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Abstract: The actuation of droplets on a surface is extremely relevant for microfluidic applications.
In recent years, various methodologies have been used. A promising solution relies on iron-doped
lithium niobate crystals that, when illuminated, generate an evanescent electric field in the sur-
rounding space due to the photovoltaic effect. This field can be successfully exploited to control the
motion of water droplets. Here, we present an experimental method to determine the attractive force
exerted by the evanescent field. It consists of the analysis of the elongation of a pendant droplet and
its detachment from the suspending syringe needle, caused by the illumination of an iron-doped
lithium niobate crystal. We show that this interaction resembles that obtained by applying a voltage
between the needle and a metallic substrate, and a quantitative investigation of these two types of
actuation yields similar results. Pendant droplet tensiometry is then demonstrated to offer a simple
solution for quickly mapping out the force at different distances from the crystal, generated by the
photovoltaic effect and its temporal evolution, providing important quantitative data for the design
and characterization of optofluidic devices based on lithium niobate crystals.

Keywords: optofluidics; dielectrophoresis; lithium niobate; photovoltaic effect; pendant droplet

1. Introduction

The wetting of solid surfaces can be modified by changing material or surface proper-
ties, such as surface chemistry or micro- or nanoscale topography [1,2], or by introducing
additional stimuli, including electric [3,4] and magnetic [5,6] fields, light [7,8], temperature
gradients [9] and acoustic vibrations [10,11]. This is relevant for many different applica-
tions, from microfluidics to energy harvesting [12,13]. In recent years, electrowetting on
dielectric (EWOD) has been shown to be one of the most versatile and effective methods to
actively control the wetting of a solid surface by a droplet [14]. In this approach, a metallic
electrode is coated with a hydrophobic dielectric layer and a water droplet is used as the
other electrode to create a capacitive structure, but with an electrode contact area that
depends on the extent to which the dielectric layer is wetted [4]. As a result of this effect,
the contact angle decreases with the applied voltage, which can be used to actuate water
droplets. Electrowetting has found extensive applications, thanks to its fast response time
and the large forces achievable, from the millimeter to micrometer scale [14,15]. However, it
requires the realization of electrodes and their cumbersome connection to voltage suppliers.
A promising alternative to the presence of metallic electrodes is based on the photovoltaic
effect exhibited inside certain ferroelectrics, such as lithium niobate, LiNbO3 [16–18]. Upon
appropriate illumination, an electric field is generated within the material with a strength
that can be as high as 200 kV/cm and photoinduced charges are redistributed on the
surface [19]. The photoinduced electric field E extends outside the active optical material
(evanescent field) and can be exploited to manipulate neutral micro- and nano-objects
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through dielectrophoretic forces FDEP [20–23]. In general, the dielectrophoretic force arises
from the interaction between a non-uniform electric field and a neutral, dielectric body
and can be approximated as FDEP = −∇(p·E) ∼ −∇E2, where p is the induced polar-
ization [21–26]. In the case of a homogeneous spherical particle of radius r and dielectric
constant εp, immersed in a lossless dielectric fluid of dielectric constant εm, this force is
given by the following simple equation [23,27]:

FDEP = 2πεεmr3K∇E2 (1)

where K is the real part of the Clausius–Mossotti factor
[
εp(ω)− εm(ω)

]
/
[
εp(ω) + 2εm(ω)

]
,

εp(ω) and εm(ω) being the complex dielectric constants of the particle and of the surround-
ing fluid, respectively, calculated at the pulsation ω of the electric field [28]. If we assume
a spherical water droplet, immersed in air, the droplet will always be attracted towards
regions of high field strength.

Recently, the photovoltaic effect has been exploited to manipulate water droplets [29–33].
In fact, unlike EWOD systems that consider a fixed configuration of microfabricated elec-
trodes, the photoinduced electric pattern can be easily redesigned on the same Fe:LiNbO3
by discharging the substrate. Despite the large diffusion from this approach, during the last
few years, the magnitude of the dielectrophoretic forces used to drive the droplets over the
Fe:LiNbO3 surfaces have not yet been measured. Here, we propose a simple technique that
allows one to evaluate the dielectrophoretic force acting on a water droplet. It is a variation
of the pendant droplet tensiometry, commonly used to measure the surface tension of a
liquid [34,35]. A water droplet of known volume is attached to the tip of the stainless
steel needle of a vertically held syringe. The dielectrophoretic force FDEP is derived by
evaluating the curvature of the elongated droplet. We have applied this technique to
measure the dielectrophoretic force acting on a water droplet due to the interaction with an
electric field, generated in the following two distinct ways: (i) by a voltage applied between
the metallic surface (E–DEP) and the needle, and (ii) with the evanescent field due to the
photovoltaic effect of a Fe:LiNbO3 crystal (P–DEP). Measurement of the forces derived in
the two configurations yields consistent results, confirming the validity and flexibility of
this approach.

