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Abstract: In this study, the grain growth behaviour of ZnO-V2O5-based ceramics with 0.25–0.75 mol%
additions of PrMnO3 was systematically investigated during sintering from 850 ◦C to 925 ◦C. with
the aim to control the ZnO grain size for their application as varistors. It was found that with the
increased addition of PrMnO3, in addition to the decrease in the average grain size, the grain size
distribution also narrowed and eventually changed from a bimodal to unimodal distribution after
a 0.75 mol% PrMnO3 addition. The grain growth control was achieved by a pinning effect of the
secondary ZnCr2O4 and PrVO4 phases at the ZnO grain boundaries. The apparent activation energy
of the ZnO grain growth in these ceramics was found to increase with increased additions of PrVO4,
hence the observed reduction in the ZnO grain sizes.

Keywords: abnormal grain growth; ZnO; V2O5; varistor

1. Introduction

ZnO-Bi2O3 ceramics are an established class of ZnO-based varistors. It is well known
that the nonlinear current–voltage (I–V) characteristics of these ZnO-Bi2O3 varistors are
directly dependent on their microstructures, mainly the average grain size and size distribu-
tion of ZnO [1]. Typically, a large average grain size of >30 µm is required for low-voltage
applications, and a small average grain size of <10 µm is needed for high-voltage applica-
tions [2]. Additionally, a narrow grain size distribution is also critical for achieving stability
of the electrical field strength of these materials [3].

It has been found that ZnO-V2O5 ceramics also exhibit a nonlinear I–V behaviour
comparable to ZnO-Bi2O3 ceramics [4–6] and, thus, have the potential to be a new class of
varistors [7]. One of the significant advantages of ZnO-V2O5 ceramics is that they can be
sintered at a relatively low temperature of ~900 ◦C [8–11]. This outstanding feature allows
these ceramics to be co-fired with Ag (m.p. 961 ◦C). This enables Ag, instead of expensive
Pd or Pt, to be used as inner electrodes for applications in multilayer chip components [12].
Moreover, V2O5 is also a better sintering aid, compared with Bi2O3 for ZnO, enabling
ZnO-V2O5 based ceramics to be densified to the same density at a lower temperature than
ZnO-Bi2O3 based ceramics [13–16].

However, ZnO-V2O5 based ceramics suffer from a distinct disadvantage in that they
have been shown to exhibit abnormal ZnO grain growth [17]. This is commonly attributed
to the high reactivity of the V2O5-rich liquid phase formed during sintering. This phase
assists in the diffusion of Zn2+ and thus promotes ZnO grain growth, which results in the
formation of abnormally grown grains (AGG) of ZnO.
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One approach to curb the formation of AGG in ZnO-V2O5 ceramics is to induce the
formation of a secondary phase to hinder ZnO grain growth by the addition of a third oxide
to the system [18,19]. The two commonly used additives are Cr2O3 and Sb2O3, as Cr2O3 can
react with ZnO to form a ZnCr2O4 spinel phase, while Sb2O3 and ZnO form spinel phases
of ZnSb2O6 and Zn2.33Sb0.67O4 [20–22]. However, these two additives have their own
specific limitations. With Cr2O3, an addition greater than 1 mol% is required to effectively
counter the AGG and refine the ZnO grain size in ZnO-V2O5 ceramics. However, at this
required addition level, Cr2O3 has also been found to segregate at grain-boundary regions,
leading to the deterioration of I–V behaviour due to high leakage current. With Sb2O3, the
addition of up to 2 mol% is needed to control the grain growth of ZnO-V2O5; however, the
addition of Sb2O3 increases the required sintering temperature for the system. At an Sb2O3
content greater than 0.5 mol%, the sintering temperature could increase to 1200 ◦C [23],
nullifying the advantage of having the ZnO-V2O5-based system in the first place.

This study investigated the effect of increased additions of PrMnO3 on the grain
growth of ZnO-V2O5 ceramics, with the aim to control the average grain size and size
distribution of ZnO to improve their electrical properties as practical varistors.

2. Experimental
2.1. Sample Preparation

All reagents used in this research were of analytical grade (>99.5% purity) and were
supplied by SINOPHARM. PrMnO3 powder was prepared in-house by mixing Pr6O11
and MnCO3 at a molar ratio of 1:6 and allowing the mixture to react at 1000 ◦C for 5 h
in air. The formation of the PrMnO3 phase was confirmed by X-ray powder diffraction
(XRD) analysis.

