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Abstract: In this paper, we researched Pedestrian Dead Reckoning (PDR) with one foot-mounted IMU
sensor. The issues of PDR are magnetism noise and accumulated error due to the noise included in
acceleration and gyro data. Two methods are proposed in this paper. First is the gait-phase-estimation
method with pitch angle for the Zero Velocity Update algorithm. Second is a method for avoiding
accumulated errors by updating the roll and pitch angles with acceleration. The two experiments
were conducted to examine the error of gait-phase estimation and distance estimations. The relative
error of distance was about 7.40% in the case of walking straight and about 12.27% in the case of a
shifting travel direction.

Keywords: PDR; zero velocity update; gait phase estimation; kalman filter

1. Introduction

PDR is the one of the technologies to estimate pedestrian position. PDR contributes to
navigation systems. Navigation systems should use GPS or PDR technology depending on
the situation. For example, a navigation system navigates a person using GPS when they
are in the outdoors and navigates a person using PDR when they are in an underground
pathway. There are technologies for navigation systems, such as GPS; however, GPS is
unsuitable for an indoor navigation system. Navigation systems with IMU sensors are
suitable for indoor navigation systems.

IMU-based PDR technologies have been explored in detail by the other papers,
and there are advantages, such as no effects from circumjacent objects except for elec-
tronic goods in IMU-based PDR. There are technologies to estimate a pedestrian’s position,
such as methods using ultrasound waves or beacons. Pedestrian position estimation by
these methods are affected by circumjacent objects.

However, there are two main disadvantages in IMU-based PDR methods. First is the
accumulated error in estimating velocity. Second is the accumulated error in estimating
attitude angles. Generally, the first issue is handled by a Zero Velocity Update algorithm,
and the second issue is handled by sensor-fusion methods, such as a Kalman filter and
Complementary filter. The development of high accuracy mid-stance detection algorithms
for Zero Velocity Updates is needed.

Therefore, in this paper, we proposed new methods to solve these two issues. First
is the gait-phase-estimation method for the Zero Velocity Update algorithm. This detects
the mid-stance phase. The pitch angle is the focus in this method. When a foot is in
mid-stance phase, the pitch angle and the gyro of the foot-mounted IMU sensor will
be nearly 0. Secondly, the roll/pitch update method handles the accumulated error in
attitude angles. The roll and pitch angles are calculated by integrating the gyro during
gait phases, except for mid-stance, and they update the roll and pitch angles using the
acceleration measured in each mid-stance phase. The main contributions of this paper are
two proposed methods:
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• The gait-phase estimation method for Zero Velocity Updates.
• The roll/pitch update method that, during the mid-stance phase, updates the roll and

pitch angles using the acceleration measured in each mid-stance phase.

This paper is organized in five sections, with the Introduction in Section 1, Related
Works in Section 2, the System and Method in Section 3, Experiments in Section 4 and our
Conclusions and Future Work in Section 5.

2. Related Works
2.1. Application Model

A pedestrian wears an IMU sensor on their left shoe. Figure 1 shows application model.

Figure 1. Application model.

2.2. IMU Sensors and Deployment Positions for PDR

In this research, a low-cost IMU sensor was used. There are tactical-grade IMU
sensors, such as STIM202 [1], STIM300 [2]. Tactical-grade IMU sensors have much better
performance compared with low-cost IMU sensors. However, tactical-grade IMU sensors
are not suitable for navigation system in daily life because the price is expensive. In this
paper, a low-cost IMU sensor is mounted on a shoe because it is easy to detect the mid-
stance phase for Zero Velocity Updates. There are papers on PDR using smartphones, such
as [3–5]. A paper [4] (A. Poulose et al.) described that the advantage of using smartphone-
based position-estimation systems is that this requires no additional peripherals devices
except for the smartphone itself. However, according to the paper [3] (S. Park et al.), the zero
velocity phase rarely occurs in the case of Zero Velocity Updates (ZUPT) in the smartphone.

2.3. Related Works for the First Issue and Second Issue

In the paper [6] (H. Fourati), a method using the Complementary filter instead of
Extended Kalman filter was proposed. The paper [6] presented the Quaternion-based
complementary filter. MTI-IMU produced by Xsens was used for the experiments of [6].
The measurement error in positioning was about 0.4%.

In the paper [7] (Z. Xiao-dong et al.), a new Zero Velocity Update algorithm using
Kalman filter and Particle filter was proposed. An IMU sensor produced by Xsens was
used in the experiments of [7]. The measurement error in positioning was less than 0.5%.

