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Abstract: The decoupled-plasma nitridation treatment process is an effective recipe for repairing
the trap issues when depositing high-k gate dielectric. Because of this effect, electrical performance
is not only increased with the relative dielectric constant, but there is also a reduction in gate
leakage. In the past, the effect of nitridation treatment on channel-length was revealed, but a channel-
width effect with that treatment was not found. Sensing the different nano-node channel-width
n-channel MOSFETs, the electrical characteristics of these test devices with nitridation treatments
were studied and the relationship among them was analyzed. Based on measurement of the VT, SS,
Gm, ION, and IOFF values of the tested devices, the electrical performance of them related to process
treatment is improved, including the roll-off effect of channel-width devices. On the whole, the
lower thermal budget in nitridation treatment shows better electrical performance for the tested
channel-width devices.

Keywords: nMOSFET; high-k; nitridation; subthreshold swing; threshold voltage; channel width

1. Introduction

With regard to the complexity increment of nano-node process manufacturing, each
process recipe in the production line will greatly impact the yield or the throughput of
integrated-circuit (IC) products [1,2]. Even though the hot 3-nm IC mass-production tech-
nology at the present stage adopts a fin metal-oxide-semiconductor field-effect transistor
(fin MOSFET or FinFET) [3–7], providing the better gate controllability, the high-k gate
dielectric [8,9] is still a useful material with which to increase the drive current, ION, related
to the high-speed performance of ICs. Below 3-nm node process, the multi-nano-sheet
field-effect transistors [10–13] with gate-all-around modality are more suitable candidates.
Using the high-k dielectric is still a good choice for maintaining a higher drive current than
that achieved with silicon dioxide or silicon nitride [14].

Because the high-k gate dielectric still supports an excellent k-value, more so than
silicon dioxide, reducing the disadvantages of the high-k dielectric, such as the numerous
traps in the atomic deposition of gate dielectric and the interface between channel surface
and gate dielectric, is important. Using the thin interfacial layer is a feasible way of
decreasing the interface state density and strengthening the bonding between the gate
dielectric and the Si-based channel surface. Moreover, optimal nitridation treatment allows
repair of the oxygen vacancy or bulk traps in the gate dielectric. Possible and cost-effective
nitridation treatments include post-deposition annealing (PDA) and decoupled-plasma
nitridation (DPN) processes [15,16]. According to the published literature [17], the PDA
process in is more impressive in terms of cost, but the DPN process seems better in electrical
performance due to the larger nitrogen free radicals fixing the traps more effectively. The
major variables of DPN treatment processes in plasma systems include the radio-frequency
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power, nitrogen concentration, and treatment temperatures. Because the complementary
MOSFET (CMOSFET), composed of an n-channel MOSFET (nMOSFET) and a p-channel
MOSFET (pMOSFET), is the mainstay and foundation stone of logic, it has applications in
data communication, data processing, and high-performance computing (HPC) IC products.
The nano-node device model [18], a device with short-channel effect performance [19] and
reliability [20,21], is more well suited to the development of electronic-design-automation
(EDA) software [22]. Because the commercial EDA software is a good tool for IC designers,
ultra-large-scale-integration ICs can be precisely designed and completed. However, few
reports in the literature mention the nano-node channel-width effect after process variation.
In this work, we aim to vary the nitrogen concentration and treatment temperatures
impacting the electrical performance of channel-width devices after the deposition of high-
k gate dielectric. These efforts will help to establish a set of precise device models with
regard to channel-width after process variation.

The paper is organized as follows: In Section 2, an outline of semiconductor processes
and a flow chart of electrical measurements are presented. In Section 3, the main sensing
electrical results for each tested device and the analysis of nano-node channel-width
performance are discussed. Moreover, the lower thermal budget of DPN treatment, on the
whole, demonstrates better electrical performance among the three tested process groups.
Finally, a summary of the precious findings and conclusions of this work is presented in
Section 4.

