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Abstract: This paper presents the development of a wide-beam width, dual-band, omnidirectional
antenna for the mm-wave band used in 5G communication systems for indoor coverage. The 5G
indoor environment includes features of wide space and short range. Additionally, it needs to function
well under a variety of circumstances in order to carry out its diverse set of network applications.
The waveguide antenna has been designed to be small enough to meet the requirements of mm-wave
band and utilizes a corrugated horn to produce a wide beam width. Additionally, it is small enough
to integrate with 5G communication products and is easy to manufacture. This design is simple
enough to have multi-feature antenna performance and is more useful for the femtocell repeater. The
corrugated circularly polarized horn antenna has been designed for two frequency bands; namely,
26.5–30 GHz for the low band and 36–40 GHz for high band. The results of this study show that
return-loss is better than 18 dB for both low and high band. The peak gain is 6.1 dBi for the low band
and 8.7 dBi for the high band. The beam width is 105 degrees and 77 degrees for the low band and
the high band, respectively. The axial ratio is less than 5.2 dB for both low and high band. Generally,
traditional circularly polarized antennas cannot meet the requirements for broadband. The designs
for the antennas proposed here can meet the requirements of FR2 bandwidths. This feature limits
axial ratio performance. The measurement error in the current experiment comes from the high
precision control on the size of the ridge.

Keywords: circularly polarized antenna; corrugated antenna; dual-band; mm-wave band; 5G system

1. Introduction

Millimeter-wave communication is a key technology for 5G mobile networks. The 5G
standard extends the frequency spectrum to 28 GHz and 39 GHz in millimeter-wave band.
This wireless system design will have benefits, such as high data rates and low latency,
which will be utilized in new technological applications. However, there are several
challenges in developing a 5G wireless system. For instance, atmospheric attenuation
and high-path loss become critically high at millimeter-wave frequency bands. The 5G
mm-wave networks have the advantages of ultra-high throughput and ultra-low latency,
therefore offering a better experience on emerging platforms, such as health care, high-
definition video streaming, high-definition gaming, and real-time virtual reality. However,
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compared to wireless transmission systems below 6 GHz which scatter and diffuse, the high-
frequency millimeter-wave system has difficulty in covering broader indoor spaces. The
5G repeater system will play an important role in solving this issue of inadequate indoor
coverage. It will amplify the signal from the outdoor base station and broadcast the signal
to indoor environments. Additionally, plans for 5G will include various multi-signal paths
and the mismatching of polarization. This paper proposes a novel design that possesses
both circular polarization and wide beam width properties that perfectly match the 5G
repeater system demand [1].

The application of circularly polarized antennas in communication originated in
satellite communication. The polarization plane of a linearly polarized wave will be
deflected and lead to a polarization mismatch due to the Faraday rotation effect [2,3], which
is produced by electromagnetic waves passing through the ionosphere. The smaller the
elevation angle of the antenna, the greater the impact. However, the Faraday rotation effect
has almost no effect on the circularly polarized wave, which makes the circularly polarized
antenna extremely important in satellite communications. Circular polarization antennas
are also used in general communication systems to reduce polarization mismatch, increase
signal coverage, and inhibit multipath errors [1]. The grooved waveguide, iris-loaded
waveguide, septum polarizer, and ridge circular waveguide are the main design structures
of circularly polarized antennas [4].

In the communication industry, the mm-wave 5G repeater system is the future [5].
The radiated power of the repeater system is about 10 dBm, and the antenna gain is 6 dBi.
Based on the linked budget and path loss calculations [6], the signal power will cover
about 5~10 m in an indoor environment. The axial ratio will be under 6 dB to mitigate
polarization mismatch [7].

Previous research has studied the circular polarized horn antenna in millimeter-wave
band. A low-cost circularly polarized horn antenna has a wide band (50–75 GHz) and
low axial ratio (AR), as shown in [8]. Circularly polarized horn antennas exploiting open
slotted end structures have a wide band (75–110 GHz) and low AR (< 3 dB) [9]. This seems
to provide a solution, but fall short with regards to beam width coverage on 5G repeater
antennae. Carlos and Fabiano presented a design for a broad beam width, with a 60 GHz
band [10]. Corrugated structure antenna successfully achieved 112 degrees of antenna
beam width at 55–62.5 GHz. It will overcome the lack of coverage indoors, but this design
still struggles with various applications.

