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Abstract: Graphene has been widely used due to its excellent electrical, mechanical and chemical
properties. Defects produced during its transfer process will seriously affect the performance of
graphene devices. In this paper, single-layer graphene was transferred onto glass and silicon dioxide
(SiO2) substrates by wet transfer technology, and the square resistances thereof were tested. Due to
the different binding forces of the transferred graphene surfaces, there may have been pollutants
present. PMMA residues, graphene laminations and other defects that occurred in the wet transfer
process were analyzed by X-ray photoelectron spectroscopy and Raman spectroscopy. These defects
influenced the square resistance of the produced graphene films, and of these defects, PMMA residue
was the most influential; square resistance increased with increasing PMMA residue.

Keywords: graphene; wet transfer technology; surface defects; electrical property; PMMA
residue; lamination

1. Introduction

Since the discovery of single-atom layers of graphene in 2004 [1,2], graphene and other
two-dimensional materials have become a research focus. It was found that graphene has
excellent electrical and mechanical properties [3–9]. Thus, graphene has been widely used
in micro/nano devices. Various graphene pressure sensors with excellent performance
have been successively proposed [10–12], as have been gas sensors based on graphene
with different structures [13–15]. The excellent electrical properties of transferred graphene
are the basis by which graphene sensors obtain good sensitivities. With the maturation
of the chemical vapor deposition (CVD) method of preparing graphene [16], the transfer
process also matured; yet there are still defects after transfer [17]. This study mainly
explores the influence of defects in the graphene transfer process on its electrical properties,
laying a foundation for obtaining graphene with even better electrical properties in the
future. Single-layer graphene has a large specific surface area and is highly sensitive to the
environment [18–21]. Therefore, the method by which graphene is transferred to a target
substrate is crucial.

The PMMA-assisted transfer method is the most popular way to transfer graphene to a
target substrate [22–24]. PMMA is spin-coated on CVD-grown graphene and cured by heat-
ing, after which the metal is etched away. The PMMA/graphene stack is transferred to the
target substrate, and then the supportive PMMA is etched away by acetone [24,25]. Some
drawbacks of this transfer process that affect the performance of the produced graphene in-
clude PMMA residues, cracks and tears [24–29]. Polymer residues are present in the transfer
process [22,25], and the oxygen-containing functional groups of PMMA form p-type doping
with graphene, reducing its electron mobility. Additionally, the adsorption or desorption of
gas molecules in the air (e.g., NH3, H2O, NO2) on the graphene surface also change the
local carrier density, resulting in step-like changes in resistance [13,30]. The sp3 content
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increases when placed in the air for a long time [31,32]. The square resistance of graphene
is proportional to the number of graphene layers; thus, the occurrence of lamination in the
transfer process multiplies the square resistance of the produced graphene [22].

In this paper, single-layer graphene is transferred to glass slides and SiO2 substrates
by the wet transfer method, and the resistance of each sample is tested by a four-probe
square resistance tester. Then, the surface roughness of the SiO2 substrate and graphene
are measured by AFM to observe impurities in the produced graphene. The surface
hydrophilicity is measured by a surface tension instrument to determine the binding force
of the surface, characterizing the graphene’s surface quality. By X-ray energy spectrum
analysis, the adsorbed elements of the representative samples on the slides and SiO2
substrates are determined. Additionally, Raman spectroscopy is used to analyze the surface
spectra of two groups of samples with different representative resistances to study the layer
distribution on the graphene surface after transfer. The experiment explores the influence of
defects produced during the wet transfer on the obtained graphene’s electrical properties,
laying a foundation for the subsequent improvement of these electrical properties.

