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Ultra-precision machining is a multi-disciplinary research area that is an important
branch of manufacturing technology. It targets achieving ultra-precision form or surface
roughness accuracy, forming the backbone and support of today’s innovative technology
industries in aerospace, semiconductors, optics, telecommunications, energy, etc. The
increasing demand for components with ultra-precision accuracy has stimulated the de-
velopment of ultra-precision machining technology in recent decades. Accordingly, this
special issue showcases 17 research papers which focus on the frontiers of ultra-precision
machining, including ultra-precision machining processes, process simulation and mod-
elling, process optimization, the development of novel machining tools and processes, and
surface integrity characterization.

1. Process simulation and modelling: Yuan et al. [1] presented a dynamic model
of the cutting system for the characterization of surface topography variation in ultra-
precision tool servo-based diamond cutting of a microlens array considering the tool-work
vibration as an underdamped vibration. Du et al. [2] studied the ion beam sputtering
process for single crystal aluminum with different crystallographic orientations by the
molecular dynamics method, and the mechanism of morphology evolution of aluminum
were revealed. Fu et al. [3] presented a piezoelectric hysteresis modeling method based on a
generalized Bouc–Wen model, which can describe the piezoelectric hysteresis characteristics
of the three axial subsystems of the three-dimensional elliptical vibration which effectively
aided the cutting system and ensured higher modeling and fitting accuracy. Tian et al. [4]
proposed the Coupled Eulerian–Lagrangian (CEL) method to simulate the high-shear low-
pressure grinding process. Zhang et al. [5] established a two-phase flow field model based
on the RANS k-ε turbulence mode to analyze the influence of vibration on the process of
electrochemical machining, which is suitable for narrow flow field and high flow velocity.

2. Process optimization: Wang et al. [6] proposed a reasonable elementary approxi-
mation algorithm of dwell time on the basis of the theoretical requirement of a removal
function in the subaperture polishing and single-peak rotational symmetry character of its
practical distribution, which has obvious advantages for improving calculation efficiency
and flatness and is of great significance for the efficient computation of large-aperture
optical polishing. Yan et al. [7] proposed a new calculation method for the height of surface
residual materials in ultra-precision grinding of Nano-ZrO2, and established the prediction
model of the three-dimensional roughness Sa and Sq by using this calculation method.
Rashedul et al. [8] investigated the influence of different electrode materials experimentally,
namely titanium alloy (TC4), stainless steel (SS304), brass, and copper–tungsten (CuW)
alloys (W70Cu30, W80Cu20, W90Cu10), on electrodes’ electrical properties, aiming to select
an appropriate electrode in the ECDM process. Zhao et al. [9] studied the critical machining
parameters which affect the surface generation and surface quality in the machining of
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polar microstructures, so as to obtain optimized machining parameters and determine
optimized cutting strategy for polar microstructures. Huang et al. [10] studied the self-
aligning flanges based on piezoelectric actuators, and the average eccentricity value in the
experiments decreased by 74%. Qiao et al. [11] investigated the optimum vertex angle and
parameters for the preparation of atom probe tomography (APT) specimen, and the double
interdiffusion relationship of the multilayer films was successfully observed by the local
electrode APT.

3. Development of novel machining tools and processes: Fan et al. [12] developed
an electrorheological (ER) polishing tool with an annular integrated electrode, and six
influencing factors of ER polishing were analyzed experimentally. Jin et al. [13] presented a
high-accuracy and high-efficiency surface topography manufacturing method for contin-
uous phase plate, which demonstrates the potential of the atmospheric pressure plasma
jet approach for the manufacturing of complex surface topographies. Zhou et al. [14] ana-
lyzed the machined surface morphology and cutting force in different lubricant machining
environments, and the results indicated that the minimum quantity lubrication machining
oil can suppress the formation of hard particles to improve the machining quality.

4. Surface integrity characterization: Deng et al. [15] carried out a study on the repair
of fused silica damage using the magnetorheological removing method, and the repairing
rate of small-scale damage was up to 90.4%. Yang et al. [16] designed experiments to
investigate the influence of machining factors on subsurface damage, in order to reduce the
subsurface damage depth generated during the grinding process by adjusting the process
parameters. Guo et al. [17] proposed a new measurement method in order to accurately
obtain the wall thickness of thin-walled spherical shell parts.
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would also like to acknowledge all the reviewers for dedicating their time to provide careful
and timely reviews to ensure the quality of this Special Issue.
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