2. Outline of Semiconductor Processes and Measurement Establishment

Although 28 nm-node processes have been gradually adopted at the mature process
level, nitridation treatment in high-k gate dielectric can still be adopted for the novel
3 nm-node manufacturing process with FinFET format. The gate-last process [23,24] in the
front-end level is more favored in integration consideration due to avoiding source/drain
(S/D) diffusion after high-temperature annealing, impacting the metal gate instead of
the poly-silicon electrode. Thus, substituting the traditional front-end process with the
gate-last is necessary, and using low-resistance aluminum as the metal gate can improve the
gate delay and power consumption. Incorporating the high-k HfO2, ZrO2, or sandwiched
HfO2/ZrO2/HfO2 as the gate dielectric is a good way to increase the drive current and
reduce the gate leakage, compared with silicon oxide at the equivalent oxide thickness [25].
In conventional planar MOSFET manufacturing, the active area (AA) must be defined
first. The well and VT adjustment implants, forming the N- and P-wells and controlling
the feasible VT values, are followed continuously. The sacrificial oxide is grown first
and then removed. The true gate oxide is thermally grown. Furthermore, the poly-gate
electrodes are produced using with chemical vapor deposition (CVD), dry etch technology
and suitable photolithography. To reduce the hot-carrier effect, the S/D extension implant
is used. The sidewall spacer shape is deposited and etched. After that, S/D implants and
high-temperature annealing are used. The pre-metal dielectric, to provide device isolation,
is deposited using low-temperature CVD technology. In addition, a contact mask is applied
to form the gate contact (CT) and S/D CT. In addition, the first metal (M1) mask, made
using with copper damascene [26,27] plus chemical-mechanical polishing, is used to gain
the desired metal format. Finally, passivation and pad-window processes are completed
to monitor the front-end device performance. For the gate-last processes, the poly-gate
is treated as a dummy gate. The interfacial layer, SiOx, is deposited first with rapidly
thermal oxidation process, before the 24 Å physical thickness of high-k dielectric deposition
using an atomic-layer deposition process. This process is beneficial because it reduces
the interface state density between the high-k gate dielectric and the channel surface and
indirectly increases channel mobility. Generally, the hafnium dielectric is deposited early
on in the flow, before a sacrificial poly-gate is created. After the high-temperature S/D
and poly-silicide annealing cycles, the dummy gate is removed and Al-gate electrodes are
deposited last. The remaining back-end processes with single damascene copper layer as
the first metal layer were followed.
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The overall complexity and process costs are slightly escalated, but the increase in
electrical performance and decrease in power consumption is impressive. In this work,
the tested wafers with gate-last processes were of an engineering type, the back-end metal
was completed before the first metal (M1) plus passivation and pad window processes
were begun, as shown in Figure 1. The abbreviations, W, L, SDE, and n+, in Figure 1 are
channel-width, channel-length, source/drain extension implant [28], and heavily doped
S/D implant, respectively. The dog-bone layout [29] has two advantages: eliminating the
risk of gate-electrode peeling and avoiding the serious corner rounding in photolithography.
After depositing the high-k gate dielectric, the nitridation treatment with the designed
nitrogen concentration and annealing temperature was followed. In this work, three kinds
of nitridation process splits are itemized as DPN-I, II, and III, respectively. The process
information for the high-k gate dielectric with three DPN treatments is listed in Table 1.
The nitrogen flow in terms of percentage (8–16%) in DPN process took place in an inert
environment consisting of argon as a gas mixture.
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Table 1. Variables and parameters of gate dielectric deposition with three nitridation treatments.

No. Wafer SiO2 (IL) HfOX/ZrOX/HfOX (Cycle) Anneal N2

DPN-I 9~12 Å 10/4/10 700 ◦C 8%
DPN-II 9~12 Å 10/4/10 900 ◦C 8%
DPN-III 9~12 Å 10/4/10 700 ◦C 16%

With respect to the electrical measurement, the Keysight B1500A instrument was
applied to assist the electrical parameter extraction. For the electrical characteristics of the
tested devices, the threshold voltage (VT) with constant current metrology, drive current
(ION), OFF-state current (IOFF), transconductance (Gm), and sub-threshold swing (SS) are
more important. For the 28 nm-node logic processes, the supplied voltage VDD of the core
device was 0.8 V. The measurement methods for extracting the electrical parameters are
shown in Table 2.

