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Abstract: A monolithic three-dimensional integrated static random access memory containing a
feedback field effect transistor (M3D-FBFET-SRAM) was proposed. The M3D-FBFET-SRAM cell
consists of one metal oxide semiconductor field effect transistor (MOSFET) and one FBFET, and
each transistor is located on the top tier and one on the bottom tier in a monolithic 3D integration,
respectively. The electrical characteristics and operation of the NFBFET in the M3D-FBFET-SRAM
cell were investigated using a TCAD simulator. For SRAM operation, the optimum doping profile of
the NFBFET was used for non-turn-off characteristics. For the M3D-FBFET-SRAM cell, the operation
of the SRAM and electrical coupling occurring between the top and bottom tier transistor were
investigated. As the thickness of interlayer dielectric decreases, the reading ‘ON’ current decreases.
To prevent performance degradation, two ways to compensate for current level were suggested.

Keywords: monolithic 3-dimensional integrated; static random access memory; feedback field effect
transistor; electrical coupling

1. Introduction

Over the past few decades, computing systems have followed the von Neumann
architecture [1]. An important feature in this architecture is the data process. The processed
data are transferred from a processing unit to a memory unit. Throughout this process,
intermediate memory storage is necessary. In the current computing systems, the volatile
type of memory circuits that maintain data when the supply voltage is applied are con-
figured close to the processing unit. Static random access memory (SRAM) is designed
for the nearest processing unit because it performs very rapidly and does not need to be
refreshed [2]. The conventional SRAM cell has two access transistors and two inverters,
which consist of two transistors. Due to the SRAM circuit configuration, the cache memory
made up of SRAM occupies a large portion of the overall processor chip. For designing
next-generation processor chips, it is necessary to improve the performance and reduce the
area of the SRAM.

A monolithic three-dimensional (M3D) integration is one of fabrication technologies
for overcoming Moore’s Law [3–9]. The circuits with M3D structure are designed vertically
for the transistor, logic gates, and system level. The circuit designed with M3D technology
exhibits a high integration of the transistors and has a low propagation delay due to vertical
interconnection. In order to utilize these characteristics, various circuits with the M3D
structure were studied [10–16]. Particularly, the 6T (or more than six transistors) SRAMs
with M3D structure have been proposed and studied to increase density, which can achieve
up to a 45% density increase [17–22].

To improve the performance, density, and power consumption of SRAM, the configu-
rations of SRAM with novel devices are introduced [23–25]. Among these, a feedback field
effect transistor (FBFET) has been attracting attention for use in a next-generation memory
device due to its steep slope and hysteresis characteristics [26]. Moreover, various memory
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circuits containing the FBFET have been proposed because the FBFET can be fabricated
with a complementary MOS (CMOS) process. The SRAM consisting of one FBFET and
one MOSFET (FBFET-SRAM) was proposed [27]. The density and power dissipation of
FBFET-SRAM cell are improved more than those of the conventional 6T-SRAM. The FBFET-
SRAM can be stacked vertically with the M3D structure because the devices used in the
FBFET-SRAM, such as fully depleted silicon on insulator (FDSOI) FET, FBFET, junctionless
FET, tunnel FET, gate-all-around FET, and nanosheet FET, are stackable. Therefore, there
is a need for research on FBFET-SRAM with M3D structure (M3D-FBFET-SRAM) cells to
meet the high density demands.

In this study, the M3D-FBFET-SRAM cell is proposed, and its electrical characteristics
are investigated using technology computer aided design (TCAD). First, the simulation
structure of the M3D-FBFET-SRAM cell is described in Section 2. In Section 3, the electrical
characteristics of the M3D-FBFET-SRAM cell regarding DC characteristics and cell operation
are discussed. In Section 4, the electrical coupling occurring at the top tier transistor is
discussed. Finally, the conclusions of this study are described.

