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Abstract: In this work, we investigate the effect of temperature on the electrical characteristics of
Al/SiO2/n++-Si RRAM devices. We study the electroforming process and show that forming voltage
and time-to-breakdown are well described by Weibull distribution. Experimental current–voltage
characteristics of Al-SiO2-(n++Si) structures are presented and discussed at different temperatures.
We show that some intermediate resistance states can be observed at higher temperatures. In
our analysis, we identify Space Charge Limited Conduction (SCLC) as the dominating transport
mechanism regardless of the operating temperature.

Keywords: resistive switching; RRAM; memristor; silicon oxide; MIS; MOS; temperature measure-
ments; SCLC; TDDB; Weibull

1. Introduction

Development of modern nanoelectronics relies on technological advancement and con-
cepts of novel devices that improve the performance of the systems. Continuous work of
scientists and engineers has resulted in aggressive scaling of modern integrated circuits (IC)
and performance boosters that allow maintaining progress in IC performance [1,2]. Simul-
taneously, a similar effort has been put into the development of memory devices which
are indispensable in modern circuits. However, in order to maintain such progress, novel
devices are needed. In recent years, new memory device concepts have emerged, e.g.,
Resistive RAM (RRAM) [3–6], Spin Transfer Torque RAM (STT-RAM) [7,8], Ferroelectric
RAM (FeRAM) [9], and Phase-Change RAM (PCRAM) [10]. Resistive RAM (RRAM) has
drawn attention due to its simple construction and potential to scale the device’s dimen-
sions to achieve high density, low power, and high-speed operation. Potentially, they
allow performing computation on a large amount of data in a parallel way, and in order
to achieve such superior performance, different novel computing paradigms have been
tested, e.g., brain-inspired computing, in-memory computing, stochastic computing, and
neuromorphic computing [11–13]. Various oxide materials have been tested as candidates
for resistive switching layers in RRAM devices [14–16]. Some works have presented re-
search on SiO2 as a promising material for those devices [17–20]. In our recent works, we
showed that well-known silicon oxide in a materials stack of Al/SiO2/n++-Si can also
exhibit resistive switching properties [21,22]. However, little work relates to the effect of
temperature on the device’s performance [23–25].

In this work, we investigate the effect of temperature variation on the electrical prop-
erties of devices in order to study their electrical transport mechanisms and understand
their behavior. We analyze the electroforming voltage and show that it strongly depends
on the temperature within a certain temperature range, whereas it saturates and does not
depend on temperature for low temperatures. We show that forming voltage and time to
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breakdown follow the Weibull distributions and are strongly dependent on temperature.
Current–voltage characteristics at higher temperature tend to vary and we can observe
intermediate resistance states. We investigate and discuss the current values at ON and OFF
cycles as a function of temperature and show that it is Space Charge Limited Conduction
current, and that regardless of the operating temperature it remains almost the same.

2. Materials and Methods

Structures were fabricated using standard CMOS processes on a 4-inch n-type highly
doped wafer (resistivity less than 0.005 Ω·cm). First, wafers were cleaned using the RCA
method, and wet oxidation was carried out. Wet oxidation was performed in a high-
temperature furnace (Thermco 2803 Furnace System) at 1000 ◦C, resulting in 300 nm of
silicon oxide layer. Etching was performed in buffered oxide solution (BHF). Photolithog-
raphy was used to define the windows for wet etching of oxide. Then a dry oxidation
process was performed at 800 ◦C for 10 min to fabricate a thin silicon oxide layer which
will serve as a resistive switching layer. It resulted in 5–6 nm thin oxide layer. Al metal
electrode was sputtered and a second lithography step was performed to etch the areas
that define the top electrode. In the end, the bottom electrode was fabricated on the bottom
Si surface, and annealing was performed in a H2/Ar atmosphere. Both metal electrodes are
200 nm thick. Active area of a device is 7 × 7 µm2. Measurements were carried out with
Keithley 4200-SCS Semiconductor Characterization System (Keithley Instruments, LLC,
Solon, OH, USA) and Süss MicroTec PM8 low noise probe shield combined with ATT C60
chiller unit. The system allows controlling the measured wafer temperature within the
range of −60–250 ◦C. DC measurements were performed using a static source-measure unit
(SMU). Measurement setup and a schematic picture of the investigated device are presented
in Figure 1a. In Figure 1b, we have shown a top-view SEM photo of an exemplary device.

