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Abstract: Diverse origami techniques and various selections of paper open new possibilities to create
micromachines. By folding paper, this article proposes an original approach to build laser scanners,
which manipulate optical beams precisely and realize valuable applications, including laser marking,
cutting, engraving, and displaying. A prototype has been designed, implemented, actuated, and
controlled. The experimental results demonstrate that the angular stroke, repeatability, full scale
settling time, and resonant frequency are 20◦, 0.849 m◦, 330 ms, 68 Hz, respectively. Its durability,
more than 35 million cycles, shows the potential to carry out serious tasks.
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1. Introduction

Laser scanners, also known as galvanometers, utilize motor-driven mirrors to reflect
a laser spot to a desired location accurately and rapidly. By repeating the process along
a scheduled trajectory, the focused point burns into the target surface and performs laser
machining such as marking, cutting, and engraving [1]. Laser galvanometers are also
used in modern technologies including lidar [2–4], stereolithography [5], selective laser
sintering/melting [6], laser scanning display [7–11], optical coherence tomography [12], and
scanning laser ophthalmoscopy [13,14]. In brief, these useful devices are widely deployed
in various fields.

Regarding the inner structure, comprehensively discussed in literatures [15–18], a
laser galvanometer consists of a mirror, an angular actuator, and control electronics. The
mirror needs high reflectance and low inertia. The angular actuator is expected to possess
high resolution, wide stroke, and fast response. The controllers are divided into open-loop
and closed-loop types with typical examples [1,19], which are mature products available
in the market. Compared in Table 1, we have found various designs to meet the different
requirements. For example, manufacturing tools need fast response; medical instruments
rely on accuracy; and consumer devices demand cost-effectiveness. Therefore, every
specific design has its value.

Origami, an ancient art inherited from the orient, has been re-purposed as mod-
ern engineering applied in aerospace [20], stents [21,22], solar panels [23], haptic de-
vices [24], and robots [25–28]. The properties of one-fold hinge have been investigated [29],
and well-designed multiple folds become joints with several degree-of-freedoms [30].
Origamizer [31] is an algorithm that allows every polyhedral complex to be folded from a
sufficiently large paper. Since so much knowledge about origami has been accumulated,
origami-inspired machines can now be created to do practical work. This article proposes a
revolutionary origami-based method for making laser galvanometers.

Regarding the advantages of the proposed method, rotary joints are classified into
3 types: Ball bearings, torsional beams [15–18,32], and origami hinges of this work. Ball
bearings can rotate endlessly and have the widest scanning range, but the friction degrades
their accuracy or makes them hard to be controlled. Torsional beams, thanks to their
frictionless elastic deformation, can rotate accurately within a narrow range. Origami hinges
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act as an in-between, which offer both frictionless motion and enough scanning range for
the applications of laser galvanometers. Furthermore, origami hinges are extraordinarily
cost-effective and can be easily manufactured by a desktop laser cutter.

The structure of this paper is organized as follows. Section 2 introduces the system
design including kinematic simulations, actuators, and sensors. Section 3 describes in-
strumentations and experiments. Section 4 presents the conclusion of this article and
improvements that can be carried out in the future.

Table 1. Main specifications of typical 10 mm aperture laser galvanometers.

[19] [1] Goals of This Work

Recommended aperture 10 mm 10 mm 10 mm

Actuator type DC motor Stepping motor Voice coil motor

Bearing type Ball bearing Ball bearing Origami hinges

Controller type Closed-loop Open-loop Closed-loop

Scan range ±12◦ ±10◦ ±10◦

Repeatability (rms) 5.73 × 10−5 degree 0.04 degree ≤0.004 degree

Settling time 0.25 ms (for 1% of full scale) 10 s (for full scale) ≤1 s (for full scale)

Durability Not available 1.577 million cycles * ≥15.77 million cycles

Cost Very high Medium Low

Recommended aperture 10 mm 10 mm 10 mm

Actuator type DC motor Stepping motor Voice coil motor

* calculated by 24 h/day full time operation during 1-year warranty.

2. Design

From Table 1, the main specifications of a miniature laser engraver [1] are ±10◦ mirror
scanning range, 0.04◦ repeatability, and 10 s settling time of full scale. We hope to make
a competitive one with a much lower cost. Therefore, the goals of this work are set to
the same ±10◦ range, better repeatability, 10-time faster settling time, and 10-time more
operational cycles.

2.1. Paper Mechanism

Intuitively, a straightforward fold transforms a piece of paper into two linkages with a
connecting joint. One linkage is fixed as the ground, and the other linkage carries the mirror
rotating around the folded line. We have tested this concept and found a fatal drawback:
long-lasting oscillation such as a thin cantilever. Obviously, this is not a good idea.