In this study, a dual-band circularly polarized horn antenna with broad beam width
is presented to solve the issues of indoor coverage and other usage scenarios. Broad
beam width can be achieved by using two different corrugated structures. The double
ridged waveguide polarizer was used on the horn antenna so that it would have dual-band
circularly polarization properties. To ascertain the performance of the proposed antenna,
a prototype running at a 5G FR2 band was fabricated. The operation’s band frequencies
were n257 and n260 [11]. This antenna design achieves 105 degrees of 3 dB beam width on
low band and 77 degrees of 3 dB beam width on high band, with a return loss greater than
15 dB. The antenna axial ratio reached a 3~5 dB level. The antenna-gain measurement was
6.1 dBi at low band and 8.5 dBi at high band.

The proposed antenna was constructed by a mode converter, a circularly polarized
converter, and a corrugated horn. In order to satisfy the space of mm-wave band operated
conditions, the WR-28 rectangular waveguide was used to design the input port. The mode
converter, the double-ridge polarization converter [4], and the corrugated horn are the
main components of this proposed antenna. The double-ridge circular waveguide can be
used to design a high performance circularly polarized converter. The mode converter is
the adapter that transfer the circular waveguide to the standard WR-28 waveguide. The
corrugated horn is designed to enhance the beam width. The total structure of the proposed
antenna is illustrated in Figure 1, and it is suitable for femtocell repeater application.
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waveguide with a radius of 4.2 mm with a TE11 transmission mode. The E-field pattern of 
the circular waveguide is shown in Figure 2 as well. Both modes are the fundamental 
mode of these types of waveguides. In order to make the mode conversion and transmis-
sion efficiency of the microwave signal between the two waveguides high, the length of 
the mode converter must be designed with a low insertion loss. The insertion loss of the 
proposed mode converter is less than 0.05 dB. The electric field pattern of this structure at 
28 GHz and 39 GHz is illustrated in Figure 2a,b, respectively. The TE10 mode transmitted 
in the WR-28 waveguide can be smoothly converted into the TE11 mode of the circular 
waveguide with low insertion loss. 
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2.2. Circularly Polarized Converter 
In the previous research results [4], it is found that the single ridge structure has a 

very good effect on narrow frequency applications. In the proposed design, double ridge 
structure is used since the single ridge structure cannot meet the design conditions at both 
the low-frequency band (26.5–30.0 GHz) and the high-frequency band (36.0–40.0 GHz). 
The ridge structure is designed to be tunable and this flexible design will benefit its use in 
a wide range of applications.  

The schematic layout of the mode converter and circularly polarization converter is 
shown in Figure 3a while the 3D structure and parameters of the circular polarization 
converter are shown in Figure 3b. The ridged polarizer is located at a േ45° offset with 

Figure 1. The cross-section view of the dual-band corrugated circularly polarized horn.

2. Mode Converter and Circularly Polarized Converter Design
2.1. Mode Converter

The input port of the mode converter is a standard WR-28 waveguide, with a TE10
transmission mode and its E-field type is shown in Figure 2. The output port is a circular
waveguide with a radius of 4.2 mm with a TE11 transmission mode. The E-field pattern of
the circular waveguide is shown in Figure 2 as well. Both modes are the fundamental mode
of these types of waveguides. In order to make the mode conversion and transmission
efficiency of the microwave signal between the two waveguides high, the length of the
mode converter must be designed with a low insertion loss. The insertion loss of the
proposed mode converter is less than 0.05 dB. The electric field pattern of this structure at
28 GHz and 39 GHz is illustrated in Figure 2a,b, respectively. The TE10 mode transmitted
in the WR-28 waveguide can be smoothly converted into the TE11 mode of the circular
waveguide with low insertion loss.
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Figure 2. E field pattern of mode converter at: (a) 28 GHz and (b) 39 GHz. (Normalized to max value
for red areas and minimum value for blue areas).

2.2. Circularly Polarized Converter

In the previous research results [4], it is found that the single ridge structure has
a very good effect on narrow frequency applications. In the proposed design, double ridge
structure is used since the single ridge structure cannot meet the design conditions at both
the low-frequency band (26.5–30.0 GHz) and the high-frequency band (36.0–40.0 GHz).
The ridge structure is designed to be tunable and this flexible design will benefit its use in
a wide range of applications.

