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Abstract: Modifying the natural characteristics of PLA 3D-printed models is of interest in various
research areas in which 3D-printing is applied. Thus, in this study, we describe the simple impregna-
tion of FDM 3D-printed PLA samples with well-defined silver nanoparticles and an iron metal salt.
Quasi-spherical and dodecahedra silver particles were strongly attached at the channels of 3D-printed
milli-fluidic reactors to demonstrate their attachment and interaction with the flow, as an example.
Furthermore, Fenton-like reactions were successfully developed by an iron catalyst impregnated in
3D-printed stirrer caps to induce the degradation of a dye and showed excellent reproducibility.

Keywords: 3D-printing; FDM; silver nanoparticles; metal impregnation

1. Introduction

Interest in the additive manufacturing process known as 3D printing has grown in
different scientific areas in recent years [1,2], due to the advantages of rapid prototyping,
fast design, ease of access, cost effectiveness, among many others. This fast development
process has been applied in batch and micro- and milli-fluidic reactors [3–6] for chem-
ical synthesis, medical devices [7], medicine tablets for drug delivery [8,9], 3D-printed
scaffolds for tissue engineering [10], laboratory equipment [11], analytical and bioanalyt-
ical sensors [12], catalytic systems [13,14], etc. Among several 3D-printing techniques,
fused deposition modeling (FDM) appears to be the cheapest, fastest, and most affordable
method [1]. FDM uses a variety of thermoplastics, such as polycarbonate, acrylonitrile
butadiene styrene, glycol modified polyethylene terephthalate, etc. Polylactic acid (PLA) is
a thermoplastic produced from renewable resources and probably the most often used poly-
mer for 3D-printing. As a thermoplastic, it is chemically inert, which can be beneficial or
limiting depending on its application. To address limitations, several approaches have been
presented for modifying the natural characteristics of PLA 3D-printed models. The most
common techniques are mechanically mixed dyes, soluble drugs, and metal salt precursors
mixed with the polymer before hot melting extrusion [8,15]. Additionally, some approaches
to the surface functionalization of 3D-printed scaffolds with NaOH + EDC/NHS for im-
pregnating bioactive molecules were also developed [10].

Interest in the introduction of metal particles at the PLA surface for imprinting antimi-
crobial, antibacterial, optical, and sensing properties has increased in recent years. The use
of silver nanoparticles (AgNPs) has (arguably) been the most representative, due to their
exceptional optical, electrical, antimicrobial, antifungal, and antiviral properties [16,17].
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Furthermore, the use of 3D-printed catalytically active devices for heterogeneous reactions
in synthetic chemistry was also demonstrated, but for more complex and costly 3D-printed
methods [13]; these are not affordable for most laboratories [18]. Therefore, research fo-
cused on the impregnation of FDM-printed structures with well-defined ex-situ synthesized
particles or a variety of metals for different applications is still missing.

In this work, the possibility of impregnating simple metal catalysts, as well as highly
defined metal nanoparticles under PLA surfaces, following the method shown in Figure 1,
was explored. PLA samples such as milli-reactors and stirrer caps were obtained using
a low-cost FDM 3D-printer. The attachment, particle interaction, and catalytic activity of
3D-printed devices was demonstrated.
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Figure 1. Printing, etching, and impregnation of 3D-printed samples developed in this work.

2. Materials and Methods
2.1. Materials

Silver nitrate (AgNO3) (reagent grade, Scharlau), sodium borohydride (NaBH4)
(98%, Acros Organics), sodium citrate (Na3C6H5O7) (reagent grade), hydrogen peroxide
(H2O2) (30%, Fischer Chemical), and distilled water were used for the synthesis of the
silver nanoparticles.

Potassium hydroxide (KOH) and sodium carbonate (Na2CO3) were used for the
etching process of the polymer surfaces. Iron (III) Chloride Hexahydrate (FeCl3 6H2O)
was used for catalyst impregnation on the polymer surfaces. Methylene blue was used
for the decolorization experiments. All reagents were employed as received without
further purification.

