High precision and
large working space Poor rigidity [18,32,34–37]

Judgmental grinding based
on visual sensing

Visual perception
devices, visual
judgment algorithms

Intelligence has a
judgment function

Limited two-dimensional
plane space judgment,
affected by the environment

[33,46,47]

Judgmental grinding based
on laser sensing

Laser perception
equipment, judgment
algorithm

The equipment is
robust and accurate

The device acquires
data slowly [45,58–60]

Predictive grinding based on
machine vision

Visual prediction
algorithms, advanced
perception devices

Material removal
prediction, intelligent
material removal

Only harder materials have
better predictions and are
greatly disturbed by the
environment

[48,49]

Predictive grinding based on
multi-information fusion

Predict the model,
training data

Material removal
prediction

Low prediction accuracy and
a large amount of training
data are required

[64,65,95,96]

Grinding based on 2.5D local
feature information

Depth pre-estimation
method, feature
recognition algorithm

Has depth
information

The depth information is
inaccurate and the feature
recognition needs to be set
multiple times

[76,78,97]

Based on the design model
and the 3D point cloud
comparison grinding method

Laser sensors,
registration algorithms

Accurate route
planning with 3D
information

The amount of information is
large, and the amount of
calculation of the intelligent
algorithm is large

[5,84]

According to Table 2, the manual approach can be used to process almost any casting
grinding according to manual experience, which is flexible. However, with the increase
in casting output, manual grinding efficiency is low, and can seriously harm the lungs
and arms of grinding workers. In contrast to manual grinding, mechanical grinding does
not require workers to contact the workpiece, and the system has good rigidity and small
vibration, so the grinding accuracy is high. However, due to its poor flexibility and small
space, only specific castings can be polished. In view of the small workspace and poor
flexibility, industrial robot grinding based on the compliant control theory adopts force
and position control for grinding. In this approach, grinding precision is high, and the
workspace is large and flexible, but rigidity is poor. In recent years, many intelligent
grinding methods have been developed. Image vision-based grinding position judgment
uses visual perception equipment and visual judgment algorithms, so that the grinding
equipment performs the judgment function; however, this approach is seriously affected
by the environment and is limited to the two-dimensional plane. The laser sensing-based
polishing part judgment method uses a laser sensing device and a judgment algorithm;
this ensures the polishing device has the function of accurate judgment and provides good
robustness, but the data acquisition speed of the device is slow. The data-driven grinding
quantity prediction method uses advanced sensing equipment combined with a visual
prediction algorithm to predict the final grinding effect using the image and force data
in the grinding process; however, the obtained image data are seriously affected by the
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material and environment. The grinding method based on 2.5D local feature information
adopts the combination of a feature recognition algorithm and the depth pre-estimation
method on the basis of the sensing device to achieve grinding to a depth based on part
of the depth information; however, the depth information is not accurate and the feature
recognition needs to be set several times. Based on the design model and the 3D point
cloud contrast grinding method, a laser sensor and registration algorithm can be used to
obtain 3D point cloud data with 3D information, which can provide accurate information
for path planning.

Table 1 shows that industrial robots have advantages in processing large parts. Com-
pared with CNC machine tools, the mechanical arm performs well in terms of cost, and
has large space and good flexibility, but the consistency of feeding is poor. It is difficult to
realize automation of robot processing of large or lightweight workpieces, and the series
structure has low stiffness, resulting in poor stability of the processing process. Therefore,
the parallel grinding robot has great development potential.

In the process of visual recognition, the grinding environment is complex, and sensing
equipment having good adaptability and high accuracy is the key breakthrough direction.
Sensing equipment needs to accurately perceive the position and shape of the workpiece
and other information. After sensing, a high-precision matching visual algorithm can be
used. There is urgent demand for improvement in registration.

The feedback control of the constant grinding contact force is required in high-speed
grinding systems. High-precision control of the grinding force is very important for the
consistency of the grinding surface of complex parts. The application of the constant-force
mechanism in the grinding field provides a new research idea for accurate control of the
grinding force.

In the process of grinding, the amount of material removed directly affects the grinding
accuracy. In order to obtain an accurate estimate of the amount of material removed,
offline measurement is needed to establish a prediction model. At present, the prediction
model has low accuracy and produces a serious environmental impact. A model that
can accurately predict material removal can obtain higher efficiency and precision in the
process of material removal by grinding.
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