Table 1 summarises the nominal compositions of constituent powders used to prepare
four ZnO-V2O5 ceramic samples and their designated sample names. The PrMnO3 powder
was introduced with the aim to regulate the grain growth in these ceramics.

Table 1. Basic compositions of the ZnO ceramics studied in this study.

Sample Name Nominal Powder Compositions

ZVC ZnO + V2O5 (1 mol%) + Cr2O3 (0.35 mol%)
ZVCP25 ZnO + V2O5 (1 mol%) + Cr2O3 (0.35 mol%) + PrMnO3 (0.25 mol%)
ZVCP50 ZnO + V2O5 (1 mol%) + Cr2O3 (0.35 mol%) + PrMnO3 (0.50 mol%)
ZVCP75 ZnO + V2O5 (1 mol%) + Cr2O3 (0.35 mol%) + PrMnO3 (0.75 mol%)

For each nominal composition, the powder mixture was homogenised by ball milling
in absolute alcohol using zirconia balls in a polypropylene container on a planetary mill
for 24 h. After milling, the powder mixture was dried at 80 ◦C for 24 h. The dried powder
mixture was then mixed with a 5 wt% polyvinyl alcohol (PVA) binder and pressed into
pellets of Φ12 mm × 1 mm under a uniaxial pressure of 130 MPa. The green pellets were
first fired at 500 ◦C for 1 h to remove the binder before being subjected to different sintering
temperature/time regimes in an alumina crucible at a heating rate of 4 ◦C/min. In this
study, seven sintered ceramic discs for each nominal composition were produced at 850 ◦C,
900 ◦C, and 925 ◦C for 4 h and at 875 ◦C for 2, 4, 6, and 8 h. After sintering, the furnace was
powered off to allow the sintered discs to cool down naturally within the furnace.

2.2. Sample Characterisation

The phase compositions of the sintered and quenched samples were analysed by
XRD patterns obtained using a diffractometer (PANalytical X’pert Powder) with Cu Kα1
radiation (λ = 0.1541 nm).

The microstructure of the sintered samples was observed and analysed by scanning
electron microscopy (SEM) using a ZEISS Supra 55 electron microscope. A polished cross-
sectional area along the thickness of the sintered disc was prepared and chemically etched
in a dilute HCl solution to reveal the grain and phase structures for SEM observation.



Micromachines 2022, 13, 214 3 of 13

The average ZnO grain size and grain size distribution were analysed using a repre-
sentative SEM image of each sintered sample.

To determine the average grain size, the method reported by Mendelson [24] was
used. Basically, the average grain-boundary intercept length (L) was first determined by
measuring along 10 randomly drawn lines across the SEM image. The average grain size G
is then calculated by Equation (1) as follows:

G = 1.56
_
L, (1)

To determine the ZnO grain size distribution, the dimensions around 500–800 ZnO
grains of each sample were measured from its SEM images using a dedicated image analysis
software. The surface area (S) of each grain was then estimated, and the equivalent diameter
(d) of each grain was obtained by transforming the surface area of the irregularly shaped
grain into a circle of the same area using the method reported by Daneu [25].

The grain growth behaviour was analysed using a phenomenological kinetic grain
growth equation established by Nicholson et al., which has been widely used for ZnO-based
ceramic systems. The equation is expressed as follows:

Gn − Gn
0 = K0t exp

(
−Q
RT

)
, (2)

where G is the average grain size of the ZnO ceramic at time t, G0 is the initial grain size
of the ZnO powder, n is the kinetic grain growth exponent, Q is the apparent activation
energy, R is the universal gas constant, T is the absolute temperature, and K0 is a T-
independent constant. In the case where G0 is significantly smaller than G, then Equation (2)
is simplified to

Gn = K0t exp
(
−Q
RT

)
, (3)

Equation (3) was used throughout this study to analyse the sintering behaviour of the
ZnO-V2O5 samples studied in this study.