With the above experience, we choose four-bar mechanism with one degree of freedom
as well. Illustrated in Figure 1a, linkage #1 is fixed as the ground, linkage #2 and #4 are the
rockers, and linkage #3 is the mirror carrier with connecting joints at both ends. Since the
mirror is not supported at only one end, the aforementioned drawback can be significantly
suppressed. The dynamic characteristics will be quantified in experiments.

Figure 1b shows the theoretical limit positions of this four-bar mechanism. The mirror
at the rightmost position reflects the incident laser to the leftmost direction. In the same
manner, when the mirror turns to the opposite side, the laser is reflected to the leftmost
direction. According to the law of reflection, the scanning range of the reflected laser is the
double of the swinging range of the mirror.

The full motion of this four-bar mechanism is shown in Figure 1c. Linkage #3 approxi-
mately rotates around the instantaneous center (IC) [33], located at the intersection point of
the extensive lines of linkage #2 and #4 at their neural position. In summary, a virtual hinge
at IC has been created, and the mirror rotates around it smoothly. Controlling this four-bar
mechanism implies manipulating the reflected laser beam. The next step is to determine
the length values of every linkage.
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Since the projected laser spot is an 8 mm × 5 mm ellipse [1,34], the mirror size has to be
a little bit larger to cover the whole spot and is set to a 10 mm × 10 mm square. Therefore,
the length of linkage #3 is 10 mm. Secondly, to perform symmetrical scanning motion,
linkages #2 and #4 must be equal in length. According to our experience of implementation,
10 mm is also a suitable choice, too. Next, the mechanical singularity [35] condition, i.e.,
linkages #2 and #3 are collinear, has to be avoided; therefore, the realistic limit positions are
set as Figure 1d. That means an external 18◦ hard stopper, labeled in Figure 2a, should be
adopted to prevent the singular condition. Accordingly, the length of linkage #1 is 28 mm,
and the mirror scanning range is ±10.9◦, which is slightly wider than we demand. This
tolerance is meaningful to absorb misalignment in following experiments. Finally, the
kinematic diagram is shown in Figure 1e.

Figure 1. (a) Neutral position, (b) limit positions, and (c) kinematic diagram of the theoretical four-bar
mechanism. (d) Limit positions and (d) kinematic diagram of the realistic four-bar mechanism with
18◦ hard stopper to avoid mechanical singularity.

2.2. Actuators

Electromagnetic actuators are chosen in this work similar to most galvanometers.
Intuitively, magnets can be directly attached onto the rocker linkages, and then the coils
push/pull the magnets and drive the apparatus. To dissipate heat, however, coils need
big heat sinks, which may interfere with the optical path. Therefore, we add a triangle
structure to extend the rocker linkages as shown in Figure 2. Strong NdFeB magnets with
5 mm diameter are glued on the vertical surfaces. Coils are installed aside with heatsinks.

2.3. Sensors

Under the mirror, two smaller magnets with 3 mm diameter are attached with a
central distance of 6 mm. When the mirror is rotating, the changing magnetic flux affects
underneath hall sensors (SS49E, Honeywell), which are installed correspondingly. We
define the differential voltage between two hall sensors as Equation (1) to present the tilting
angle of the mirror, where VRH and VLH are the signals of the right and the left hall sensors,
respectively. Figure 3 defines the positive direction of the mirror’s rotation.

Vθ = VRH − VLH (1)

Furthermore, the installation position of hall sensors should be optimized. Recalling
Figure 2, the neutral position, z is the gap between the sensing magnet and the hall sensor
below. To avoid collision, z must be greater than 2 mm. The influence of variable z has been
tested and plotted in Figure 4a. The results show that, for a fixed x value, a smaller z value
contributes a wider dynamic range of the output signal because of the strong magnetic
field near the surface of the magnet. Therefore, we set z equal to 2.5 mm, the practically
shortest distance before collision happens.



Micromachines 2022, 13, 1796 4 of 12

Figure 2. (a) Schematic diagram and (b) photograph of the proposed origami laser galvanometers.

Figure 3. (a) Positive and (b) negative tilting angles with a corresponding sensor signals.

In addition, the central distance between two hall sensors, x, should be taken into
consideration, too. To avoid collision, x must be greater than or equal to 4 mm. The
influence of variable x has been plotted in Figure 4b. The conditions of x = 4 mm and 7 mm
are dropped off due to poor symmetricity and low sensitivity, respectively. Finally, we
choose the condition of x = 5 mm because of its balanced symmetricity and wide dynamic
range. All design parameters are summarized in Table 2. With detailed technical data [36],
the thickness and the areal density of our selected paper (Pop’Set, Arjowiggins) in this
work are 0.21 mm and 170 g/m2, respectively. Naturally, the material of paper affects the
properties of the proposed system. Thicker/denser paper leads to stiffer hinges, higher
resonant frequency, and more current consumption for maintaining the same titling angle.