Micromachines 2022, 13, 1641 2 of 14 
 

 

strongly depends on the temperature within a certain temperature range, whereas it 
saturates and does not depend on temperature for low temperatures. We show that 
forming voltage and time to breakdown follow the Weibull distributions and are strongly 
dependent on temperature. Current–voltage characteristics at higher temperature tend to 
vary and we can observe intermediate resistance states. We investigate and discuss the 
current values at ON and OFF cycles as a function of temperature and show that it is Space 
Charge Limited Conduction current, and that regardless of the operating temperature it 
remains almost the same. 

2. Materials and Methods 
Structures were fabricated using standard CMOS processes on a 4-inch n-type highly 

doped wafer (resistivity less than 0.005 Ω·cm). First, wafers were cleaned using the RCA 
method, and wet oxidation was carried out. Wet oxidation was performed in a high-
temperature furnace (Thermco 2803 Furnace System) at 1000 °C, resulting in 300 nm of 
silicon oxide layer. Etching was performed in buffered oxide solution (BHF). 
Photolithography was used to define the windows for wet etching of oxide. Then a dry 
oxidation process was performed at 800 °C for 10 min to fabricate a thin silicon oxide layer 
which will serve as a resistive switching layer. It resulted in 5–6 nm thin oxide layer. Al 
metal electrode was sputtered and a second lithography step was performed to etch the 
areas that define the top electrode. In the end, the bottom electrode was fabricated on the 
bottom Si surface, and annealing was performed in a H2/Ar atmosphere. Both metal 
electrodes are 200 nm thick. Active area of a device is 7 × 7 µm2. Measurements were 
carried out with Keithley 4200-SCS Semiconductor Characterization System (Keithley 
Instruments, LLC, Solon, OH, USA) and Süss MicroTec PM8 low noise probe shield 
combined with ATT C60 chiller unit. The system allows controlling the measured wafer 
temperature within the range of −60–250 °C. DC measurements were performed using a 
static source-measure unit (SMU). Measurement setup and a schematic picture of the 
investigated device are presented in Figure 1a. In Figure 1b, we have shown a top-view 
SEM photo of an exemplary device. 

 

Micromachines 2022, 13, 1641 3 of 14 
 

 

 
Figure 1. Schematic sketch of the investigated structure and measurement setup used for electrical 
characterization (a) and a top-view SEM photo of an investigated device with shaded device area 
(b). 

3. Results and Discussion 
The RRAM device generally consists of Metal–Insulator–Metal (MIM) structure. A 

dielectric layer is sandwiched between two metallic electrodes. Usually, the device needs 
an initialization through the electroforming process by applying the proper voltage. It 
induces soft dielectric breakdown. As a result, local defects are formed that can create a 
conductive filament (CF), forming a path for current flow. A current limit needs to be set 
by the compliance system during the forming process, e.g., through the series transistor 
(1T1R structure) or by the measurement setup option. The current limitation is needed to 
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applying reverse polarization. The device is in the high resistance state (HRS) and can be 
set into the LRS when polarization is opposite to the reset operation. The set and reset 
operation mechanism is related to the field-driven migration of defects within the 
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on Si2p spectra we can observe that there are some silicon inclusions within the oxide 
layer. It has also been observed for sputter deposited silicon-oxide layers [27], and its role 
on resistive switching was discussed in work [28]. Hence, the conductive filament is 
probably a mixture of Si species and oxide vacancies. 
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3. Results and Discussion

The RRAM device generally consists of Metal–Insulator–Metal (MIM) structure. A
dielectric layer is sandwiched between two metallic electrodes. Usually, the device needs
an initialization through the electroforming process by applying the proper voltage. It
induces soft dielectric breakdown. As a result, local defects are formed that can create
a conductive filament (CF), forming a path for current flow. A current limit needs to
be set by the compliance system during the forming process, e.g., through the series
transistor (1T1R structure) or by the measurement setup option. The current limitation is
needed to avoid the hard and destructive breakdown of the dielectric layer and control
the conductive filament’s size. After forming process, the device is in a low resistance
state (LRS). Conductive filament shunts the dielectric. The reset process can break CF
by applying reverse polarization. The device is in the high resistance state (HRS) and
can be set into the LRS when polarization is opposite to the reset operation. The set and
reset operation mechanism is related to the field-driven migration of defects within the
dielectric [26]. It results in the formation or opening of the CF and, therefore, a change in
the resistance state. It is the so-called bipolar RRAM.