Table 2. Valuable semiconductor parameters with sensing metrology.

Parameter Extraction Sensing Metrology

VT
Sensing IDS − VGS as fixed VDS = 50 mV. Extracting the VT value

as the expected IDS (nA) = 100 × W/L.

ION
Measuring IDS − VDS as fixed VGS = VDD or (VGS−VT) = VDD.

Choosing IDS as VDS = VDD.

IOFF
Sensing IDS − VDS as VG = VS = VB = 0 V. Recording ID, IG, IS,

and IB as VDS = VDD.

Gm
Deriving IDS − VGS as fixed VDS = 50 mV. Extracting the

maximum Gm_max.

SS Deriving Log(IDS) − VGS as fixed VDS = 50 mV or VDD.
Extracting the slope and taking the reciprocal.

The threshold voltage [30,31] without the body effect is a key to determining the
switch capability of MOSFETs, which can be expressed as

VT = Φms −
Qox

Cox
− Qd

Cox
+ 2φF (1)

where Φms is the work function difference (Φms = Φm − Φs for a metal gate on Si substrate),
Qox is the total oxide charge, Cox is the inverse gate capacitance, Qd is the depletion charge
(Qd = −[2 εs q Na 2φF]1/2), εs is the substrate dielectric constant, Na is the channel surface
doping concentration and φF = (Ei − EF)/q, where q is the unit charge, Ei is the intrinsic-
Fermi energy and EF is the Fermi energy.

The VT value of MOSFET can be extracted using the maximum Gm method or the
constant IDS method [32]; when considering the testing speed in the manufacturing line, the
latter is preferred. The constant current method to calculate the VT value at the subthreshold
characteristics can be represented as

IDS =
W
L

· µn · (Cd + Cox) ·
(

kT
q

)2
·
(

1 − e−
qVD
kT

)
·
(

e
q·(VG−VT )

Cr ·kT

)
(2)

where µn is the channel mobility for nMOSFET, k is the Boltzmann’s constant, Cr = [1 + (Cd
+ Cit)/Cox], and Cit is the interface-state capacitance.

As the VG = VT and the VD = 50 mV, the IDS (nA) is close to 100·W/L [30]. For the
drive current, it can be treated as the saturation current of nMOSFET, IDS_sat.

IDS_sat = ION =
W
2L

· µn · Cox · (VGS − VT)
2 · (1 + λ · VDS) (3)

where λ is the channel length modulation parameter.
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The drive current at the linear region, IDS_lin, can be given as

IDS_lin =
W
L

· µn · Cox · (VGS − VT − VDS/2) · VDS (4)

The transconductance Gm [33] is a derivative from IDS_lin by VGS as VDS fixed.

Gm =
∂IDS
∂VGS

∣∣∣∣VDS f ixed =
W
L

· µn · Cox · VDS (5)

The subthreshold swing SS [34] coming from Equation (2) is

SS =

(
d log(IDS)

dVGS

)−1

= 2.3 · kT
q

·
(

1 +
Cd + Cit

Cox

)
(6)

If the short-channel effect is considered, the drain-induced barrier lowering (DIBL)
value is a good index by which to denote this phenomenon.

DIBL =
VT_lin − VT_sat

VDD − 0.05
(7)

where VT_lin is the VT value at the linear region and VT_sat is the VT value at the satura-
tion region.

3. Results and Discussion

The measured channel-width of the devices, at a fixed channel-length L = 0.07 µm,
were 1.5, 1, 0.3, and 0.1 µm under different nitridation treatments. The other device,
W/L = 1.5/0.09 (µm/µm), was treated as a reference. The measured performance was classi-
fied into three sub-sections to reveal the channel-width effect related to nitridation treatment.