2. Materials and Methods
Graphene Transferring Process

The graphene film used in the experiment was prepared by the CVD method and
deposited on copper. The PMMA-assisted wet transfer method was adopted. Firstly, 4 g of
PMMA powder was weighed and placed in a brown, wide-necked bottle. Then, 100 mL of
benzaldehyde solution was poured into the bottle, and the bottle was heated in a water
bath at 50 ◦C and magnetically stirred for 6 h. The PMMA was prepared by spin coating
onto the graphene surface by a homogenizer and was heated and cured at 180 ◦C for 3 min.
Next, 1 mol/L of FeCl3 solution was prepared. Due to its ultra-thin characteristic, graphene
will quickly adsorb impurities, such as molecules and particles, in an aqueous solution.
So, a dust-free cloth was used to filter the impurities on the solution surface. The residual
FeCl3 contaminants in the graphene film were neutralized by 10–20%-diluted hydrochloric
acid for 1 h and then further cleaned with deionized water. The substrate was washed with
deionized water and acetone successively, and deionized water was finally used to reduce
ion pollution. Then, the graphene/PMMA was transferred to the substrate and let stand to
naturally dry. Finally, the PMMA was removed by acetone to complete the transfer process
of graphene film. The specific steps of the operation are shown in Figure 1.
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Graphene was transferred to glass slides and SiO2 substrates. On different sub-
strates (SiO2 and glass), three groups of samples, named “No.1”, “No.2” and “No.3”,
were prepared. Using an HPS2661 four-probe resistance measuring instrument (produced
by Helpass Electronic Technologies), each sample was measured five times and its square
resistance was indicated by an error bar. The test results of the different substrates are
shown in Figure 2. It was found that the resistances between the same kind of substrate
were significantly different, and the minimum resistance values of different substrates were
several times different. As shown in Figure 1, on the slide, the minimum resistance of
graphene was 19.30 kΩ/� and the maximum resistance was 68.80 kΩ/�; on the SiO2 sub-
strate, the minimum square resistance was 5.66 kΩ/� and the maximum square resistance
was 13.07 kΩ/�. It can be concluded that the square resistance of the graphene transferred
to the SiO2 substrate was lower than that transferred to the glass substrate. In addition,
the square resistances of various samples on like substrates were different.
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The square resistance of graphene on a slide and on SiO2 is different because of the
impurities and defects produced during the transfer process, though surface roughness
may also be one of the influencing factors. In order to clarify the reasons for the differences
in square resistance, surface roughness, number of layers and impurities were analyzed by
AFM, a surface tension instrument, XPS and Raman spectrum analysis.

3. Results and Discussion
3.1. Influence of Surface Roughness on the Square Resistance of the Transferred Graphene

The surface roughness tests were conducted on the graphene on the SiO2 substrate by
AFM with an Innova-IRIS atomic force microscope (Bruker Nano Surfaces co., Ltd., Billerica,
MA, USA). Bare SiO2 was used as a blank control group in the experiment. As shown
in Figure 3, there were almost no noticeable particles on the bare SiO2 substrate. In the
No.3 sample on the SiO2 substrate particles were evenly distributed and its flatness was
average. There were some large particles in the No.2 sample on the SiO2 substrate. For the
No.1 sample, the surface was more uneven. The surface roughness was obtained with
the NanoScope analysis software. The surface roughness, expressed as Ra),of the bare
SiO2 substrate was 1.23 nm, the Ra of the No.3 sample on the SiO2 was 4.65 nm and the
Ra of the No.2 and No.1 samples on SiO2 were 6.71 nm and 7.86 nm, respectively. From
Figure 4, we can see that the surface roughness of the glass substrate was similar to that of
the SiO2 substrate. The surface roughness of the sample with the lowest square resistance
(Figure 4d) was less than the other two experimental samples. The Ra of the bare glass
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slide was 25.68 nm. The Ra of the No.1, No.2 and No.3 samples were 70.14 nm, 58.23 nm
and 30.26 nm, respectively.
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Figure 3. Surface roughness of graphene on a SiO2 substrate by AFM mapping. (a) Roughness of
bare SiO2; (b) roughness of the No.1 sample on SiO2 (13.07 kΩ/�); (c) roughness of the No.2 sample
on SiO2 (9.53 kΩ/�); (d) roughness of the No.3 sample on SiO2 (5.66 kΩ/�).
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sample on a glass slide (55.31 kΩ/�); (d) roughness of the No.3 sample on a glass slide (19.30 kΩ/�).
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It can be concluded, first, that the more severe the surface roughness, the greater the
square resistance of the transferred graphene, and, second, that surface roughness was
related to surface pollution.