2. Simulation Structure

Figure 1a–c show the three-dimensional bird’s eyes view of the M3D-FBFET-SRAM
cell, the process sequence, and a cross-section of the A-A‘ and circuit diagram of the M3D-
FBFET-SRAM cell, respectively. The M3D-FBFET-SRAM cell consists of N-type FBFET
(NFBFET) and N-type MOSFET (NMOSFET), and the NFBFET and NMOSFET are located
on bottom tier and top tier, respectively. The material compositions and doping profile for
the M3D-FBFET-SRAM cell were described, as shown in Figure 1a. The work-function of
gate metal was used for 5.0 eV at NFBFET and NMOSFET. The device widths are 160 nm
and 80 nm for the NFBFET and NMOSFET, respectively. The M3D-FBFET-SRAM cell was
fabricated using a Victory Process simulator [28], and the electrical characteristics of the
M3D-FBFET-SRAM cell were investigated using the commercial TCAD simulation program
Atlas in mixed-mode [29]. The fabrication process was based on FDSOI technology [30] for
the bottom and top tier transistors. In particular, the fabrication of the top tier transistor
requires a low temperature in the monolithic fabrication technology due to interlayer
dielectric (ILD) [31]. Therefore, the low temperature was used during the deposition, ion
implantation, and annealing process, as shown in Figure 1b. Table 1 shows the structure
parameters of the M3D-FBFET-SRAM cell. The physical models including CVT, SRH, and
FERMI for NMOSFET, as well as CONMOB, FLDMOB, CONSRH, AUGER, and BGN for
NFBFET, were used for simulation.
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Figure 1. (a) A three−dimensional bird’s eyes view of the M3D−FBFET−SRAM cell, (b) its fabrication 
process sequence, (c) its cross−section of A−A` and circuit diagram. 

Table 1. Structure parameters of the M3D-FBFET-SRAM cell. 

Parameters Description Value/Unit 
Lungated Length of the ungated channel region for the NFBFET 40 nm 

Lgated, Lchannel Length of the gated channel region for the NFBFET and NMOSFET 40 nm 
LLDD Length of the lightly doped drain (LDD) region 10 nm 
Tgate Thickness of the gate 30 nm 

Tspacer Thickness of the spacer 33 nm 

Figure 1. (a) A three−dimensional bird’s eyes view of the M3D−FBFET−SRAM cell, (b) its fabrication
process sequence, (c) its cross−section of A-A‘ and circuit diagram.
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Table 1. Structure parameters of the M3D-FBFET-SRAM cell.

Parameters Description Value/Unit

Lungated Length of the ungated channel region for the NFBFET 40 nm

Lgated, Lchannel
Length of the gated channel region for the NFBFET and

NMOSFET 40 nm

LLDD Length of the lightly doped drain (LDD) region 10 nm
Tgate Thickness of the gate 30 nm

Tspacer Thickness of the spacer 33 nm
Toxide Thickness of the gate oxide 3 nm

Tsi Thickness of the silicon body 6 nm
TILD Thickness of the interlayer dielectric (ILD) Var.

Nsource, Ndrain Doping concentration of the source and drain regions 1 × 1020 cm−3

Ngated Doping concentration of the gated channel region for NFBFET 2 × 1017 cm−3

Nungated
Doping concentration of the ungated channel region for

NFBFET 1 × 1020 cm−3

Nch Doping concentration of the channel region for NMOSFET 1 × 1015 cm−3

NLDD Doping concentration of the LDD region for NMOSFET 1 × 1018 cm−3

3. Simulation Results

In this section, the electrical characteristics of the M3D-FBFET-SRAM cell will be dis-
cussed. First, the operation and electrical characteristics of the NFBFET were investigated
with respect to the energy band diagram. Moreover, during the writing operation of the
M3D-FBFET-SRAM cell, the role of NFBFET was investigated. Based on the NFBFET opera-
tion, the M3D-FBFET-SRAM cell operation was investigated, particularly, due to the M3D
structure, the electrical coupling occurring between the top and bottom tier transistors [32].
This coupling effect causes the electrical characteristics of the top tier transistor to change.
Therefore, the investigation of the electrical coupling was conducted.