This paper is organized as follows: in the next section, we briefly describe the materials
and experimental setups; we present the data analysis procedure and discuss the results
obtained from the E–DEP and P–DEP measurements.

2. Materials and Methods
2.1. Fe-Doped Lithium Niobate Samples

In this work, a z-cut iron-doped lithium niobate (Fe:LiNbO3) crystal is used, having a
diameter of 3 inches and a thickness of 1 mm. The crystal is supplied by PI-KEM Limited
and presents a uniform iron concentration of 0.1%mol (18.8 × 1018 at/cm3), ensuring
a rapid photorefractive response. The concentration of donor ions Fe2+ is obtained by
optical absorption measurement using a spectrophotometer (Jasco V-670) in the range of
300–2000 nm [36] and is (4.6 ± 0.1) × 1018 at/cm3. This value implies a reduction degree R,
defined as the ratio between the number of donors Fe2+ and acceptors Fe3+, of 0.32 ± 0.01.

2.2. Dielectrophoretic Force on a Water Droplet Generated by Photovoltaic and
Electrostatic Charges

In this work, two distinct experimental setups have been used, both with the ob-
jective of evaluating the effect produced by surface charge accumulation on a droplet
suspended above it, as shown in Figure 1. In the first setup, see Figure 1a, electrostatic
charges are created on the surface of a conductive substrate, while in the second setup,
see Figure 1b, charges are generated on the main faces of Fe:LiNbO3 crystals through the
photovoltaic effect.
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Figure 1. (a) Experimental setup for the E–DEP evaluation. A glass slide coated with a gold electrode
is connected to a voltage generator. The top view of the electrode is reported in the right-side box.
(b) Experimental setup for P–DEP evaluation. Laser light illuminates the Fe:LiNbO3 crystal and
creates a distribution of charges of opposite sign on the two main surfaces. (c) Schematic view of the
optical path. A CCD camera and a white LED backlight are aligned to allow for a lateral view of
the experimental area. The laser beam is expanded with lenses L1, L2 to illuminate the spatial light
modulator (SLM) area. The desired light pattern is set and projected on the crystal by the Fourier
lens (FL). Mirrors M1–M4 are used to guide the beam and bring it up to the vertical plane (x,z). The
power of the beam is tuned by a half-wave plate (HWP) coupled with a polarizer beam splitter (PBS).
A mechanical shutter (S) is used to control the illumination time. In both setups, a syringe pump
provides the formation of a pendant droplet of known volume.

The experimental setup designed to generate an electrostatic field below the pen-
dant droplet and to evaluate the resulting dielectrophoretic force (E–DEP) is shown in
Figure 1a. Ultrapure water droplets (resistivity 18.2 MΩ·cm) of known volume (Ω = 2.7 µL)
are generated with a computer-controlled syringe pump (PHD 22/2000, Harvard appa-
ratus) equipped with a glass syringe (1 mL, SGE) that mounts a stainless steel needle
with an outer diameter of 0.2 mm. The droplet remains attached to the needle due to
capillarity, assuming the conventional pendant droplet shape [34,35,37]. A CCD camera
(Basler acA1300–200 µm) equipped with a telecentric objective is used to collect the lateral
profile of the droplet, while a white LED provides back illumination. Below the needle,
a glass slide is coated with a gold electrode deposited by magnetron-sputtering having a
keyhole shape. In detail, the latter is formed by a circular 4 mm diameter spot connected to
a 0.2 × 50 mm2 stripe (see inset in Figure 1a). The center of the circular part of the electrode
is aligned with the needle of the syringe placed above. A high-voltage power supply
provides a tunable voltage to the gold electrode up to 2000 V, while the needle is grounded.
During a typical experiment, the distance h between the needle and the electrode is fixed,
and the voltage is progressively increased until the droplet falls.