3.2. Influence of Surface Impurity on the Square Resistance of the Transferred Graphene
3.2.1. Indirect Measurement by Surface Contact Angle

Graphene has an enormous specific surface area because of its atomic layer structure.
Therefore, it is easy to adsorb various impurities in the experimental process, which will
severely impact the electrical properties of graphene. It usually adsorbs H2O, O2, NO2
or other molecules when exposed to air and can form P-type doping with H2O and NO2,
opening the bandgap of graphene [13]. When graphene absorbs H2O, the particular charge
of the latter is transferred, and a reverse bias voltage is formed, like a diode between
the graphene and water molecules. Therefore, the binding energy with water increases,
showing a smaller contact angle. In addition, a small amount of PMMA causes p-type
doping with graphene [20,21], which forms a competitive relationship with H2O and doped
graphene, resulting in a smaller binding force and larger contact angle.

Contact angle measurement can characterize the quality of graphene transferred to a
surface. In this work, a pipette with a specification of 0.1–2.5 µL was used to collect deion-
ized water, and the volume of water drops therefrom was 0.1 µL. Then, the deionized water
dip angles were measured for the graphene of the No.1 (13.07 kΩ/�), No.2 (9.53 kΩ/�)
and No.3 (5.66 kΩ/�) samples transferred to the SiO2 substrate, which were measured
qualitatively through a JC2000 contact Angle analyzer (Shanghai Zhongchen Digital Tech-
nic Apparatus Co., Ltd., Shanghai, China). As shown in Figure 5, the dip angles of the
left and right sides of the droplets were measured, and the formula for calculating contact
angle is shown in Formula 1 [33]. Then the average value was calculated to eliminate error
caused by the non-horizontality of the table. The dip angle of the droplets on the SiO2
substrate was 90◦, the dip angle of the No.1, No.2 and No.3 samples on the SiO2 substrate
were 68◦, 65◦ and 63◦, respectively (Figure 6). While the dip angle of the droplet on the
slide substrate was 86.5◦, the dip angle of the No.1, No.2 and No.3 samples on the slide
substrate were 80◦, 75◦ and 68◦, respectively (Figure 7).

γSV = γSL + γLV × cos θe (1)
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the slide substrate (68.8 kΩ/�); (c) the No.2 sample on the slide substrate (55.31 kΩ/�); (d) the No.3
sample on the slide substrate (19.3 kΩ/�).

The contact angles of the samples on the SiO2 and slide substrates were different
because the surface defects reduced the binding forces. The defect content of each sample
was also different, as were the contact angles. Next, XPS was used to determine the kinds
of residues or impurities on the graphene surfaces.

3.2.2. Element and Composition Measurement by XPS

To further study the influence of graphene surface impurities on the electrical prop-
erties of the obtained graphene, it was necessary to analyze the graphene surface in the
X-ray energy spectrum, for which we used an ESCALAB Xi+ X-ray photoelectron spec-
troscopy (Thermo Fisher). The contents of the elements C, N and O on the surfaces of the
experimental samples after transfer were measured by XPS analysis, and information of
the various elements’ peaks was obtained. The C1s peak is the most significant peak for
the analysis of doping substances. Therefore, the C1s peak was processed by XPS peak
separation. The chemical bond composition of C in the C1s peak was analyzed as the
baseline for introducing impurity species during the graphene transfer process. Different
substrate samples are selected for analysis, as shown in Figures 8 and 9.

As shown in Figure 7, The C–N content and C–O content were almost unchanged.
For the samples on slide substrates, as the content of C–C increased, the content of C=C
decreased. The C=C content of the No.1, No.2 and No.3 samples was 26%, 16% and
13%, respectively. As shown in Figure 8, the transferred graphene on the SiO2 substrate
had a similar trend. On the same substrate, samples of greater square resistance had
more C=C content. No matter the substrate, only PMMA molecules contained a large
amount of C=C. PMMA, as an impurity, when doped with graphene, opens the graphene’s
bandgap [13,27,31,34].
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Combined with the contact angle test results, it was found that the greater the square
resistance of the same group of samples, the greater the contact angle. It was speculated
that the substance on the surface of the sample affects the surface binding energy of
deionized water. XPS analysis results showed that a large amount of C=C remained on
the substrate surfaces, and only PMMA contained C=C during the experiment. Compared
with the water contact angle test and XPS results (Figures 6–9), it was found that the less
the PMMA contamination, the smaller the water contact angle, consistent with the reported
work [35,36]. Additionally, PMMA can cause p-type doping with graphene [20,21], leading
to a competitive relationship with H2O and doped graphene, in turn resulting in a smaller
binding force and larger contact angle. Therefore, PMMA is the substance with the greatest
influence on the square resistance because it can be doped with graphene and thereby open
the graphene bandgap.