Table 2. Design parameters of the proposed origami laser galvanometer.

Design Parameters Values

Paper: thickness and areal density 0.21 mm, 170 g/m2

Mirror: weight and size 0.7 g, 10 × 10 × 1.2 mm3

4-bar mechanism: length values 28 mm, 10 mm, 10 mm, 10 mm

Driving magnets: size and surface flux density ϕ 5 mm × 2 mm, 300 mT

Sensing magnets: size and surface flux density ϕ 3 mm × 1 mm, 220 mT

Magnet-sensor gap 2.5 mm

Sensor-sensor distance 5 mm
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Figure 4. (a) The same magnet-sensor gap with different sensor-sensor distance. (b) The same
sensor-sensor gap with different magnet-sensor gap.

Aforementioned mirror titling angle is measured by an open-source program,
Tracker [37], which analyses the videos by image processing algorithms. A clip of motion
videos is demonstrated [38]. As a snapshot captured in Figure 5, two black points are
marked at two corners of the mirror as the “feature points”. Tracker has the ability to iden-
tify these feature points in the video stream and calculate the positions and the associated
tilting angle. The background of the motion video also records the voltages of hall sensors.
Now, the relationship between the sensors’ signals and the mirror tilting angle can be well
mapped, as plotted as the cyan line in Figure 4b. In the following experiments, we rely on
Vθ to measure the mirror tilting angle because hall sensors act much faster than our visual
camera, whose acquisition rate is limited at 30 frame/s.

Figure 5. A snapshot captured by Tracker program, which analyses the motion of the tilting mirror.

3. Experiment
3.1. Instrument Setup

A general-purpose microcontroller (ESP32, Expressif) plays the role of the system
integrator in Figure 6. The signal conditioner is implemented by operational amplifiers
(TL084, Taxes Instruments Texas Instruments). After proper amplifying and offsetting, the
hall sensors’ signals are acquired by the analog input channels of the microcontroller. The
control program delivers calculated output signals to the 2-channel coil driver (L298N,
STMicroelectronics) and generates push-pull electromagnetic force to manipulate the four-
bar mechanism. The mirror’s angle will be read back again to complete a closed-loop. A
series of experiments have been conducted to demonstrate the performance of this system
in the next section.
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Figure 6. The block diagram the proposed system.

3.2. Durability Test

Before going further, we must ask questions such as “Is a paper-made machine
durable?” and “How many cycles it can work for?” Therefore, an accelerated aging exam
has been conducted in the following procedures. Initially, by scanning the spectrum at a
constant coil voltage, we find the resonant frequency and the magnitude are 68 Hz and
7.6◦, respectively. Next, the proposed system is driven at resonance for 2.5 million cycles,
i.e., 613 min, and then rescanned again to record new values of resonant frequency and the
magnitude. The whole process is automatically repeated for 35 million cycles in total. The
results are plotted in Figure 7.

Figure 7. (a) Spectrums of the proposed system. (b) Origami hinges are softened along with increasing
operation cycles.

In the first 20 million cycles, the resonant frequency decreases from 68 Hz to 61 Hz,
and the magnitude increases from 7.6◦ to 8.47◦ gradually. In the final 15 million cycles,
both resonant frequency and magnitude remain unchanged. The results show that the
motion may “soften” the origami hinges in the early stage, and then the device becomes
stable with constant properties. The minimal lifetime is 35 million cycles, which meets our
goals. This aged device is used in the following experiments and tested in Figure 8a. Now
we increase the driving voltage and keep the resonant amplitude less than ±10◦ limit, or
the device may hit the hard stopper. The relationship between the scanning angle and the
driving current is plotted in Figure 8b.
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Figure 8. Characterization of the origami galvanometer. (a) Scanning angle versus driving frequency.
(b) Scanning angle versus driving current.

3.3. Classic PD Control

Since we know the mechanical properties may drift, the system cannot be well con-
trolled only by an open loop. We adopt the classic proportional-differential (PD) feedback
control scheme. The first controller is expressed as Equations (2) and (3);

e = Vr − Vθ (2)

Vu = KOVr + KPe + KD
.
e (3)

where e is the error between the user command and the sensor feedback. Vu is the control
output combined by the open-loop, proportional, and differential parts. The open-loop
gain KO is 0.5 adjusted by a full-range swing pretest. P-gain KP and D-gain KD are 275
and 8.5, respectively. The step-train response and the corresponding steady state error are
plotted in Figure 9a,b, where there is nonnegligible steady state error. Therefore, we need a
more advanced control scheme.