3.1. ION and IOFF Parameters

The drive current, ION, strongly influences transistor speed, especially in high-performance
computing ICs. After the electrical measurement, the electrical characteristics for four tested
nMOSFETs, under three types of DPN treatments are shown in Figure 2 at VGS = 0.5 V,
which is greater than VT value, lessening the channel-length modulation effect. The
comparison between ION at VDS = 0.8 V and VGS = 0.5 V is shown in Table 3. With regard
to ION values, the DPN-I process seems to provide a better contribution, especially as
the channel width is narrowed down, except in the wide channel-width device. The
reason for the higher drive current in the wide-channel-width device, under the three
nitridation treatments, could be that the deposition of high-k gate dielectric must remove
the dummy gate first; in this example, the gate electrode exhibits a shallow trench. The
dense concentration of nitrogen free radicals has a greater chance of fixing the traps of the
gate dielectric, but the probability of forming silicon nitride or oxy-nitride on the channel
surface is raised only a little. Therefore, the drive current in this tested device as a whole is
increased. However, as the channel width is decreased, the uniformity of implantation and
repair is also reduced. The drive current maintaining the integrity of the channel surface is
also lowered. As the annealing temperature at DPN-I and -III is the same, the drive current
with the lower nitrogen concentration is better than that with the heavier. DPN-II treatment
has the highest thermal budget, easily generating the nitrogen compounds degrading
the channel surface roughness. Hence, the performance of drive current in these three
treatments is not the best.
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Table 3. ION (µA) measured at VDS = 0.8 V and VGS = 0.5 V with three DPN treatments.

Tested Device
W/L (µm/µm) DPN-I DPN-II DPN-III

1.5/0.07 77.5 75.4 81.6
1/0.07 61.5 52.2 38.4

0.3/0.07 25.7 17.9 17.6
0.1/0.07 11.7 8.37 7.17
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Figure 2. Electrical performance of ID–VD curves for four tested nMOSFETs (a) with DPN-I treatment,
(b) with DPN-II treatment, and (c) with DPN-III treatment.

The biggest influence on the IOFF values, came from front-end device leakage, includ-
ing gate leakage, S/D junction leakage, and channel punch-through effect if the channel
length is small enough. In Figure 3, the IOFF curves with three treatments are shown
at VG = VB = VS = 0 V. In terms of the measured characteristics, the characteristics of the
W/L = 1.5/0.07 (µm/µm) device with the three, which we analyzed the branches of IG, IS,
and IB current flows in detail and the IG value contributing to the leakage weight, is indeed
larger, compared with the IB value. Table 4 is an example of IOFF values as VDS = 0.8 V and
VGS = 0 V under three DPN treatments. The IS ratio usually cannot afford to be ignored
due to the channel punch-through effect. If the channel width is shortened, all the IS values
are also reduced.
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Figure 3. Electrical characteristics of ID–VD curves exposing OFF-state current (a) with DPN-I
treatment, (b) with DPN-II treatment, and (c) with DPN-III treatment.

Table 4. IOFF (pA) measured at VDS = 0.8 V and VGS = 0 V with three DPN treatments.

Tested Device
W/L (µm/µm) DPN-I DPN-II DPN-III

1.5/0.07 602 721 311
1/0.07 67.7 103 98.6

0.3/0.07 123 119 80.8
0.1/0.07 18 236 45.1

3.2. VT and Gm Performance

The threshold voltage VT is a good index for the illustration of the controllability of
the gate electrode in MOSFET. Based on the measured data, as shown in Figure 4, the VT
values under VD biases with DPN-I treatment showed the better performance, indirectly
illustrating the higher drive current with this treatment in Figure 2. As the channel width
was shortened, most of the VT values of the tested devices went down, which means the
smaller channel width, as channel length is fixed and is easily turned on. The nitrogen
concentrations under DPN-I and II treatment were the same, as were VT distributions
at the larger channel widths, but not at the shorter channel widths. At higher nitrogen
concentration during treatment, the variation in VT distribution were apparent. The higher
annealing temperature seemed to increase the VT values, especially for the wide channel-
width device. A possible reason is that the larger gate area endures more channel interface
degradation due to a thermal budget that is beneficial to the movement of nitrogen free
radicals. These free radicals probably form nitrogen compounds, damaging the integrity of
the channel interface. Additionally, the VT value was strongly related to the bulk traps and
interface defects [17]. For the smaller device areas, the contribution of bulk traps to the VT
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value was distinctly reduced. Thus, the W/L = 0.1/0.07 (µm/µm) device always has a lower
VT distribution. In Figure 4d, the roll-off effect of the channel-width devices at VD = 0.05 V
and L = 0.07 µm can be observed and is consistent with the published literature [35,36] due
to the edge-gate-oxide thinning at the corner of the AA zone. The results with DPN-I show
a smoother distribution. The VT values with the three treatments and at VD = 0.05 V are
shown at Table 5. It seems that the heavier N2 concentration contributes the higher VT than
the lower.
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Figure 4. VT variables under different VD operations (a) with DPN-I treatment, (b) with DPN-
II treatment, (c) with DPN-III treatment and (d) with channel-width effect at VD = 0.05 V and
L = 0.07 µm.