2.2. Ex-Situ Synthesis of Ag Colloids

The synthesis procedure of quasi-spherical and variable shape AgNPs was adjusted
from a previous contribution [3]. Freshly prepared AgNO3 (10 mM), NaBH4 (100 mM),
Na3C6H5O7 (100 mM), and H2O2 (400 mM) were used as starting solutions. In an Erlen-
meyer flask containing 250 mL of distilled water, a defined volume of each solution was
added. First, 2.5 mL of trisodium citrate (100 mM) and 2.5 mL of NaBH4 (100 mM) were
mixed. Then, 3.0 mL of aqueous AgNO3 (100 mM) was added. The solution was vigor-
ously stirred for 20 min. A yellow colloid was obtained for the quasi-spherical particles.
This colloid was used for impregnation, but also as the starting solution for non-spherical
particles synthesis.

Bigger clusters were synthesized using a 3D-printed reactor illuminated with a
green LED light (100 W, IP66) at room temperature [3]. Briefly, the starting solution
was pumped through the reactor ware with an infusion syringe pump (SP-200, Advanced
Instrumentation, Miami, FL, USA) for 4 h. Samples were collected and stored in the dark
prior to characterization.

2.3. Etching and Impregnation of 3D-Printed Samples

Figure 1 shows the general procedure of etching and impregnation of the 3D-printed
samples. The 3D samples were printed in polylactic acid (PLA) using an affordable
3D printer (WEEDO 152 s), which deposited layers (layer height = 0.2 mm) of thermopoly-
mers via an extruder nozzle.
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The polymer surface etching process was based on the procedure developed by
Bernasconi et al. [19]. Briefly, the procedure was as follows: i. The samples were cleaned
in a 50 g L−1 (Na2CO3) solution for 10 min, and then washed with distilled water; ii. the
cleaned samples were embedded in 40 g L−1 of KOH for 75 min, and then washed with
distilled water; iii. the samples were activated in a 20 g L−1 of NaBH4 for 2 min, and then
washed with distilled water; iv. finally, the samples were impregnated. For impregnation
of the NPs, colloids were titrated with a 2 mM solution of NaOH to pH > 10 (time: 48 h).

For iron impregnation, a 0.75 M solution of FeCl3 6H2O was prepared. For both im-
pregnation processes, the samples were embedded in the catalyst solution with continuous
stirring for at least three days to obtain a homogeneous surface. Iron-impregnation was
developed without headspace to prevent Fe2+ oxidation and precipitation [20]. For iron
impregnated structures, just after wet impregnation, the samples were dried at 60 ◦C for
4 h in a convective oven.

2.4. Dye Degradation

A 0.125 mM MB and 0.01 mM H2O2 aqueous solution was prepared. Then, the non-
and impregnated 3D-printed stirrer caps were placed. Samples were taken every 2 min
and analyzed by UV/Vis spectroscopy.

2.5. Analytical Methods

The absorption spectra of Ag colloids and selected decolorization experiments were
recorded using a UV/Vis spectrometer (CE 204, CECIL, Buck Scientific, Norwalk, CT, USA)
from 300 to 1000 nm.

For the study of the size and morphology of the silver nanoparticles (AgNPs), a FEI
Spirit Twin with LaB6 filament transmission electron microscope (TEM) was used operating
at a voltage of 80 kV.

Materials surface analysis was developed in a Tescan Mira 3 microscope equipped
with a Schottky Field Emission Gun (Schottky FEG-SEM) that allows us to obtain a res-
olution of 1.2 nm at 30 keV. The elemental analysis was obtained by Energy Disper-
sive Spectroscopy (EDS), which was performed on the SEM chamber at 30 kV using a
Bruker X-Flash 6|30 detector, with a 123 eV resolution at Mn Kα.

The crystallographic structure was determined by X-Ray Diffractometry (XRD). The
XRD was carried out using an Empyrean diffractometer from PANalytical operating in
a θ–2θ configuration (Bragg-Brentano geometry) and equipped with a Cu X-ray tube
(Kα radiation λ = 1.54056 Å) operating at 40 kV and 40 mV.