The schematic layout of the mode converter and circularly polarization converter is
shown in Figure 3a while the 3D structure and parameters of the circular polarization con-
verter are shown in Figure 3b. The ridged polarizer is located at a ±45◦ offset with respect
to the E field axis, and an incident linearly polarized wave (TE11 mode), with polarization
orientation which lies at the center between the x axis and y axis, is assumed, as shown
in Figure 3c.
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A linearly polarized TE11 wave in circular waveguide can be decomposed into
two equal-amplitude orthogonal linearly polarized TE11 waves, with a circularly polarized
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wave represented by the superposition of two equal-amplitude orthogonal TE11 waves
which have 90◦ differential phase shifting between them [12]. In the polarization converter
region, the propagation constants β1 and β2 of the E1 and E2 field are not the same because
the cross section of circular waveguide is slightly perturbed by the ridged polarizer. E2
causes more phase delay than E1. This will make the antenna act as a right-hand circu-
larly polarization antenna. Consequently, if the rectangular waveguide is rotated by 90◦,
a left-hand circularly polarization antenna will be created, as shown in Figure 3d.

Ridged polarizer can be accomplished by choosing an appropriate height, width,
and length for the ridged polarizer to attain a 90◦ phase difference at the circular waveg-
uide output port. The theoretical phase difference can be estimated using the formula
in Equation (1).

∆ψ = ψ1 − ψ2 = (−β1`)− (−β2`) = (β2 − β1)` = 2π`
(

1
λg2

− 1
λg1

)
= 2π`

c

(√
f 2 − f 2

c2 −
√

f 2 − f 2
c1

) (1)

where ∆ψ is the phase difference of orthogonal TE11 mode, ` is the length of the ridged
polarizer, fc1 and fc2 are the cutoff frequencies of E1 and E2, respectively. fc1 and fc2 can be
determined by the transverse resonance technique [13].

According to the formula, the phase of the electric field is affected by the length of
A1. The amplitude of the electric field is compressed by the ridges that are controlled by
the parameters H and D, while the return loss can be optimized by changing the angle θ

of the ridge. The optimized parameters of the circularly polarized converter are listed in
Table 1. Figure 4 presents the electric field versus phase change graphs at an operating
frequency of 28.5 GHz. The circularly polarized wave can be produced by this circularly
polarized converter.

Table 1. Parameters of circularly polarized converter.

Parameters Values

A1 17 mm

A2 9 mm

H 1.46 mm

θ 8.5 degrees

D 1.50 mm
Micromachines 2022, 13, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 4. E field pattern of waveguide with different phases (at 28.5 GHz). 

3. Corrugated Antenna Design 
A corrugated structure has been a part of the horn antenna’s application for many 

decades. When the horn antenna radiates on the open end of the horn structure, the elec-
tromagnetic wave will creep on the metal surface to become surface wave. This will in-
crease the side lobe of the far field pattern and decrease the antenna gain. Then, the cor-
rugated structure will mitigate this phenomenon. Per-Simon Kildal [14] also defined the 
soft surface to describe the physics of surface wave on metal surfaces, as illustrated in 
Figure 5a. It pointed out that surface wave cannot propagate on soft surfaces by using a 
quarter wavelength depth of the corrugated structure. Furthermore, it stated that the re-
sistance of wave incident direction is infinite and that the impedance of orthogonal direc-
tion on wave propagation is zero. This will cause the horn antenna to have a lower side 
lobe and a higher antenna gain.  

 
 

(a) (b) 

Figure 5. (a) Definition of soft surface and (b) leaky-wave antenna. 

On the other hand, surface wave application has also been implemented to design a 
leaky-wave antenna, as shown in Figure 5b. Leaky wave is a characteristic of surface wave, 
and it can be observed as a signal source when propagating high dielectric substrate. It 
scatters far-field wave by using a periodic metal structure [15]. In Figure 6, a non-quarter 
wavelength of corrugated structure is applied to radiate far field by using the leaky-wave 
antenna theory. This, in effect, will contribute towards a broad beam width effect on the 
far field pattern of the horn antenna. Table 2 lists the optimized parameters of the corru-
gated horn antenna. Here, we use two different gap sizes W1 and W2 to control the low 
and high band beam width.  

Figure 4. E field pattern of waveguide with different phases (at 28.5 GHz).



