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This document describes the dimensionless equation set-up for the elastohydrodynamic lubrication model
with tensioned webs. The equation parameters are not introduced in full detail. Their explanation can be
found in the main publication and the nomenclature in Appendix B.

A Dimensionless equations

The dimensionless hydrodynamic film pressure P, tensioned web contact pressure Pg, film height H, elastic
deformation components U and W, and spatial coordinates X and Z are defined as follows:
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The parameters ay and py correspond to the Hertz dry contact half-width and peak pressure, respectively.
They are based on the mechanical properties of the elastomeric layer:
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As it is assumed that all elastic deformation occurs in the elastomeric layer, the effective elastic modulus re-

duces to:
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The dimensionless scaling results in a fixed computational domain, irrespective of the process parameters,
which offers the advantage of re-using numerical solutions in parameter sweeps for faster computation. The
computational domain and corresponding mesh are shown in Figure 1. It has a dimensionless length of 20

and unit dimensionless height, due to the above definition of X and Z.

Figure 1: Dimensionless computational domain and mesh.

A.1 Elastic deformation

The elastic deformation is determined by applying the classical linear elasticity equations on the elastic layer
domain Q in Figure 1, with appropriate boundary conditions. The dimensionless linear elasticity equations
are given by [1]:
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where A and p correspond to the Lamé parameters:
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and where E.q corresponds to the equivalent elastic modulus of the elastic layer, which is defined as follows:
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The elastic modulus is multiplied by ay /R, to directly obtain the dimensionless displacement vector. Further-
more, it is divided by py, such that the dimensionless tensioned web contact pressure Pc can be used as a
pressure load on domain boundary 6Qc [1]. The upper boundary 6Q7 in Figure 1 is fixed.

A.2 Hydrodynamic lubrication

The dimensionless, steady-state, incompressible Reynolds equation in one dimension is given by:
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The Reynolds equation is applied on domain 0Qg in Figure 1, with zero pressure boundary conditions. The
hydrodynamic film pressure P is determined for a given layer height profile H:
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where Hy is the unknown dimensionless gap between the roller and substrate at X = 0. The second term is

an approximation to describe the circular roller shape, and the last term represents the dimensionless elastic
deformation, which follows from Equation (4).

A.3 Web tension

The dimensionless tensioned web contact pressure Pc is given by:
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It is applied on domain 0Q in Figure 1, with zero pressure boundary conditions.

A.4 Load balance

The dimensionless load equilibrium is given by:
f Pdx=12. (10)
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This equation is satisfied by regulating the gap Hy in Equation (8), which is one of the unknowns in the system
of equations.

B Nomenclature

Dimensional Dimensionless

ay  Hertz contact half-width (m) H Film/layer height (-)

E Elastic modulus (Pa) H, Gap between roller and substrate at X =0 (-)
E Effective elastic modulus (Pa) p Hydrodynamic film pressure (-)

f Liquid volume fraction (-) Pc Tensioned web contact pressure (-)



Elastic deformation in X (-)

Elastic deformation in Z (-)

Space coordinate in horizontal direction (-)
Space coordinate in vertical direction (-)

h Film/layer height (m)

ho Gap between roller and substrate at x =0 (m)
hc Central layer height (m)

hg Final layer height (m)

hy Minimum layer height (m)

p Hydrodynamic film pressure (Reynolds) (Pa)
pc Tensioned web contact pressure (Pa)

pa Hertz contact pressure (Pa)

Pn Normal pressure on the tensioned web (Pa)
R Roller radius (m)

T Web tension (Nm™1)
t
u
uy
up

N XS C

Elastomeric layer thickness (m)
Elastic deformation in x (m)
Roller surface imprint velocity ms™h
Substrate surface imprint velocity (ms™h
w Elastic deformation in z (m)
w Effective imprint load per unit length (Nm™1)
X Space coordinate in horizontal direction (m)
z Space coordinate in vertical direction (m)
Zroller ROller height profile (m)
Resin dynamic viscosity (Pas)
Cavity fraction (1 - f) (-)
Curvature of the tensioned web (m™!)
Lamé’s first parameter (Pa)
Lamé’s second parameter (Pa)
Poisson ratio (-)
n Normal component of the stress tensor (Pa)
Tangential component of the stress tensor (Pa)
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