Table 5. VT (V) measured at VDS = 0.05 V and VS = VB = 0 V with three DPN treatments.

Tested Device
W/L (µm/µm) DPN-I DPN-II DPN-III

1.5/0.07 0.380 0.425 0.455
1/0.07 0.386 0.410 0.410

0.3/0.07 0.351 0.392 0.387
0.1/0.07 0.333 0.350 0.352
1.5/0.09 0.368 0.362 0.396

The transconductance, Gm, can be represented as the change in the drain current
divided by the small change in the gate/source voltage with a constant drain/source
voltage. In the literature [33], typical values of Gm for a small-signal field-effect transis-
tor with a submicron process area were less than 30 millisiemens (mS). However, this
variable is also influenced by the ratio of W/L, channel mobility, and gate capacitance.
Based on the measured results, as shown in Figure 5, the trends of Gm vs. VG under
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three DPN treatments were predictable. If the maximum Gm_max is extracted to do the
comparison, all of the Gm_max values are less than 1 mS. If the measured Gm_max is nor-
malized, based on a ratio of W/L = 1/0.07 (µm/µm), the contribution of the W/L ratio
can roughly be ignored and the relationship between Gm_max and channel mobility plus
gate capacitance can be understood, as shown at Table 6. The best Gm_max after normal-
ization was located at W/L = 0.1/0.07 (µm/µm) with DPN-III. The worst belonged to
the W/L = 1.5/0.07 (µm/µm) device with DPN-I. As the channel-width is reduced, the
transconductance capability is increased in principle no matter what the treatment is. Nev-
ertheless, the transconductance performance is not simply related to one or two variables.
Because of entering nano-node manufacturing world, a slight variation of photolithogra-
phy and etching technologies affects the accuracy of channel length and width. Therefore,
the normalization applied to erase the effects of the variation in contribution from the
preceding technologies is feasible but does not fully exclude a contribution to the Gm effect.
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Table 6. Gm_max (µS) measured at VDS = 0.05 V and VS = VB = 0 V with three DPN treatments
with normalization.

Tested Device
W/L (µm/µm) DPN-I DPN-II DPN-III DPN-I

Normalization
DPN-II

Normalization
DPN-III

Normalization

1.5/0.07 190 274 267 127 183 178
1/0.07 149 175 179 149 175 179

0.3/0.07 52.3 53.1 59.2 174 177 197
0.1/0.07 22.0 20.8 23.2 220 208 232
1.5/0.09 204 235 123 175 202 105
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3.3. SS and DIBL Considerations

A smaller subthreshold swing indicates better channel control promoting ION/IOFF
ratio, which usually means less leakage, and less power consumption. Furthermore, the
subthreshold slope is a feature of a MOSFET’s current–voltage characteristics, as shown
in Figure 6. In the subthreshold region, the drain current behavior controlled by the gate
electrode is analogous to the exponentially decreasing current of a forward biased diode.
Thus, a plot of drain current versus gate voltage at fixed drain, source, and bulk voltages
will represent nearly a log linear action in this MOSFET operating regime. As described by
Equation (6), the ideal minimum SS value is about 60 mV/decade. Thus, using a FinFET
device in manufacturing is a feasible choice to achieve the smaller SS values, around
70 mV/decade, quoting from the Reference [9], with high-k gate dielectric. However, if
the surface roughness was not well formed, the SS values were still somewhat enlarged
with a SiO2/SiON gate dielectric, as described in the Reference [6]. The final consequences
of SS values with different tested devices are exhibited in Table 7. The SS value is also a
good index for explaining the degree of interfacial defects. A lower SS value means better
interface integrity. Most of the SS values in the DPN-I treatment showed a larger SS value
as the tested device is fixed and these values in DPN-I are greater than those in other two.
In the overall results, the SS value of DPN-III at W/L = 1.5/0.07 (µm/µm) was the smallest.
The hypothesis is that the higher nitrogen concentration provides more repair capability in
bulk traps of high-k gate dielectric and relatively increases the gate capacitance [17]. This
can be inferred from the ION current, as shown in Table 3.
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Table 7. SS (mV/decade) derived from ID–VG curves at VDS = 0.05 V and VS = VB = 0 V with three
DPN treatments.