2.3. Sample I–V Characteristics

The DC current-voltage (I–V) behaviour of the sintered samples was measured using
a withstand voltage tester (MS2671A, Xi’an Instruments Inc., Xi’an, China). The sintered
discs (~Φ8 mm × 1 mm thickness) were painted with a silver paste on both surfaces to
enable the measurements. The I–V curve was determined by measuring the current at a
stepwise-increased applied voltage until I reached 10 mA. The field strength (E) is defined
as the applied voltage per sample thickness, and the current density (J) is the measured
current per sample area. The switching field strength E1mA/cm

2 is the field strength at
J = 1 mA·cm−2. The nonlinear coefficient (α) is calculated by Equation (4) as

α = 1/
(

log E(10mA/cm2) − log E(1mA/cm2)

)
(4)

where E10mA·cm−2 and E1mA·cm−2 are the field strengths at 10 Ma·cm−2 and 1 mA·cm−2,
respectively. The higher the value of α is, the better it is for a varistor.

3. Results and Discussion
3.1. Phase Compositions and Distributions in Sintered Samples

Figure 1 shows the XRD patterns of the four ZVCP samples sintered at 875 ◦C for 4 h.
For the ZVC sample, in addition to the main ZnO phase, several minor phases were also
detected, including Zn4V2O9, α-Zn3(VO4)2, and ZnCr2O4. These minor phases have been
commonly observed and reported in sintered ZnO-V2O5 systems. With the addition of
PrMnO3, a new minor phase of PrVO4 was also observed in the ZVCP25, ZVCP50, and
ZVCP75 samples. Consequently, this experimental result stated that the generation of
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PrVO4 could be attributed to the reaction between PrMnO3 and the V-contained phase.
According to previous research studies, the formation of PrVO4 was reported as a product
of phase transition between PrMnO3 and α-Zn3(VO4)2 with the following reaction:

α-Zn3(VO4)2 + 2PrMnO3 → 2PrVO4 + Mn2O3 + 3ZnO, (5)
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Figure 1. XRD patterns of the ZVC, ZVCP25, ZVCP50, and ZVCP75 samples sintered at 875 ◦C
for 4 h.

It should be noted that the mentioned phase transition did not produce only the PrVO4
phase. Additionally, the formation of the Mn2O3 phase was obtained in the same reaction.
However, few lines of evidence indicating Mn2O3 in this phase observation can be found.
As we know, Mn2O3 was helpful to generate the non-Ohm electrical property in ZnO
varistor ceramic. Hence, the application of Mn2O3 was widely investigated by researchers.
Related experimental results supported that Mn ion could easily be dissolved in ZnO grain.
Thus, once the solid solution of ZnO-Mn2O3 formed, the diffraction peaks assigned to
Mn2O3 vanished.

Figure 2 shows a typical microstructure of a sintered ZVCP50 sample. As expected,
the dominant morphology included grains of the ZnO phase, and the focus here was on the
appearance and distribution of the minor phases. As seen in the micrograph, in addition
to ZnCr2O4 (ZC) clusters (circled in yellow-dashed lines), PrVO4 (PV) grains (circled in
white-dashed lines) were clearly seen to also distribute at the junctions of ZnO grains. In
some cases, ZnO grains were observed to grow around either ZnCr2O4 clusters or PrVO4
grains. Figure 3 shows the TEM images, revealed the microstructural differences between
PrVO4 and ZnCr2O4 phases. The electron diffraction pattern in Figure 3 further confirmed
the existence of PrVO4 and ZnCr2O4. The ZnCr2O4 grains are very small—the grain size is
below 0.2 µm—but the PrVO4 grains have a relatively larger size than ZnCr2O4, ranging
from 0.5 µm to 4 µm. Most grains of ZnCr2O4 and PrVO4 were found located at the ZnO
grain boundaries, and ZnCr2O4 grains tend to aggregate to form a heap of ~1 µm in size.
This observation suggests that these secondary minor phases could exert a ‘pinning’ effect,
which hindered the migration of ZnO grain boundaries and limited its grain growth.
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Figure 3. TEM micrographs and SAED patterns from secondary particle grains: (a) bright-field
image of ZnCr2O4 grains from a sample with the composition of ZVCP75 sintered at 875 ◦C for
4 h, (b) bright-field image of PrVO4 grains from a sample with the composition of ZVCP75 sintered
at 875 ◦C for 4 h, (c) electron diffraction pattern from the [001] zone of ZnCr2O4 grain in (a), and
(d) electron diffraction pattern from the [010] zone of PrVO4 grain in (b).