In the paper [8] (L.-F.Shi et al.), a novel orientation estimation and gait-phase detection
algorithm were proposed. The paper [8] proposed a Zero Velocity Update and orientation
and velocity calibration method. The experiments of [8] were conducted indoors and
outdoors, attaching an MPU9250 IMMU to the foot. The average distance error was less
than 1.2%.

2.4. Summary

In previous studies, the orientation and velocity calibration method [8] and methods
using sensor-fusion methods, such as Quaternion-based Complementary filter [6], Kalman
filter and Particle filter [7] were proposed to handle accumulated error issues. In addi-
tion, many gait-phase detection algorithms have been proposed to improve Zero Velocity
Updates as well.
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Therefore, in this paper, the roll/pitch update method and gait-phase-estimation
method are proposed with the aims of handling accumulated errors in attitude angles and
improving the Zero Velocity Update method.

3. System and Method
3.1. System Architecture

Figure 2 shows the system architecture. There are 11 steps. The gyro and magnetism
data are calibrated in step 0. After that, the acceleration, gyro and magnetism data are
input. In step 1 to step 3, all input data are filtered by the simple moving average. In step 4,
gait-phase estimation is conducted to detect mid-stance phase. In step 5, the gyro data of
the pitch angle and roll angles are integrated, and the roll and pitch angles are updated
mid-stance using acceleration. In step 6, the gyro and magnetism data are fused to calculate
the yaw angle. In step 7, the acceleration is converted from local coordinates to global
coordinates. In step 8, the acceleration is integrated to calculate the velocity, and the
Zero Velocity Update is conducted. In step 9, the velocity is integrated to calculate the
position vector. In step 10, the pedestrian position is estimated using the yaw angle and
position vector.

Figure 2. System architecture.

3.2. Data Preprocessing (Step 0)

Before the data are processed, the gyro and magnetism data are calibrated. In the gyro
calibration, gyro offsets are eliminated by subtracting the gyro data for calibration from
the raw gyro data. In the magnetism calibration, the gap of the ellipse center is measured,
and the raw magnetism data are modified with the measured gap.

3.3. Low-Pass Filter (Step 1, 2, 3)

Acceleration, gyro, and magnetism data are filtered with a low-pass filter and simple
moving average. The definition of the simple moving average is shown in Equation (1).
a f iltered,n and araw,n denote filtered data and raw data, respectively.

a f iltered,n =
1

2w + 1

n+w

∑
k=n−w

araw,k (1)

In this paper, n denotes the index. 2w + 1 is the window size. The window size is set
to 21 (w = 10).

3.4. Gait Phase Estimation (Step 4)

We propose a method to estimate the gait phase with pitch angle. According to the
papers [6,9], there are two phases, the stance phase and the swing phase in the gait phase.
Furthermore, according to [9], there are the pre-stance, mid-stance and terminal stance
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in the stance phase, and there are the pre-swing, mid-swing and terminal swing in the
swing phase. Figure 3 shows six gait phases. According to the paper [10], the pitch angle is
obtained with Equation (2).

θa = tan−1 −ax√
a2

y + a2
z

(2)

Equation (2) is used for our method. Let θa,n = tan−1 −ax,n√
a2

y,n+a2
z,n

. θa,n denotes θa

measured in n-th time. The algorithm to estimate the gait phases is as follows.
Step 1: Conduct the low-pass filter to θa,n

2 and ωy,n
2.

θ′a,n
2
=


θa,n

2 if n ≤ w ∨ N − w ≤ n

1
2w+1

n+w

∑
i=n−w

θa,n
2 else

(3)

ω′y,n
2
=


ωy,n

2 if n ≤ w ∨ N − w ≤ n

1
2w+1

n+w

∑
i=n−w

ωy,n
2 else

(4)

N: Length of the data
Step 2: Estimate the gait phase into Label Ln

Ln =

{
1 if θ1 ≤ θa,n

2 ∨ θ2 ≤ ωy,n
2

0 else
(5)

where θ1, θ2 denote thresholds. θ1 is set to 0.1, and θ2 is set to 0.2. If Ln = 0, it is estimated
as mid-stance. Otherwise, if Ln = 1, it is not estimated as mid-stance.

Figure 3. Gait phases (there are six gait phases).

3.5. Integration and Roll and Pitch Update (Step 5)

The method for avoiding accumulated errors in attitude angles is proposed for use in
a ramp. In the paper [8] (L.-F.Shi et al.), they make an assumption that the roll and pitch
angles are assumed to be the same as the initial value during each stance phase. In the
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paper [8], a method based on this assumption is proposed. However, in the case of a ramp,
their assumption does not hold.

In the method in this paper, during each mid-stance phase, the roll and pitch angles are
updated to φa and θa as measured in each mid-stance phase. On the other hand, the gyro is
integrated during the other gait phases. According to the paper [10], Equation (6) can be
used to obtain the pitch angle.