In our work, we investigated Metal–Insulator–Semiconductor (MIS) Al/Silicon-Oxide
/n++-Si structure. The thickness of the silicon oxide layer was measured using spectroscopic
ellipsometry and resulted in 5–6 nm. Investigated structures have an area of 7 × 7 µm2.
We have measured samples with oxide layer fabricated with the same process flow using
X-ray photoelectron spectroscopy (XPS). In Figure 2, we show the typical current–voltage
characteristics and obtained XPS spectra. Based on the measurements, we have calculated
the oxygen (O) to silicon (Si) ratio, which resulted in O/Si in the range 1.73–1.77. This
result indicates that the obtained oxide layer prior to the electroforming process has an
oxygen deficiency which may result in oxide vacancies that contribute to the formation of
the conductive filament during the SET cycle. Moreover, from Figure 2b on Si2p spectra we
can observe that there are some silicon inclusions within the oxide layer. It has also been
observed for sputter deposited silicon-oxide layers [27], and its role on resistive switching
was discussed in work [28]. Hence, the conductive filament is probably a mixture of Si
species and oxide vacancies.

Micromachines 2022, 13, 1641 4 of 14 
 

 

 
Figure 2. Typical I-V characteristics of a fresh Al/SiO2/n++-Si RRAM device measured at 25 °C (a) 
and XPS spectra (b) for silicon oxide used as a resistive switching layer. 

In order to understand the device behavior, we analyzed the electroforming process 
for various temperatures. In Figure 3, we show forming voltage statistics at different tem-
peratures. At every temperature, we measured 30 fresh structures. We can observe that 
the forming voltage decreases with the increase of temperature, which agrees with theory 
and other experiments on breakdown phenomena [29,30]. For temperatures below 0°C, 
we observe that forming voltage value saturates and is weakly dependent on temperature 
(down to −50 °C). 

 
Figure 3. Forming voltage statistics (a) and mean forming voltage values (b) at different tempera-
tures. 

We also investigated the forming process of devices with temperature and voltage 
bias as parameters. Based on the measurements, the forming voltage and forming time 
(time-to-breakdown) tbd values were extracted. The Weibull distribution had been used 
for oxide breakdown modeling [31,32]. Since the voltage breakdown is analogue to form-
ing process in the RRAM switching layer, the same statistics was adopted to model form-
ing and switching processes in resistive memory devices [33–36]. The cumulative distri-
bution function for the Weibull distribution of statistical variable x is: 𝐹ሺ𝑥; 𝛽, 𝜆ሻ  =  1 − 𝑒ିቀ௫ఒቁഁ

 (1)

for x ≥ 0, where β > 0 is the shape parameter (or Weibull slope) that measures statistical 
dispersion and λ > 0 is the scale parameter, a value at which the value of statistical variable 
is F ≈ 0.63. When the Weibull plot is used for data presentation, the axes are ln(−ln(1 − 
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Figure 2. Typical I-V characteristics of a fresh Al/SiO2/n++-Si RRAM device measured at 25 ◦C (a)
and XPS spectra (b) for silicon oxide used as a resistive switching layer.

In order to understand the device behavior, we analyzed the electroforming process
for various temperatures. In Figure 3, we show forming voltage statistics at different
temperatures. At every temperature, we measured 30 fresh structures. We can observe that
the forming voltage decreases with the increase of temperature, which agrees with theory
and other experiments on breakdown phenomena [29,30]. For temperatures below 0 ◦C,
we observe that forming voltage value saturates and is weakly dependent on temperature
(down to −50 ◦C).
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We also investigated the forming process of devices with temperature and voltage
bias as parameters. Based on the measurements, the forming voltage and forming time
(time-to-breakdown) tbd values were extracted. The Weibull distribution had been used for
oxide breakdown modeling [31,32]. Since the voltage breakdown is analogue to forming
process in the RRAM switching layer, the same statistics was adopted to model forming
and switching processes in resistive memory devices [33–36]. The cumulative distribution
function for the Weibull distribution of statistical variable x is:

F(x; β, λ) = 1 − e−( x
λ )

β

(1)

for x ≥ 0, where β > 0 is the shape parameter (or Weibull slope) that measures statisti-
cal dispersion and λ > 0 is the scale parameter, a value at which the value of statistical
variable is F ≈ 0.63. When the Weibull plot is used for data presentation, the axes are
ln(−ln(1 − F(x))) versus ln(x), and then the cumulative distribution function can be lin-
earized, since

W = ln(−ln(1 − F(x))) = β(ln(x))− β(ln(λ)) (2)

In Figure 4, we show the Weibull plot of forming voltage at different temperatures. We
can observe that most of the data fit well to the Weibull statistics. Plots for low temperatures
are very close, which means that there is a certain limit value that is needed to strongly
affect the breakdown process. At higher temperatures, we observe some deviation from
a straight line, particularly at 125 ◦C, where the standard deviation (SD) is the highest
(see also Figure 3a). It also is visible at shape parameter of Weibull statistics, which is the
smallest for extracted data. In Table 1, we show the extracted parameters of the Weibull
distribution for forming voltage at various temperatures.
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Table 1. Weibull distribution parameters for forming voltage of investigated RRAM devices at various
temperatures.

Temperature (◦C) Shape Parameter β Scale Parameter λ (V)

−50 43.57 4.18
−25 59.93 4.14
25 38.95 4.00
85 45.30 3.71

125 30.01 3.54
250 40.99 3.17

The Weibull distributions of the time-dependent dielectric breakdown (TDDB) mea-
surements with constant voltage stress are presented in Figures 5 and 6. Fits to the Weibull
plots were used to extract the parameters of respective Weibull distributions. The generated
Weibull distributions well match the experimental data as shown in Figures 5b and 6b.
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for forming process of investigated RRAM devices at various temperatures and different
stress voltages. Forming time (tbd) decreases with the increase of forming voltage and
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temperature. Scale factor changes with the temperature. For V = 3.8 V, we can see that at
85 ◦C the scale factor is ~6 times lower than at 25 ◦C, whereas at 125 ◦C it is ~20 times lower.
In general, the effect of voltage stress value is weaker than the effect of temperature on
forming time. As we can observe at T = 85 ◦C, the parameters of the distributions of TDDB
for several stress voltage values are very close. The Weibull slope β is within range 1–3 for
investigated voltage stress values and temperatures.

Table 2. Weibull distributions for time-dependent breakdown for forming process of investigated
RRAM devices at various temperatures and different stress voltages.

Temperature (◦C) Stress Voltage (V) Shape Parameter β Scale Parameter λ (s)

25 3.7 1.09 60.16
25 3.8 1.19 9.65
25 3.9 0.99 5.93
25 4.0 1.25 1.84
−25 3.8 2.88 113.78
85 3.8 1.62 1.49
85 3.9 1.24 1.12
85 4.1 1.20 1.03