Micromachines 2022, 13, 214 6 of 13

3.2. Average ZnO Grain Sizes in Sintered Samples

For all four sintered samples, the average grain size of each sample under all sintering
conditions was determined following the procedure described in Section 2.2, and the results
are summarised in Table 2.

Table 2. Average grain sizes estimated from SEM analysis of ZVC and ZVCP samples sintered at
different conditions.

Sample
Average Grain Size G (µm)

850 ◦C
4 h

900 ◦C
4 h

925 ◦C
4 h

875 ◦C
2 h

875 ◦C
4 h

875 ◦C
6 h

875 ◦C
8 h

ZVC 6.55 9.42 10.55 4.15 7.19 8.04 8.68
ZVCP25 4.95 7.14 9.65 3.18 5.94 6.62 6.80
ZVCP50 4.05 6.81 7.69 2.93 5.81 6.00 6.32
ZVCP75 3.02 5.04 6.76 2.47 5.80 4.95 5.14

3.3. Kinetic Grain Growth Parameters

To reveal the effect of PrMnO3 addition on the sintering behaviour of the ZnO-V2O5
ceramics, the isothermal grain growth behaviour at 875 ◦C was first analysed using a
rearranged Equation (3), as shown below:

log G =
1
n

log t +
1
n

[
log K0 − 0.434

(
Q
RT

)]
(6)

Figure 4 illustrates log G vs. log t curves, which show the isothermal grain growth
behaviour of the four samples sintered at 875 ◦C for 2–8 h. A linear fit of the curves enabled
the determination of the kinetic grain growth exponent n from the slope of the linear fit
for each sample. The n values so determined are also shown in Figure 4. Notably, with the
increased addition of PrMnO3, in addition to the decrease in the average grain size G, the
grain growth rate also decreased, as indicated by the increased n values.
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To determine the apparent activation energy Q associated with the grain growth,
Equation (3) is rearranged as

log
(

Gn

t

)
= log K0 −

0.434Q
R

(
1
T

)
(7)

Q can then be calculated from the slope of the Arrhenius plot of log(Gn/t) vs. (1/T).
Figure 5 shows the Arrhenius plots of the four samples from the G values obtained at
different sintering temperatures shown in Table 2. The apparent activation energy Q values
determined from Figure 5 are summarised in Table 3, together with the n values determined
from Figure 4.
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Table 3. Summary of ZnO grain growth exponents and apparent activation energy for grain growth.

Ref Material System
(Nominal Composition, mol%)

Sintering Temperature
T (◦C)

Growth Exponent
n

Apparent Activation
Energy Q (kJ/mol)

[22] Pure ZnO 900–1400 3.0 224 ± 16
[26] ZnO-V2O5 (0.5–2.0) 900–1200 1.5–1.8 ~88
[2] ZnO-V2O5 (0.5–2.0) 900 1.2–1.6 –
[15] ZnO-V2O5 (1.0) 750–1200 1.4 76 ± 7
[14] ZnO-V2O5 (0.5) − Sb2O3 (0.5) 900–1050 4.0 365

This study

ZnO + V2O5 (1.0) + Cr2O3 (0.35) 875 2.9 202 ± 29
ZnO + V2O5 (1.0) + Cr2O3 (0.35) + PrMnO3 (0.25) 875 3.2 311 ± 32
ZnO + V2O5 (1.0) + Cr2O3 (0.35) + PrMnO3 (0.50) 875 3.6 342 ± 47
ZnO + V2O5 (1.0) + Cr2O3 (0.35) + PrMnO3 (0.75) 875 6.1 697 ± 66

As seen in Table 3, in both this study and other published studies, the basic ZnO-V2O5
binary systems had a kinetic grain growth exponent n value spanning 1.5–1.8. This n
value was lower than the n = 3.0 observed for pure ZnO, indicating that the addition of
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V2O5 encouraged the grain growth of ZnO. This was attributed to the high reactivity of the
V2O5-rich liquid phase during sintering, promoting the formation of abnormally grown
ZnO grains.

The addition of a third component—e.g., the 0.35 mol% of Cr2O3 in this study or
0.5 mol% Sb2O3 as reported elsewhere—has been shown to increase the n value to 2.9 and
4.0, respectively. This means that the addition of a third component could hinder ZnO
grain growth in basic ZnO-V2O5 binary systems. In both cases, this was attributed to the
formation of spinel ZnCr2O4 or a ZnSb2O4 secondary phase, which exerts a pinning effect
on ZnO grain boundaries and thus hinders ZnO grain growth.