3. Results and Discussion

The surface plasmon resonance (SPR) spectra of both types of ex-situ synthesized
silver nanoparticles is shown in Figure 2a. Standard AgNPs (orange line spectrum) indicate
a SPR maxima around 400 nm, which is related to quasi-spherical NPs (average particle
size ≈ 15 nm). In contrast, photosynthesized clusters (blue line spectrum) show an SPR
maximum at 585 nm, which is representative of the presence of decahedral structures
(average particle size > 20 nm). Please refer to our previous contribution [3] for a complete
nanoparticles synthesis procedure and analysis.

For comparison, 3D-printed samples without an etching process were exposed to the
silver colloids for a long period of time (around 48 h). These samples did not adsorb the
clusters, keeping the same surface characteristics as 3D-printed-only structures (Please
refer to Figure 2b,c). In contrast, 3D-printed samples with an etching process adsorbed both
silver clusters at the PLA surface during the impregnation process. Both samples show a
colored appearance depending on the colloid impregnation, as shown in Figure 2d,e.

For a better understanding of the etching and impregnation process, SEM images of
the 3D-printed samples before and after the procedure were taken (Figure 3). The PLA
3D-printed surface shows a smooth texture without the presence of irregularities at the



Micromachines 2022, 13, 1675 4 of 9

macroscale. Nevertheless, after the etching process, the smooth PLA surface (Figure 3a) is
transformed into a porous structure (Figure 3b), due to the strong alkali attack.
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Figure 2. Top: (a) UV/Vis spectra of ex-situ synthesized catalyst. Orange spectrum: standard AgNPs,
blue spectrum: photo-illuminated bigger clusters. Insets: Colloid picture and exemplary TEM image
of AgNPs. Bottom: (b) 3D-printed sample, (c) 3D-printed sample without etching, but through
impregnation procedure. 3D-samples after etching and impregnation process with standard (d) and
photosynthesized Ag clusters (e).

Interestingly, as depicted in Figure 2c, the AgNPs appear to occupy the new PLA
porous surface during the impregnation procedure developing a thin NPs layer at the PLA
surface, as shown in the cross-section image in Figure 3d. AgNPs were not detached after
cleaning the samples with water. For further confirmation, the change in surface elemental
composition was analyzed by EDS before and after the impregnation process, and the
results are shown in Table 1. The peak element of Ag clearly appears, reducing the amount
of C and O detected at the impregnated surface.

Table 1. Elemental analysis (%) of PLA and impregnated samples.

Sample
Elemental Analysis (%)

C O Ag Fe * Others

PLA 52.87 47.13 - -
AgNPs-impregnated 42.03 20.71 33.98 - 3.29

Fe-impregnated 40.43 47.23 - 10.05 3.28
* Alkali metals present due to etching and impregnation processes.
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For testing the AgNPs attachment to the PLA surface, 3D-printed milli-reactors
(1 mm channel width) were impregnated in the channels with both synthesized colloids,
(Figure 4a) (Please refer to a previous contribution [3] for a complete description of the
design and assembly of the 3D-printed milli-reactors and pumping system). In our previous
contribution, the 3D-printed reactors did not adsorb NPs when they were pumped across
the fluidic system. Thus, for impregnation, the procedure specified above was required.
Once the impregnated reactors were prepared, a water stream was continuously pumped
(2 mL h−1) overnight. No NPs detachment was observed following the water stream
procedure (see Figure 4b), showing the strong adhesion of clusters at the PLA surface
during continuous flow. Moreover, it is well-known that AgNPs strongly interact with
hydrogen peroxide in a Fenton-like reaction generating hydroxyl radicals and Ag+ [21].
As a result, NPs are reduced and dissolved in the medium. This phenomenon was tested
by pumping an H2O2 water solution (0.2 mM) along the impregnated reactor. As shown
in Figure 4c, NPs strongly interacted with H2O2, as clusters disappeared from the reactor
channels during the flow. Both experiments showed the strong NPs attachment, but also
their interaction with the flow, opening up different applications for simple PLA-coated
surfaces, such as chemical and/or optical sensors, antimicrobial scaffolds, wall-coated
microreactors for chemical synthesis, among many others.