Tested Device
W/L (µm/µm) DPN-I DPN-II DPN-III

1.5/0.07 85.4 81.5 74.5
1/0.07 84.8 74.9 81.8

0.3/0.07 83.9 78.9 82
0.1/0.07 83 82.4 79.7
1.5/0.09 84.9 83.5 80.6

For the DIBL effect, the desired value is as small as possible. As claimed by the
published literature [37], a DIBL value close to 30 mV/V is more desirable, but a value of
less than 100 mV/V still acceptable in logic circuit design. In terms of the calculated data,
the higher DIBL values belong to the larger channel width (W = 1.5 µm) with DPN-II and
DPN–III. The possible reason for this is that the higher thermal budget, or higher nitrogen
concentration, degrades the surface interface integrity and partially enlarges the VT value
at lower VD bias, as shown at Table 8. Because the channel length L is ranged at the nano
scale, the DIBL effect is, of course, a bit serious to measure.

Table 8. DIBL (mV/V) exposing the VT difference at VDS = 0.05 V and VDD with three DPN treatments.

Tested Device
W/L (µm/µm) DPN-I DPN-II DPN-III

1.5/0.07 74.1 92.1 94.4
1/0.07 79.7 75.5 76.1

0.3/0.07 67.5 73.2 71.2
0.1/0.07 87.3 70.0 49.6

In circuit design, pursuing HPC ICs is a target for increasing execution speed and
reducing power consumption. However, if the designers need the smaller drive current to
retard the speed of circuit module, using the layout technology with narrow channel-width
devices is a helpful approach. Hence, revealing the electrical characteristics of nano-node
channel-width devices is necessary, especially for high-k/metal gate dielectric with ni-
trogen treatments. In light of these electrical analyses, electrical performance is strongly
related to the geometric size of the gate terminal, allowing doping uniformity and repair
performance in high-k dielectric, and to the thermal budget and the nitrogen concentration
in the treatment. There is a minor contribution from the uniform controllability of the
photolithography and etching technology when forming the desired W/L sizes. As a
result, the trend of ION values in Table 3 does not fully follow the ratio of W/L due to
the variation of the VT factor. The VT extraction with constant-current method shows the
100-nA coefficient, referred to as C. Hu’s recommendation [30]. In the view of commercial
companies, this coefficient for nMOSFET or p-channel MOSFET is little tuned to fit the
consideration of standby current in ICs. However, following the specially defined coeffi-
cient, the VT difference after data extraction between both transistors is less than 25 mV.
For the extremely small VT value, this difference may be important, but for most devices,
this difference can be ignored.

According to the electrical performance of the channel-width devices with DPN
treatments, on the whole, DPN-I treatment, providing the smallest thermal budget, seems
better than the others.

4. Conclusions

Most of the electrical variables for channel-width nMOSFETs at a fixed channel length
reveal the electrical performance under different DPN treatments. Besides the top-view con-
tour of gate size possibly influencing the uniformity of nitrogen doping concentration, and
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indirectly affecting the VT and SS value, the lower thermal budget in nitridation treatment
seems to better benefit the major electrical performance. The heavier nitrogen concentration
probably causes the worse integrity of channel surface interface, and indirectly increases the
VT values as well as reduces the drive current. In the end, the roll-off effect of channel-width
devices is also evident, to a small extent, due to oxide thinning at the corner of the AA
zone. In the future work, the reliability of channel-width effect devices under nitridation
treatments will be an important area of investigation for solid-device applications.
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