3.1. Electrical Characteristics of the NFBFET in the M3D-FBFET-SRAM Cell

Figure 2a–c shows the energy band diagram of the NFBFET under three different
bias conditions. The red and black lines denote the conduction band and valence band,
respectively. For the initial state of the NFBFET, the bit line voltage (VBL) and word line 2
voltage (VWL2) are applied with 1.9 V and 1 V, respectively. At this state, the electrons from
the source region cannot be injected into the channel region, due to the potential barrier
at the gated channel region, as shown in Figure 2a. When the forward sweep starts at the
word line 1 voltage (VWL1), the potential barrier is lowering, and the electrons drift into
the ungated channel region by the drain-source field. The injected electrons accumulate at
the potential well at the ungated channel region; thereafter, the potential well is eliminated
by accumulated electrons. The holes from the drain region can diffuse by the lowered
potential barrier at the ungated channel region, and accumulate at the gated channel region,
as shown in Figure 2b. Finally, this positive feedback between the electrons and the holes
injection causes the energy band of all the regions align, as shown in Figure 2c. Figure 3
shows the drain-source current of the NFBFET (IDS-NFBFET) versus VWL1. There is an abrupt
increment of the NFBFET current at VWL1 = 0.17 V. The hysteresis characteristic, which is the
threshold voltage difference between forward and reverse, can be controlled by the doping
profile of the channel region [33]. For the FBFET-SRAM operation, the very large memory
window or non-turn-off characteristics by the gate-field, are required for maintaining the
reading ‘ON’ current level, as shown in Figure 3. The doping profile is adjusted to satisfy
the performance of NFBFET.
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Figure 2. The energy band diagram of the NFBFET in the M3D−FBFET−SRAM cell. (a) Initial state 
(VBL = 1.9 V, VWL2 = 1 V, and VWL1 = 0 V), (b) VWL1 forward sweep (VBL = 1.9 V and VWL2 = 1 V), (c) 
on−state (VBL = 1.9 V and VWL1 = VWL2 = 1 V). 
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Figure 3. Drain−source current of the NFBFET (IDS−NFBFET) versus VWL1 when VBL = 1.9 V and VWL2 = 1 
V. 

Figure 2. The energy band diagram of the NFBFET in the M3D−FBFET−SRAM cell. (a) Initial state
(VBL = 1.9 V, VWL2 = 1 V, and VWL1 = 0 V), (b) VWL1 forward sweep (VBL = 1.9 V and VWL2 = 1 V),
(c) on−state (VBL = 1.9 V and VWL1 = VWL2 = 1 V).
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Figure 3. Drain−source current of the NFBFET (IDS−NFBFET) versus VWL1 when VBL = 1.9 V and
VWL2 = 1 V.

Figure 4a,b shows the NFBFET current (IDS-NFBFET) for writing the ‘ON’ and ‘OFF’
operation in the M3D-FBFEET-SRAM cell, respectively. The red line and black square-lines
denote the operation current and DC characteristics of the NFBFET, respectively. When
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the writing ‘ON’ operation begins, VBL, VWL1, and VWL2 are applied for 1.9 V, 0.6 V, and
1.0 V, respectively. When the writing ‘ON’ pulse is applied to the M3D-FBFET-SRAM cell,
the NFBFET currents change following the blue arrows, as shown in Figure 4a. When the
writing ‘OFF’ operation begins, VBL, VWL1, and VWL2 are applied for 0.7 V, 0.6 V, and 1.0
V, respectively. When the writing ‘OFF’ pulse is applied to the SRAM cell, the NFBFET
current changes following the blue arrows, as shown in Figure 4b.
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3.2. M3D-FBFET-SRAM Cell Operation

Figure 5 shows the timing diagram of the M3D-FBFET-SRAM cell operation. The
black, blue, green, and red lines denote the voltage pulse of VBL, VWL1, and VWL2, and
the current pulse of IDS-NFBFET, respectively. Table 2 shows the M3D-FBFET-SRAM cell
operation voltages. The rising, falling, and pulse-width times are 0.2 ns [27]. For the reading
‘ON’ and ‘OFF’ currents, IDS-NFBFET are approximately 15 µA and 0.2 nA, respectively. The
writing ‘ON’ and ‘OFF’ speeds are about 0.4 ns, as shown in Figure 5. For the first suggested
FBFET-SRAM, the unit cell size is 8F2 (F = feature size) [27], and this cell achieves very
high density compared with conventional 6T-SRAM. However, when the FBFET-SRAM is
designed with the M3D structure, the cell area can decrease up to 50% compared with the
planer 2-D cell structure [27].
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Table 2. The M3D−FBFET−SRAM cell operation voltages.