PLA-etched surfaces were also studied as devices for developing catalytic experiments.
The possibility was explored of converting a stirrer to be catalytically active by the wet im-
pregnation of an iron chloride salt. The device would present an advantage for developing
heterogenous catalytic reactions without the need to remove or add a catalyst. For this
purpose, a surrounding device was designed in CAD software, 3D-printed, and assembled
over a common laboratory stirrer (Figure 5a–c). Once the 3D-printed stirrer cap assembly
was obtained, caps were successfully wet-impregnated with Fe. Please refer to Figure 3e
for a typical SEM image of PLA surfaces etched and impregnated with iron. Similar to the
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description above for metal nanoparticles, the porous surface was successfully covered
by iron showing a yellowish appearance (Figure 5d), also developing a thin Fe layer over
the PLA surface (see Figure 3f). As before, the presence of iron was successfully detected
by EDS characterization (see Table 1). Moreover, Figure 5e shows the XRD patterns of
PLA and Fe-impregnated surfaces. PLA showed the common broad spectra at 2θ = 16.5◦

for the semi-crystalline structure of it [22], while the crystalline components, due to Fe
impregnation, are shown with the appearance of sharp peaks.
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The Fe-impregnated 3D-printed stirrer caps were used for the degradation of methy-
lene blue (MB) with hydrogen peroxide via an advance oxidation process in batch con-
ditions (Figure 5f). The Fenton reaction has been widely reported in the literature [23],
whereby the formation of hydroxide (OH−) and a hydroxyl radical by a reaction between
Iron (II) (Fe2+) and hydrogen peroxide (H2O2) oxidizes contaminants. Concentration vs.
time curves are depicted in Figure 6a for three different impregnated 3D-printed stirrer
caps. For comparison, non-impregnated stirrer caps (black dots) did not show any catalytic
activity. In contrast, Fe-impregnated stirrer caps were able to degrade MB obtaining a clear
solution under 20 min, showing the expected catalytic activity of the system. Moreover,
in accordance to Fenton-like reactions [24], MB degradation followed a pseudo-first order
reaction mechanism (see kinetic fitting in Figure 6b). Notably, all impregnated stirrer caps
exhibited similar calculated kinetic constants (k = 0.16 ± 0.01 min−1), demonstrating the
reproducibility of the impregnation method. Furthermore, reusability tests were developed
under the stirrers for testing metal impregnation at the PLA-surface. After one reaction,
3D-printed stirrer caps were cleaned and dried at 60 ◦C, and then the reaction was devel-
oped again. Notably, similar kinetic constants were calculated (±0.05 min−1), showing
how good metals are attached to the PLA surface. This method opens up a simple and fast
testing method for developing a variety of chemical syntheses at lab-scale.
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4. Conclusions

This communication demonstrated the simple impregnation of 3D-printed PLA sam-
ples with well-defined ex-situ synthesized silver nanoparticles and an iron metal salt.
However, the process should not be limited to them. Nanoparticles and iron showed to
occupy the porous area generated after the etching process of PLA surfaces. Metal NPs
showed a strong attachment to the PLA 3D-printed surfaces (i.e., channels in flow milli-
reactors), but also interaction with H2O2 in continuous flow. Furthermore, the 3D-printed
stirrer caps were successfully used as catalytically active devices for the degradation of a
dye via an advanced oxidation process with excellent reproducibility.

All considered, we strongly believeF that this simple and affordable method for
impregnating well-defined metals could open up applications in different scientific areas
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where 3D-printing is actually applied. In a future contribution, the method could be applied
for performing more relevant catalytic conversions on 3D-printed small-scale reactors.
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