Figure 9. (a) Step-train response and (b) steady state error of the classic PD controller.

3.4. Variable Gain PID Control

Theoretically, integral control can suppress steady state error and provide accuracy.
Any residual error will be accumulated to compensate the system until the error approaches
zero. Now the controller is reformed as Equation (4);

Vu = KOVr + KPe + KI

∫
edt + KD

.
e (4)

where the additional parameter KI is the integral gain. In Figure 10, KP, KI , and KD gains
are adaptively changed with the target angle to compensate the nonlinearity of the system.
The step-train response and the corresponding steady state error are plotted in Figure 11a,b,
where the steady state error has been suppressed significantly. Since the behavior of the
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negative target angle is similar to the positive target angle due to the symmetrical structure,
only the positive half plans are plotted.

Figure 10. Control gains are adaptively changed with the target angle.

Figure 11. (a) Step-train response and (b) steady state error of the variable gain PID controller.

After obtaining a satisfactory controller, the next experiment is the full-scale regulation.
The results are plotted in Figure 12a, which proves the scanning range of the proposed
device is ±10◦. The region of the beginning two seconds is zoomed in Figure 12b to specify
the full-scale settling time, 330 ms. After settling, the mirror tilting angle is supposed to be
−10◦ theoretically; however, there is experimental fluctuation. We record the data inside
each “settling box” #1 to #10, and then calculate their standard deviation, 8.49 × 10−4◦, to
represent the positioning repeatability. In summary, above experimental results satisfy the
goals we set in Table 1.
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Figure 12. (a) Full scale regulation response of the proposed system. (b) The detailed view of
settling time.

4. Discussion

In Figure 7a, from DC to 20 Hz, there is a flat region with a constant amplitude.
Therefore, we set 20 Hz is the operational limit, which fully satisfies our speed goal in
Table 1. This operational limit is separated from the first resonant frequency, 61 Hz, and
higher resonant frequencies of other modes. This limitation implies stability theoretically.
On the other hand, in Figure 12, the ±10◦ rapid swinging response also validate the
stability and the accuracy of the proposed system experimentally. Noteworthily, if the
paper mechanism hits the hard stopper, rebound will occur and induce unstable oscillations.
In summary, over-driving should be prevented.

Compared with traditional laser scanning systems such as galvanometers [19], origami
hinges provide frictionless pivots; thus, the actuating and controlling efforts are lower.
Microelectromechanical systems (MEMS) galvanometers had been reviewed thoroughly by
Holmström et al. [39]. Compared with common MEMS galvanometers in his study, our
origami galvanometer has a much larger mirror size, which is capable to withstand high
laser power for machining tasks. On the contrary, MEMS galvanometers suit for relatively
lower laser power, higher frequency, and multi-pixel applications such as lidar and image
projection display. In addition, our origami galvanometers demonstrate clear advantages
including effective cost, easy fabrication, and short developing period.

A realistic laser engraver or image displayer demands two dimensions (2D). The idea
of this work can be extended to a 2D version as illustrated in Figure 13. Coils work in the
same manner but are not shown in order to view the internal structure clearly. Several trape-
zoidal 4-bar mechanisms are stacked orthogonally to tilt the mirror around x- and y- axes.
A 2D optoelectronic angular sensor [34], our former work, can be seamlessly integrated.
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Figure 13. The concept of the 2D origami galvanometer with an optical sensing system.

5. Conclusions and Outlook

This article presents the first laser galvanometer built using origami techniques. A
paper-folded four-bar mechanism has been designed for tilting the mirror around its instan-
taneous center. Electromagnetic actuators and hall sensors are integrated as a mechatronic
system. Classic PD scheme and variable gain PID scheme have been implemented to
control the proposed device successfully. The experimental results demonstrate that the
angular stroke, repeatability, full scale settling time, and resonant frequency are 20◦, 0.849
m◦, 330 ms, 61–68 Hz, respectively. Its durability, more than 35 million cycles, meets the
requirements for a miniature laser engraver.

In the future, we will attempt more parameters including various paper materials,
thickness, and surface coatings. In general, the material determines durability; the thickness
affects the stiffness of hinges; and the surface coating may prevent the influence of humidity.
In addition, upgrading to a two-dimensional optoelectronic sensor will help to construct a
laser engraving system without image distortion [40]. This article emphasizes the novelty of
the paper-made mechanisms, but not controllers. We are planning to identify the dynamics
of the origami systems and develop a specialized control scheme for them. Furthermore,
more complicated designs with multiple degree-of-freedom will be a hopeful prospect.
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