Voltages Write ‘ON’ Write ‘OFF’ Hold Read

VBL 1.9 V 0.7 V 1.9 V 1.9 V
VWL1 0.6 V 0.6 V 0.0 V 0.0 V
VWL2 1.0 V 1.0 V 0.5 V 1.0 V

Figure 6a,b show the retention characteristics of the M3D-FBFET-SRAM cell when the
recursive reading pulse is applied after the writing ‘ON’ and ‘OFF’ operations, respectively.
For investigating the retention characteristics of the M3D-FBFET-SRAM cell, the retention
time was 30,000 s. When the NFBFET is turned on, the NFBFET remains in the on-state
until it has formed the potential well in the channel region. For maintaining the on-state,
the NFBFET requires appropriate IDS-NFBFET, which can be controlled by holding voltages
of VWL2 [27]. As shown in Figure 6a,b, the M3D-FBFET-SRAM cell maintains the data for
30,000 s after the writing ‘ON’ and ‘OFF’ operations, respectively.
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3.3. Electrical Coupling

For the M3D structure, the electrical characteristics of the top tier transistor can be
changed by the thickness of the interlayer dielectric (TILD). As TILD decreases, the electric
field occurring at the bottom tier transistor effects the top tier transistor. This coupling effect
causes unexpected changes in system performance. In order to design the system with
intended performance, the investigation for changing the electrical characteristics must be
proceeded with respect to TILD. In this section, the electrical coupling occurring between
the top and bottom transistors was investigated. Furthermore, the optimum voltages were
suggested for short TILD.

Figure 7a shows the drain-source current of the NMOSFET (IDS-NMOSFET), which is
located in the top tier, at TILD = 3 nm. The red and black lines denote IDS-NMOSFET at
VWL1 = 0.6 and 0 V, respectively. As TILD decreases, the electric field applied to the top tier
transistor is stronger. When VWL1 is applied for 0.6 V, the threshold voltages of IDS-NMOSFET
changes from 0.67 V (for VWL1 = 0 V) to 0.50 V, as shown in Figure 7a. Figure 7b shows the
M3D-FBFET-SRAM cell operation at various TILD. As TILD decreases, the threshold voltage
of IDS-NMOSFET decreases and IDS-NMOSFET increases at the same VWL2. The current level
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(IDS-NFBFET) must be lower to match the current levels of the NFBFET and the NMOSFET
by their serial connection; thus, VA must also be reduced, as shown in Figure 1c. Therefore,
as TILD decreases, the reading ‘ON’ currents decrease in the direction of the orange arrow,
as shown in Figure 7b.
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Figure 8a,b shows the reading ‘ON’ current of the M3D-FBFET-SRAM cell with
TILD = 3 nm at modified VBL and VWL2, respectively. The black and red lines denote IDS-NFBFET
with original and modified voltage levels, respectively. To design the M3D-FBFET-SRAM
with shorter TILD, it is necessary to solve the problem of lowering the reading ‘ON’ current,
because the low reading ‘ON’ current is a critical problem in SRAM operation. To solve this
problem, higher VBL and VWL2 can be chosen to create a high reading ‘ON’ current, as shown
in Figure 8a,b. The shorter TILD can achieve a lower critical delay due to shorter monolithic
inter-tier via the TILD. However, higher voltage levels of VBL and VWL2 are required, and
power consumption will be high. In order to design the M3D-FBFET-SRAM, the appropriate
TILD must be investigated for an acceptable trade-off regarding the performance.
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4. Conclusions

In this study, the M3D-FBFET-SRAM cell was proposed. The M3D-FBFET-SRAM
cell consists of one NFBFET and one NMOSFET, and the NFBFET and NMOSFET in
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the M3D structure are located on the bottom and top tier, respectively. The transistors
are stacked vertically; therefore, the M3D-FBFET-SRAM cell area achieved up to a 50%
reduction compared with 2-D planer cell structure. The electrical characteristics of the
M3D-FBFET-SRAM were investigated. First, for the NFBFET, the DC characteristics and
role were investigated during the writing operation. In order to achieve the non-turn-
off characteristics, the optimum doping profile of the NFBFET was used. Based on the
NFBFET operation, the M3D-FBFET-SRAM cell operation was investigated. The reading
‘ON’ and ‘OFF’ current are approximately 15 µA and 0.2 nA, respectively. For the retention
characteristics, the M3D-FBFET-SRAM cell can maintain the data for at least 30,000 s. In
particular, the electrical coupling occurring between the top and bottom transistors was
investigated with respect to TILD. As TILD decreases, the reading ‘ON’ current decreases. To
compensate for the reading ‘ON’ current, a higher VBL and VWL2 can be applied; however,
the power consumption will be higher. Therefore, in order to design the M3D-FBFET-SRAM,
the investigation of the appropriate TILD must be conducted.
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