Micromachines 2022, 13, 289 6 of 18

3. Corrugated Antenna Design

A corrugated structure has been a part of the horn antenna’s application for many
decades. When the horn antenna radiates on the open end of the horn structure, the electro-
magnetic wave will creep on the metal surface to become surface wave. This will increase
the side lobe of the far field pattern and decrease the antenna gain. Then, the corrugated
structure will mitigate this phenomenon. Per-Simon Kildal [14] also defined the soft sur-
face to describe the physics of surface wave on metal surfaces, as illustrated in Figure 5a.
It pointed out that surface wave cannot propagate on soft surfaces by using a quarter
wavelength depth of the corrugated structure. Furthermore, it stated that the resistance
of wave incident direction is infinite and that the impedance of orthogonal direction on
wave propagation is zero. This will cause the horn antenna to have a lower side lobe and
a higher antenna gain.
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On the other hand, surface wave application has also been implemented to design
a leaky-wave antenna, as shown in Figure 5b. Leaky wave is a characteristic of surface
wave, and it can be observed as a signal source when propagating high dielectric substrate.
It scatters far-field wave by using a periodic metal structure [15]. In Figure 6, a non-quarter
wavelength of corrugated structure is applied to radiate far field by using the leaky-wave
antenna theory. This, in effect, will contribute towards a broad beam width effect on the far
field pattern of the horn antenna. Table 2 lists the optimized parameters of the corrugated
horn antenna. Here, we use two different gap sizes W1 and W2 to control the low and high
band beam width.

In Figure 7, the configuration of the antenna showed the combination of a circularly
polarized converter and a corrugated structure. The simulated input return loss is shown
in Figure 8. Results show that |S11| < −18 dB at 26.5 GHz to 30 GHz, and 36.5 GHz to
40 GHz. This antenna bandwidth meets the specifications of bands n257 and n260. In
Figure 9, the simulated axial ratio result shows that AR < 5.5 dB for low band and AR < 4 dB
for high band. Figures 10 and 11 show the total gain pattern and circularly polarization gain
pattern of two cut planes on low band and high band, respectively. The corrugated horn
antenna and the pure horn antenna are shown in Figure 12. The simulation results show
that the corrugated structure improved the beam width of the horn antenna, as shown in
Figures 13 and 14. In low band, the beam width was increased from 48 degrees to 96 degrees;
about a 100% improvement. While in high band, the beam width was increased from
52 degrees to 68 degrees; about a 30% improvement.
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in Figure 8. Results show that |S11| < −18 dB at 26.5 GHz to 30 GHz, and 36.5 GHz to 40 
GHz. This antenna bandwidth meets the specifications of bands n257 and n260. In Figure 
9, the simulated axial ratio result shows that AR < 5.5 dB for low band and AR < 4 dB for 
high band. Figures 10 and 11 show the total gain pattern and circularly polarization gain 
pattern of two cut planes on low band and high band, respectively. The corrugated horn 
antenna and the pure horn antenna are shown in Figure 12. The simulation results show 
that the corrugated structure improved the beam width of the horn antenna, as shown in 
Figures 13 and 14. In low band, the beam width was increased from 48 degrees to 96 de-
grees; about a 100% improvement. While in high band, the beam width was increased 
from 52 degrees to 68 degrees; about a 30% improvement. 
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Figure 10. (a) Total gain pattern of simulation result on low band for XZ-Cut, (b) total gain pattern
of simulation result on low band for YZ-Cut, (c) co-pol (RHCP) and cross-pol (LHCP) gain pattern
on 28.6 GHz for XZ-Cut, and (d) co-pol (RHCP) and cross-pol (LHCP) gain pattern on 28.6 GHz
for YZ-Cut.
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guide. Figure 16a shows an NSI-700S-360 antenna chamber [16]. Its measurement coordi-
nates are shown in Figure 16b. The simulation and measurement of return loss results are 
shown in Figure 17. The results show consistency in simulation and measurement. Axial 
ratio measurement results are shown in Figure 18. The measurement results show AR < 
4.5 dB on low band and < 5.1 dB on high band. The difference in simulation and measure-
ment comes from the deviation in the manufacturing process. In an optimized process, it 
is found that a 0.1 mm variation in ridge size will cause 1 dB of fluctuation in the axial 
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4. Antenna Manufacturing and Experimental Measurement