It was clear that the addition of PrMnO3 to the ZnO + V2O5 (1 mol%) + Cr2O3
(0.35 mol%) ceramics resulted in a further increase in the n value, which increased to 6.1
after a nominal addition of 0.75 mol% of PrMnO3 for ZVCP75, demonstrating the high
effectiveness of PrMnO3 in suppressing ZnO grain growth. As seen in the XRD and SEM
analyses, the addition of PrMnO3 resulted in the formation of an additional spinel PrVO4
phase, which was also found to be distributed at the grain boundaries of ZnO similarly
to ZnCr2O4 in the sintered ceramics. A similar pinning effect was thus believed to be the
main reason for the hindered ZnO grain growth by the addition of PrMnO3.

As expected, it is clearly seen in Table 3 that the apparent activation energy values for
the grain growth followed an inverse behaviour, compared with the n values. Generally,
the higher the activation energy, the higher the n values, the slower the grain growth rate,
and the smaller the average ZnO grain sizes.

3.4. Grain Size Distribution in Sintered Samples

Figure 6 shows SEM images and grain size distribution histograms of the four samples
sintered at 875 ◦C for 4 h. It is clear from the SEM images that with increased additions of
PrMnO3, in addition to the decrease in the average grain size of ZnO, the size distribution
also narrowed significantly.

It can be seen that the ZVC sample without the addition of PrMnO3 exhibited a
broad and bimodal grain size distribution. In the context of this research, larger grains are
considered to be the AGG, and the relatively smaller grains are considered as the normally
grown grains (NGG). The area fractions of AGG and NGG for each sample are also included
in the size distribution histograms in the figure. The addition of PrMnO3 resulted in the
reduction and narrowing of the grain size range, in addition to diminishing the bimodal
distribution. For ZVCP75, the grain size distribution became unimodal.

Figure 7 shows the average grain sizes of the AGG and NGG vs. the nominal addition
of PrMnO3. This revealed the impact of PrMnO3 addition. Notably, the average grain
size of NGG did not change much; however, the average grain size of the AGG decreased
dramatically. This indicated the effectiveness of PrMnO3 addition in suppressing the
coarsening of ZnO grains in this system. The number fractions of AGG ( fAGG) and NGG
( fNGG) were also determined for the sintered samples and are provided in the histograms.

3.5. Electrical Behaviour of Sintered Samples

Figure 8 shows the switching field strength E1mA·cm−2 of the four samples sintered
at 875 ◦C for 4 h. For each sample, 10 specimens were prepared, their I–V curves were
measured, and their E1mA·cm−2 values were determined. Figure 8 shows all measured
E1mA·cm−2 data for the four samples. As seen, the basic ZVC sample displayed a very
broad range of E1mA·cm−2 . Clearly, a 0.25 mol% nominal addition of PrMnO3 resulted
in a remarkable narrowing of the E1mA·cm−2 range for the ZVCP25 sample. Further
increasing the PrMnO3 addition to 0.75 mol% produced a continuous narrowing of the
E1mA·cm−2 range.
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and its number fraction.
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This significant stabilisation of the switching field strength was attributed to the
uniformisation of the ZnO grain size as the result of PrMnO3 addition. As seen in Figure 6,
a 0.75 mol% addition of PrMnO3 in ZVC effectively eliminated the formation of abnormally
grown ZnO grains. The resulting ZVCP75 sample was shown to have a markedly improved
stability in its switching field strength. This was also consistent with the results reported
by Hng et al. [12], which showed that the presence of just a few abnormally grown ZnO
grains could have a pronounced destabilisation effect on the switching field strength of
ZnO-V2O5 varistors.

Furthermore, with a 0.75 mol% addition of PrMnO3, there was also a marked increase
in the E1mA·cm−2 value for the ZVCP75 sample. This increase in switch field strength was
mostly due to the refined ZnO grain size.

Table 4 summarises the relative density and number fraction of AGG and the average
grain size of the sintered samples, together with the nonlinear coefficient and the average
and range of the switching field strength of these samples.

Table 4. Relative density, number fraction of AGG and average grain size, and electrical properties of
the sintered samples at 875 ◦C for 4 h.