3.3. Influence of Layer Lamination and Cracking on the Square Resistance of the
Transferred Graphene

A Renishaw inVia Qontor laser confocal Raman spectrum system with a 532-nm wave-
length was used in the experiment. The Raman spectrum of graphene has two characteristic
peaks: G and 2D peaks. The G peak (usually around 1580 cm−1) is the characteristic peak of
the sp2 structure, reflecting the symmetry and crystallinity of graphene, which is generated
by the double-degenerate iTO and iLO optical phonon interactions in the center of the
Brillouin zone, with E2g symmetry. The 2D peak (usually around 2700 cm−1) is gener-
ated by two inter-valley inelastic scatterings of iTO optical phonons near point K, which
is used to characterize the stacking mode of the carbon atoms in graphene. In addition,
the D peak and D’ peak reflect defects. If the laser is focused on a graphene samples con-
taining defects or its grain boundary, a defect peak D, at about 1350 cm−1, and a peak
D’, at about 1620 cm−1, appear. The number of graphene layers can be determined by
the ratio of I2D/IG. If I2D/IG is two, graphene is of a single layer.; if I2D/IG is one, it is
bilayered. In practice, the ratio of I2D/IG is generally not exactly equal to two. In such
case, we can judge the number of graphene layers by its Raman feature. As there is often
a multi-layer core at the center of each flake, when it is hard to judge graphene as single-
or double- layered, a blue shift in the 2D peak of graphene can be used as the basis for
evaluating double layers [37]. A sample, with a resistance 68.80 kΩ/�, of graphene was
taken. Raman spectroscopy detection of graphene films at three different positions on each
kind of substrate was carried out. The Raman spectra of the three measuring points of
graphene on the glass slide showed defect peaks D and G‘, indicating some defects in the
transferred graphene to the glass slide. It can be clearly seen from Figure 10 that the I2D/IG
was less than one, indicating that the graphene stacking phenomenon was serious, and the
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number of graphene layers increased to various degrees after the transfer; thus, the square
resistance significantly improved [24].
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Figure 11 shows a white-light image of graphene with a square resistance of 5.66 kΩ/�)
on the SiO2 substrate and its Raman spectra. According to the Raman spectra of the three
tested positions, I2D/IG was about two, indicating that the graphene was monolayered and
not destroyed after transfer. The number of graphene layers was maintained with good
uniformity. However, it can be seen from the Raman spectrum of the first position that there
was a defect peak D, indicating that a small number of defects appeared on the surface.

According to Figure 10, the graphene was cracked, single-layered and double-layered,
with poor uniformity at the three graphene positions, P1, P2 and P3, on the slide substrate,
respectively. There were defect D peaks in all of them. The square resistance of graphene
on the slide was more significant, overall, than on the SiO2 substrate, because the square
resistance of graphene is proportional to the number of layers [24].
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4. Conclusions

In conclusion, the defects that occurred in the wet transfer process greatly influenced
the electrical properties of the produced graphene. Defects, such as PMMA residue,
delamination and cracking during the wet transfer process, were discovered with various
instruments. AFM imaging found that, on the same substrate, samples’ roughness and
square resistance increased. The samples with higher square resistance had larger water
contact angles and more PMMA content. As PMMA residue can cause a smaller contact
angle due to a competitive relationship with H2O and graphene; it can nonetheless widen
graphene’s bandgap, leading to more significant square resistance. Therefore, PMMA
affected the square resistance of the samples seriously. Additionally, there were stacks in
the samples, observed by their Raman spectra, but they were not the main factor in the
square resistances of the transferred graphene samples. This study provided a theoretical
and experimental basis for graphene as a better electrical medium.
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