The corrugated circularly polarization horn antenna is shown in Figure 15. The antenna
size is 160 mm × 43 mm × 43 mm. The antenna is composed of four different components.
The middle part is a circularly polarized converter, and the corrugated structure is on the
right side of the photo. For the middle parts, we proposed that a reconfigurable ridge
be used to optimize axial ratio by using a different depth of ridge inside the waveguide.
Figure 16a shows an NSI-700S-360 antenna chamber [16]. Its measurement coordinates are
shown in Figure 16b. The simulation and measurement of return loss results are shown
in Figure 17. The results show consistency in simulation and measurement. Axial ratio
measurement results are shown in Figure 18. The measurement results show AR < 4.5 dB
on low band and <5.1 dB on high band. The difference in simulation and measurement
comes from the deviation in the manufacturing process. In an optimized process, it is found
that a 0.1 mm variation in ridge size will cause 1 dB of fluctuation in the axial ratio. Thus,
accuracy in manufacturing the ridge is very important for this horn antenna.
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Figure 18. Simulation and measurement of axial ration at (a) low band and (b) high band.

The measurement radiation pattern is shown in Figure 19. To attain the best beam
width, 26.5 GHz and 36 GHz were selected to compare with the simulation data. The
radiation pattern at 26.5 GHz shows a peak gain of 6.16 dBi and 5.78 dBi in two different
cut planes, and antenna beam widths of 95 degrees and 105 degrees, respectively. The
radiation pattern at 36 GHz shows peak gains of 8.74 dBi and 8.78 dBi, and antenna beam
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widths of 77 degrees and 75 degrees, respectively. The detailed beam width results for each
frequency are listed in Table 3. The beam width ranges from 94 to 105 degrees on low band,
and 60 to 77 degrees on high band. The low band beam width performance is better than
the high band beam width for this design.
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pattern. Figure 20c,d show equal performance at the 39 GHz point. Due to the reconfigu-
rable ridge, this antenna has the capacity to optimize any band by using the tuning ridge. 
Figure 21 shows antenna radiation efficiency; the efficiency is about 85% to 95% on both 
bands. The frequency graph in Figure 22b indicates that the antenna has great axial ratio 
performance (AR < 3.1 dB) on the high band by pushing 0.2 mm inside the waveguide. 
However, this movement causes the deterioration of the low band axial ratio. This perfor-
mance is reversed by pulling the ridge. This application will lead to another reconfigured 
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Figure 19. (a) Horn antenna gain measurement for 3 dB beam width (26.5 GHz, XZ-cut); beam width
~97 degrees, (b) horn antenna gain measurement for 3 dB beam width (26.5 GHz, YZ-cut); beam
width ~105 degrees, (c) horn antenna gain measurement for 3 dB beam width (36.0 GHz, XZ-cut);
beam width ~77 degrees, (d) horn antenna gain measurement for 3 dB beam width (36.0 GHz, YZ-cut);
beam width ~75 degrees.

Figure 20a shows a 3D simulation pattern of the antenna, and is compared to
Figure 20b which was a 3D measurement pattern. The result shows the same shape
as the antenna pattern. Figure 20c,d show equal performance at the 39 GHz point. Due
to the reconfigurable ridge, this antenna has the capacity to optimize any band by using
the tuning ridge. Figure 21 shows antenna radiation efficiency; the efficiency is about 85%
to 95% on both bands. The frequency graph in Figure 22b indicates that the antenna has
great axial ratio performance (AR < 3.1 dB) on the high band by pushing 0.2 mm inside the
waveguide. However, this movement causes the deterioration of the low band axial ratio.
This performance is reversed by pulling the ridge. This application will lead to another
reconfigured design and is a future project for study.
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Table 3. Maximum scan angle with different antenna spacing.