Sample Relative Density
(%)

fAGG
(%)

Average
Grain Size

(µm)
Nonlinear Coefficient α

E1mA·cm−2 (V/cm)

Range Average

ZVC 95.1 8.83 7.19 7.2 2924–4512 3649
ZVCP25 94.8 6.53 5.94 7.7 3523–3846 3632
ZVCP50 95.1 5.66 5.81 7.8 3629–3807 3726
ZVCP75 95.7 0 5.80 8.9 4594–4686 4620

It was noted that all the samples possessed a high sintering density at close to 95% of
the theoretical density of ZnO. While the addition of PrMnO3 had little effect on the sinter-
ing density, it effectively reduced and eliminated the fraction of AGG and progressively
refined the grain sizes of the resulting ceramics.

The electrical properties are attributed to the developed microstructures. The nonlinear
coefficient also increased marginally from 7.2 to 8.9 from ZVC to ZVCP75, respectively, as
seen in Table 4.

It was believed that a better sintering ability of ZnO ceramic can be achieved by
adding V2O5 addition. During the sintering process, the generated α-Zn3(VO4)2 existed
in the form of a liquid phase. Thus, the sintering mechanism was governed by solution–
precipitation process. However, since the absolute homogeneous distribution of V2O5 in
raw material was hardly achieved, regions that were rich in V2O5 produced more content
of V-enriching liquid. In this case, the abnormal grain growth of ZnO begins in this
liquid-phase-rich area, preferentially. To fix this problem, the traditional method needs the
introduction of a secondary particle phase to hinder the migration of ZnO grain boundaries,
such as the ZnCr2O4 spinel phase. However, a single ZnCr2O4 phase was insufficient to
suppress all abnormally grown ZnO grains, as the distribution of the V-enriching liquid
phase was still heterogeneous. Comparably, the PrVO4 particle phase plays a double
role in the whole sintering process. Firstly, the PrVO4 particle hindered the migration
of ZnO grain boundaries, similarly to ZnCr2O4. Additionally, the PrVO4 particle phase
actually was the product of the reaction between PrMnO3 and α-Zn3(VO4)2. In a way,
the generation of PrVO4 means the rearrangement of α-Zn3(VO4)2 in the ZnO matrix,
which benefits the microstructural homogeneity. Moreover, the Mn2O3 generated by the
mentioned reaction could optimise electrical properties. This was the reason why nonlinear
coefficients were slightly enhanced by adding PrMnO3, even though α-Zn3(VO4)2 was
sequentially consumed by added PrMnO3. In summary, we recognised that PrMnO3
addition can be treated as a potential additive in ZnO-V2O5-based varistor ceramic for its
good performance on the repairmen of both grain growth control and electrical properties.
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4. Conclusions

In this study, the effect of PrMnO3 addition (0.25 to 0.75 mol%) on the grain growth
behaviour of ZnO-V2O5 (1 mol%)-Cr2O3 (0.35 mol%) ceramics was systematically investi-
gated during sintering from 850 ◦C to 925 ◦C, with the aim to refine the ZnO grain structure.
The main findings were as follows:

(1) The addition of PrMnO3 uniformised and refined the ZnO grains in the resulting
ceramics. At a 0.75 mol% PrMnO3 addition, the bimodal grain size distribution was
completely eliminated, and the average ZnO grain size was reduced by more than
45%, compared with the sample without PrMnO3 addition.

(2) The addition of PrMnO3 resulted in remarkably improved stability of the switching
field strength, narrowing its range of variation from 1580 V/cm (without PrMnO3
addition) to only 91 V/cm (with 0.75 mol% PrMnO3 addition). The homogenisation
and reduction in the ZnO grain sizes were responsible for the observed stabilisation
of the switching field strength.

(3) A phenomenological analysis of the ZnO grain growth kinetics showed that the kinetic
grain growth exponent n increased from 2.9 without PrMnO3 to 6.1 after a 0.75 mol%
PrMnO3 addition, corresponding to an increase in apparent activation energy from
202 ± 29 to 697 ± 66 kJ/mol, respectively.

(4) The formation of a PrVO4 secondary phase as the result of PrMnO3 addition was
responsible for the grain growth behaviour observed. The PrVO4 phase was found
to be mostly located at the ZnO grain boundaries, thus hindering and eventually
eliminating the abnormal growth of ZnO grains.
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