The setup to evaluate the dielectrophoretic force due to the photovoltaic effect (P–
DEP) is schematically shown in Figure 1b,c. It presents the same components as the
previously presented experimental setup for pendant droplet generation and imaging. The
Fe:LiNbO3 crystal is placed on a three-axes motorized sample holder (M126.CG Linear
Slide Translational Stage, PI) designed to allow illumination from the bottom. The light
pattern projected on the sample is achieved by a linearly polarized laser beam (Class 4,
Azur Light Systems, power 1 W max, λ = 532 nm, Pessac, France). The gaussian beam
emitted by the laser is modulated in phase by a spatial light modulator (Pluto-NIR-011,
Holoeye Photonics, Berlin, Germany) to project on the Fe:LiNbO3 crystal a circular spot
having uniform light intensity and diameter d = 4 mm. The uniform light spot generated
by the spatial light modulator yields a charged area with sharper contours than in the case



Micromachines 2022, 13, 316 4 of 9

of a gaussian beam, which would produce an expanding charge distribution with exposure
time [24]. A properly tilted mirror ensures that the incident light beam illuminates the
Fe:LiNbO3 crystal perpendicularly to its main z-cut surfaces and that the circular spot is
aligned with the needle placed above. The intensity of the light pattern on the sample can
be tuned between 0 and I = 11.1 kW/m2 using a half-wave plate (HWP) coupled with a
polarizer beam splitter (PBS). An emission filter (GF, MF620-52, Thorlabs, Newton, NJ,
USA) is placed in front of the objective to remove any residual reflection of the laser beam
on the droplet. In analogy to the electrostatic case, during a typical experiment, the distance
h between the needle and the upper Fe:LiNbO3 surface is fixed; then the laser light is turned
on and the time required to induce the droplet to fall is measured. After each measurement
run, the crystal is fully discharged by immersing it in water for about 20 min.

3. Results and Discussion
3.1. Dielectrophoretic Force on Pendant Droplet: Electrostatic Effect (E–DEP)

In a typical pendant droplet configuration, the droplet formed at the tip of the needle
remains suspended because the capillary force Fc acting along the contact line balances
the droplet weight Fg. The maximum capillary force Fc,max exerted on a needle of external
radius R can be approximated as follows [38]:

Fc,max = 2πRγψ (2)

where γ is the surface tension of the droplet liquid and ψ is a correction factor depending
on the droplet volume Ω. In our case, we used water droplets of Ω = 2.7 ± 0.1 µL, resulting
in ψ = 0.93, with a measured surface tension γ = 72± 1 mJ/m2. Since the needle has
radius R = 0.1 mm, Formula (2) yields Fc,max = 41.8± 0.8 µN. If a charged electrode is
placed underneath, the water droplet, assumed to be a pure dielectric with no free charges,
is attracted downward due to the dielectrophoretic force FDEP.

Figure 2a shows the characteristic geometry of a water droplet suspended to the
needle in the absence of an electric field. The distance of the needle tip from the electrode is
h = 3 mm. As a result of the pull action of the weight Fg, the shape of the droplet is not spher-
ical, but rather an elongated pear-like shape. When a voltage is applied to the electrode, the
droplet becomes more elongated due to the contribution of the dielectrophoretic force FDEP,
which is parallel to the direction of Fg, as shown in Figure 2b. As the voltage is increased,
the deformation becomes slightly more pronounced, see Figure 2c, until at Vfall = 880 V, the
droplet detaches from the needle and falls, see Figure 2d and Video S1. This means that
at Vfall, the pull action of the dielectrophoretic force and the droplet weight overcome the
maximum capillary force exerted by the needle and, thus, we get the following equation:

FDEP = Fc,max − Fg = 15± 1.3 µN (3)

The results of the voltage Vfall as a function of height h are plotted in the graph of
Figure 2e, where each data point is the mean of at least three repeated measurements and
the error bars represent the corresponding standard deviations. As expected, Vfall increases
with h because, for a given voltage, the electric field experienced by the droplet decays with
the distance from the electrode.