3 dB Beam width XZ-Cut (Degrees) YZ-Cut (Degrees)

26.5 GHz 97 105

27.0 GHz 101 101

27.5 GHz 103 100

28.0 GHz 98 104

28.5 GHz 100 102

29.0 GHz 101 95

29.5 GHz 95 94

30.0 GHz 94 97

36.0 GHz 77 75

36.5 GHz 74 68

37.0 GHz 70 70

37.5 GHz 69 67

38.0 GHz 68 66

38.5 GHz 67 64

39.0 GHz 65 60

39.5 GHz 65 62

40.0 GHz 63 60
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easy to manufacture and assemble. Figure 23 illustrates the parts of the antenna made 
using conventional CNC machining, and wire electrical discharge machining, with a tol-
erance of +/−0.01 mm. It is easy to assemble this antenna engineering design since there 
are aligned markers on the ridge structure as well as markers for the location of the screw 
holes on each section. The material used to make this antenna is brass in order for the 
antenna to withstand high power input flow. Depending on its application, the material 
can be changed to one with a low loss metal or coating surface. Even in the 5G products, 
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Figure 22. (a) Cross section of circularly polarization converter and (b) optimized axial ratio result.

5. Conclusions

The dual-band corrugated circularly polarized horn antenna has been successfully
designed, fabricated, and analyzed. By using a circularly polarization converter, the an-
tenna achieved an axial ratio of 3~5 dB. The antenna has a broad beam width of 105 degrees
and 77 degrees by using two different gap sizes of corrugated structure. The resulting
measurement of the antenna satisfied the requirements of the 5G indoor coverage environ-
ment. The novelty of the proposed antenna is a multi-requested feature for the application
of 5G communications, e.g., dual-band, circularly polarization, and broad beam width.
The existing work developed a dual-band horn antenna suitable for satellite communi-
cation, but not for 5G communications. The fabrication complexity of horn antennas for
satellite application is high with high manufacturing costs. The proposed antenna is easy
to manufacture and assemble. Figure 23 illustrates the parts of the antenna made using
conventional CNC machining, and wire electrical discharge machining, with a tolerance
of +/−0.01 mm. It is easy to assemble this antenna engineering design since there are
aligned markers on the ridge structure as well as markers for the location of the screw
holes on each section. The material used to make this antenna is brass in order for the
antenna to withstand high power input flow. Depending on its application, the material
can be changed to one with a low loss metal or coating surface. Even in the 5G products,
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the antenna can be combined with the thermal sink on a one-piece molding [6]. This design
reduces the cost of the antenna’s production.
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Figure 23. Antenna parts breakdown illustration.

In previous research, various horn antennas have been studied with different features,
such as broad beam width [10] and circularly polarization [8,9,17–19]. In [20], metasurface
was designed to create a circular polarization antenna. The concept of metasurface antenna
is phase manipulation of electromagnetic wave. The material of antenna is a PCB or
a plastic plane that is easy to fabricate. The height of the metasurface antenna is low,
but the bandwidth was designed to meet a specific frequency band. This reconfigurable
antenna technology can also be used to mimic the characteristics of circular polarization.
In the study in [21], it was found that antenna can have three different polarizations by
rotating the SSPP element. The performance of the antenna is determined by its broadband
bandwidth and good axial ratio. For it to be high performing, the antenna structure will be
complex and expensive.

As listed in Table 4, the proposed antenna has a better beam width and a good axial
ratio on both bands compared to other previously proposed antenna designs. Due to these
improvements in performance, the antenna proposed in this study can effectively use 5G in
an indoor coverage environment. In future works, the authors aim to study a reconfigurable
ridge that is combined with a stepper motor and switch circuit to allow the antenna a better
axial ratio on a specific scenario and frequency band. The current design in this study is
a single antenna design that is designed to be suitable for 5G repeater products. Future
work will include the implementation of a multi-antenna MIMO system, which will be
another key technological research.

Table 4. Comparisons of antenna performance with previously proposed antennas.

Frequency 3 dB Beam Width Axial Ratio Peak Gain Fabrication Complexity

This work 24~30 GHz
37~40 GHz 105/77 <4.5 dB

<5.1 dB 6.1/8.7 easy

[10] 55~62.5 GHz 112.37 NA 7.32 easy

[8] 50~75 GHz 30–60 <3.2 dB 12.21~12.56 easy

[17] 19.6–21.2 GHz
29.4–31 GHz

23
19 N/A N/A mid

[9] 75–110 GHz 58.3~76 <3 dB 6.7~9.8 easy

[18] 1.0~1.7 GHz 98.6 N/A 3.4~2.5 hard

[19] 1.19~1.22 GHz
1.551~1.577 GHz 94/90 <3 dB 6~6.4 easy

[20] 10.8~11.3 GHz N/A <3 dB 19.8 dBic mid

[21] 8.45–11.5 GHz N/A <3 dB N/A hard
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