125 3.8 1.86 0.50

We have also analyzed the current–voltage characteristics at different temperatures.
In Figure 7, we show the I-V curves for a few structures measured at 25, 85, and 125 ◦C in
a sequence. We can observe that at 25 ◦C devices behave in a similar way. We can easily
distinguish between High Resistance State (HRS) and Low Resistance State (LRS) for SET
and RESET cycles. During SET cycle, we can observe that after reaching the compliance
current (CC) level, sometimes current drops abruptly and then returns to its previous level.
When a CC level is obtained, the measurement unit works as a current source. It may cause
a partial filament dissolution due to local heating; therefore, CF is broken which results
in a current drop. After that, as voltage sweep is continued and an electric field induces
filament formation. Those instabilities may be related to the relatively high current value
passing true devices in CC mode, resulting in local Joule heating [37]. At 85 ◦C we notice
that the HRS is slightly different for different structures during the SET cycle, whereas
for LRS we observe some intermediate resistance states (IRS). We also observe current
drops for HRS above 1.0 V. In the RESET cycle, HRS current varies significantly, whereas at
LRS we can see sudden current rises. In RESET cycle, when a structure is in IRS and the
voltage is big enough, we sometimes observe an abrupt switch to LRS. At 125 ◦C all those
effects are even more pronounced, and variability is higher. In Figure 8, we present the
measurement showing cycle-to-cycle variability at different temperatures. We can observe
that temperature affects the HRS state, in particular for RESET cycle. Those results indicate
that thermal effects have a pronounced effect on the device’s performance and may cause
partial filament formation/disruption [29].
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In Figure 9, we show the differential resistance value of the Al/SiO2/n++-Si RRAM
device measured at various temperatures and voltage ± 100 mV for HRS and LRS. In order
to not affect the structure’s state by sweeping the voltage within wide range, we turned off
the device and then measured the I-V for low voltages (<0.5 V) for different temperatures
subsequently. Similarly, we carried out measurements for LRS after setting on the device.
Resistance for HRS and LRS differs between polarizations due to the asymmetry of the
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current–voltage characteristics. Nevertheless, the trend is similar. We found that resistance
decreases with temperature, which is a semiconductor-type relation of R vs. T function. In
LRS, this dependence is relatively week or not visible, whereas in HRS it is stronger. For
higher temperatures, we observe a change in the slope of the curve and a sudden decrease
in resistance. A possible explanation of such behavior is that in HRS, the CFs paths are
broken, and there is a gap that restricts the current flow. When temperature rises, the CF
thermal expansion causes the shrinkage of the gap. In turn, it results in a higher current
and a decrease of resistance. In LRS, a gap is closed so CF filament is already formed.
However, in um size structures, there might be many CFs, and some of them may not be
formed. Some of them might be partially broken, so increased temperature also results in
decreased resistance.
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Figure 9. Differential resistance value of Al/SiO2/n++-Si RRAM device measured at various temper-
atures and V = ±100 mV for HRS and LRS.

In Figure 10, we show current–voltage characteristics of the Al/SiO2/n++-Si RRAM
device with fitted slope curves at various temperatures. We observe Space Charge Limited
Conduction (SCLC) at HRS for both polarizations, regardless of the measurement tempera-
ture. For SET cycle at low voltages, current is proportional to the voltage, then we have
a quadratic and higher order dependence I~Vm, where m = 4 and 7. SCLC is related to
the transport through a region containing traps. Depending on the trap states energetic
distribution we can obtain different slopes of curve [38]. For RESET cycle we observe only
parabolic dependence at HRS. At LRS, we observe linear dependence for low voltages
and I~Vm with m between 1.2 and 1.8, which may indicate some randomly distributed
traps due to incomplete formation or local rupture of conductive filaments. Nevertheless,
regardless of the temperature, the transport type remains the same. Current level may vary
with temperature, but slopes in different regions of the I–V curve almost do not change.



Micromachines 2022, 13, 1641 10 of 12Micromachines 2022, 13, 1641 11 of 14 
 

 

 

 

 
Figure 10. Current-voltage characteristics of Al/SiO2/n++-Si RRAM device with fitted slope curves 
at various temperatures, (a) 25 °C, (b) 85 °C and (c) 125 °C. 

4. Conclusions 
This work investigates the temperature effect on the electrical characteristics of SiO2-

based Metal–Insulator–Semiconductor RRAM devices. We analyzed the electroforming 
process and current–voltage characteristics of Al/SiO2/n++-Si structure and identified the 

Figure 10. Current-voltage characteristics of Al/SiO2/n++-Si RRAM device with fitted slope curves
at various temperatures, (a) 25 ◦C, (b) 85 ◦C and (c) 125 ◦C.

4. Conclusions

This work investigates the temperature effect on the electrical characteristics of SiO2-
based Metal–Insulator–Semiconductor RRAM devices. We analyzed the electroforming
process and current–voltage characteristics of Al/SiO2/n++-Si structure and identified the
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transport mechanisms. It is mainly Space Charge Limited Conduction related to the trans-
port through traps within the oxide layer. Electroforming voltage and time-to-breakdown
follow the Weibull distribution, which can be used to analyze the statistical properties.
We discuss the effect of temperature on resistance at low voltages. Our work shows that
temperature has a pronounced effect on the I-V characteristics of investigated devices.
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