An alternative method to estimate the dielectrophoretic force is to analyze the curva-
ture of the contour of a pendant droplet. When the droplet is at equilibrium, the hydrostatic
pressure jump across the interface equalizes the Laplace pressure for each height z along
the droplet [37], seen below:

ρg∗z = γC (4)

where ρ = 997 kg/m3 is the water density at T = 25 ◦C, g∗ is the effective gravitational
acceleration [39] and C is the curvature at the surface. Because the dielectrophoretic force
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acts in the same direction as gravity, the total pull experienced by the droplet can be
expressed as follows:

Fg + FDEP = $Vg + FDEP = $Vg
(

1 +
FDEP
$Vg

)
≡ $Vg∗ (5)
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In other words, the effective gravitational acceleration g∗ = $Vg
(

1 + FDEP
$Vg

)
quantifies

the dielectrophoretic force; in the absence of an electric field, g∗ = g, otherwise g∗ > g. At
each point r(z) of the surface, as shown in Figure 1a, the curvature can be parametrized in
cylindrical coordinates, as follows [29]:

C = −
d2r
dz2(

1 +
(

dr
dz

)2
) 3

2
+

1

r
(

1 +
(

dr
dz

)2
)1/2 (6)

The droplet profile can be fitted numerically [40], according to Equations (2)–(4), to
extract g∗, given ρ and γ. Thus, we have applied this procedure to the droplet profiles
extracted from the video frames, right before the droplet fall. In this way, it is possible
to estimate the value of FDEP required to detach the water droplet. Table 1 shows the
results obtained for h ≥ 3 mm; for shorter distances, the droplet touches the surface during
elongation. All FE–DEP values agree within one standard deviation and their mean value
FE–DEP = 14± 2 µN is perfectly consistent with the value of 15.1 ± 1.3 µN, deduced above.

Table 1. The dielectrophoretic force required to detach the droplet from the needle evaluated at
different heights h from the E–DEP and P–DEP experiments. The values of FP–DEP refer to a light
intensity I = 8.8 kW/m2 and a volume of the droplet Ω = 2.7 µL.

h
(mm)

FE–DEP
(µN)

FP–DEP
(µN)

3.0 ± 0.1 14.9 ± 1.5 14.2 ± 1.5
4.0 ± 0.1 15.8 ± 1.5 12.0 ± 1.4
5.0 ± 0.1 12.2 ± 1.4 12.0 ± 1.4
6.0 ± 0.1 11.9 ± 1.4 15.0 ± 1.5

FDEP 14 ± 2 13.3 ± 1.5
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3.2. Dielectrophoretic Force on the Pendant Droplet: Photovoltaic Effect (P–DEP)

An analogous behavior is observed illuminating the Fe:LiNbO3 crystal, as shown in
Figure 3 for h = 3 mm and Video S2. Initially, the laser is off and the droplet is deformed
due to the balance between the capillary and gravity forces, see Figure 3a. When the light
is turned on at t = 0 s, charges are expected to accumulate progressively on the Fe:LiNbO3
surfaces in the illuminated area [16] and, as a consequence, the droplet elongates due to
the dielectrophoretic force, as shown in Figure 3b. During illumination, this elongation
progressively increases, see Figure 3c, until at a time tfall = 6.76 s, the droplet detaches
from the needle and falls down, see Figure 3d. This evolution resembles that discussed in
Figure 2a–d, observed by increasing the applied voltage. The graph in Figure 3e shows the
variation of the characteristic time tfall with the distance h between 3 and 6 mm and for
different light intensities; each data point is the mean of at least three measurements, re-
peated under the same conditions, and the error bars represent the corresponding standard
deviations. The light intensities were chosen to yield tfall sufficiently low to significantly
limit the evaporation of the droplets during the measurements. For a given illumination
intensity I, tfall increases with h, particularly for I = 5.2 kW/m2, while for a fixed h, the time
required to detach the droplet decreases with increasing I. These results can be rationalized
by taking into account the temporal evolution of the light-induced electric field within the
lithium niobate crystal [16,17], as follows:

Ein = Esat

(
1− e−t/τ

)
(7)

where the amplitude Esat is the highest electric field achievable within the crystal and is
proportional to the amount of Fe3+. The parameter τ represents the photovoltaic time
constant and is defined as τ = k/(R·I), where k a is constant typical of the material [16,17],
R = [Fe2+]/[Fe3+] the reduction degree. Therefore, because the electric field experienced by
the droplet decays with the distance from the crystal, at higher values of h, the photoinduced
charge density required to detach the droplet must increase, and this implies, for a given
I, longer illumination times. Similarly, using higher I leads to faster charge accumulation
and, thus, given a certain h, tfall decreases with increasing I, see Figure 3e.
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Figure 3. (a–d) Sequence of snapshots showing the detachment of a pendant droplet caused by the
charges generated on the surface of the underlying Fe:LiNbO3 crystal illuminated with an intensity
I = 7.0 kW/m2. The distance of the needle tip from the crystal is h = 3 mm and the volume of the
droplet is 2.7 µL. (e) Variation of the time tfall required to detach the droplet from the needle with
distance h and for different light intensities I.
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The value of FP–DEP, generated by the charges photoinduced on the Fe:LiNbO3 crystal,
is deduced from the analysis of the droplet contour immediately before the droplet falls,
as done in the previous section, to compare it to the force computed in Equation (3). As
reported in Table 1, for I = 8.8 kW/m2, all FP–DEP, the values are rather similar, confirming
that the force necessary to overcome the capillary force is always the same at any distance
h, although the required illumination time tfall differs by more than one order of magnitude.
Importantly, their mean value FP–DEP = 13.3± 1.5 µN in the case of the photovoltaic effect
is compatible with the value FE–DEP = 14± 2 µN found in the electrostatic experiment.
This confirms the analogy between the two experiments and the capability of the pendant
droplet to work as a probe for the dielectrophoretic force.

3.3. Dynamics of the Dielectrophoretic Force by the Photovoltaic Effect (P–DEP)

The pendant droplet method can also be applied to investigate time-dependent pro-
cesses, such as charge accumulation on Fe:LiNbO3 surfaces. As an example, Figure 4
shows the temporal evolution of the FP–DEP acting on the droplet attached to the needle,
distanced h = 4 mm from the top surface of the Fe:LiNbO3 crystal. The force is plotted
against the exposure time texp of the crystal to different light intensities. It is determined by
analyzing each video frame acquired during the illumination. The final points of each curve
correspond to the frame at which the droplet falls. As expected, this event is independent of
the beam intensity and yields similar FP–DEP values, between 12.1 µN and 13.2 µN, in very
good agreement, within one standard deviation, with those listed in Table 1. The increase
over time of FP–DEP reflects the increase in the evanescent field, due to the photovoltaic
effect predicted by Equation (6). More precisely, Equation (1) indicates that the temporal
evolution of FP–DEP(t) is the same as that of Ein(t)

2. Since the characteristic time constant τ
is inversely proportional to the light intensity, this explains why FP–DEP grows more slowly
at lower I. Furthermore, if we plot the same data in terms of the so-called light exposure
rate, equal to texp·I, [24] we expect from Equation (6) that all the data collapse on the same
master curve, which depends only on material properties of the Fe:LiNbO3 crystal. The
graph inset confirms the validity of this scaling.
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Figure 4. Variation of the dielectrophoretic force FP–DEP induced by the photovoltaic effect over the
exposure time texp of the Fe:LiNbO3 acting on a pendant water droplet for different intensities I. The
inset shows the same data plotted as a function of the light exposure rate texp·I. The distance of the
needle tip from the crystal is fixed at h = 4 mm and the volume of the droplet is 2.7 µL.
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4. Conclusions

We have described a simple technique to measure the dielectrophoretic force acting on
a water droplet due to an electric field. It consists of a variation of the pendant droplet tech-
nique, commonly employed to derive the surface tension of a liquid. We have successfully
applied it to probe the forces generated in standard electrowetting (electric field due to the
voltage generated by a power supply) and optowetting (electric field due to the illumina-
tion of a lithium niobate crystal) applications. It does not require sophisticated set-ups,
can be easily applied to different experimental situations and provides reliable spatial and
temporal resolutions. We feel that this pendant droplet technique can yield quantitative
information relevant for the design and characterization of microfluidic devices, using
electric fields for the droplet actuation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/mi13020316/s1, Video S1: Detachment of a pendant water droplet due to the electric field
induced by the voltage applied by the E–DEP experimental setup. Video S2: Detachment of a
pendant water droplet due to the illumination of an iron-doped lithium niobate crystal by the P–DEP
experimental setup.
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