φa = tan−1 ay

az
(6)

Equations (2) and (6) are used for the roll/pitch update method. The trapezoidal rule
is used for integration. The trapezoidal rule is shown in the following equation.

∫ b

a
f (t)dt ≈

N−1

∑
n=0

∆t
2
( fn + fn+1) (7)

∆t is 1/Sampling rate, f0 = f (a), fN = f (b) and fn+1 = f (t + ∆t) when fn = f (t).
The integration and roll and pitch update method is implemented with the recurrence

Formula (8).

[
θn
φn

]
=



tan−1 −ax,n√
a2

y,n+a2
z,n

tan−1 ay,n
az,n

 if Ln = 0[
θn−1

φn−1

]
+ ∆t

2 (

[
ωy,n

ωx,n

]
+

[
ωy,n+1

ωx,n+1

]
) if Ln = 1

(8)

Figure 4 shows the comparison between roll and pitch angles obtained by only inte-
gration and roll and pitch angles obtained by (8). It is confirmed that the orange lines show
less drift than the blue lines.

Figure 4. Comparison between attitude angles by only integration and attitude angles by integration
with the roll/pitch update (the horizontal axes and vertical axes denote the index and roll or pitch
angle [rad], respectively).

3.6. Kalman Filter (Step 6)

The Kalman filter is implemented with the following status equation and observa-
tion equation.

ψk = ψk−1 + ∆tωz,k + wk (9)
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zk = ψk + vk (10)

wk, vk and ψk denote the system noise, the observation noise and the yaw angle in the k− th
time, respectively. The observation vector zk is−atan2(mx,k, my,k)− ψ′0. ψ′0 is the average of
−atan2(mx,k, my,k) from index k = 0 to k = 399. Let ψk be status vector x̂k, A = 1, B = ∆t,
uk = ωz,k and H = 1.

According to [11], the prediction equations are defined from (11) to (12).

x̂−k = Ax̂k−1 + Buk−1 (11)

P−k = APk−1 AT + Q (12)

According to [11], the update equations are defined from (13) to (15).

Kk = P−k HT(HP−k HT + R)−1 (13)

x̂k−1 = x̂−k + Kk(zk − Hx̂−k ) (14)

Pk = (I − Kk H)P−k (15)

I denotes the unit matrix. The filter deviation matrix P0 is set to 100, and Q and R are set
to 1.0× 10−5, 1.0× 102.

3.7. Coordinate Conversion (Step 7)

The acceleration is converted from local coordinates to global coordinates with Quater-
nion. Quaternion q is represented as q = q0 + q1i + q2 j + q3k. Let u = u0 + u1i + u2 j + u3k,
al = axi + ay j + azk and ag = aXi + aY j + aZk. u, al and ag denote Quaternion, which
represents rotation, acceleration in the local coordinate and acceleration in the global
coordinate, respectively.

u0
u1
u2
u3

 =


cos ψ

2 cos θ
2 cos φ

2 + sin ψ
2 sin θ

2 sin φ
2

cos ψ
2 cos θ

2 sin φ
2 − sin ψ

2 sin θ
2 cos φ

2
cos ψ

2 sin θ
2 cos φ

2 + sin ψ
2 cos θ

2 sin φ
2

− cos ψ
2 sin θ

2 sin φ
2 + sin ψ

2 cos θ
2 cos φ

2

 (16)

ψ, θ and φ denote the yaw angle, pitch angle and roll angle, respectively. The local coordi-
nate is converted to a global coordinate with the following equation.

ag = ual ū (17)

ū denotes the conjugate Quaternion of u. Figure 5 shows the comparison between the
accelerations in the local coordinate and in the global coordinate.

3.8. Integration and Zero Velocity Update (Steps 8 and 9)

Zero Velocity Update is used for reducing the drift. The foot velocity is almost 0
when the foot state is in the mid-stance. From the trapezoidal rule and Zero Velocity
Update, the foot velocity vn and position vector rn are calculated with the following
recurrence equation.

vn =


0 ∈ R2 if Ln = 0

vn−1 +
∆t
2 (

[
aX,n

aY,n

]
+

[
aX,n+1

aY,n+1

]
) if Ln = 1

(18)

rn = rn−1 +
∆t
2
(

[
vX,n
vY,n

]
+

[
vX,n+1
vY,n+1

]
) (19)

(v0 = 0 ∈ R2, r0 = 0 ∈ R2)
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Figure 6 shows the comparison between the velocity obtained by only integration and
the velocity obtained by the Zero Velocity Update and integration.

Figure 5. Comparison between local coordinates and global coordinates (The horizontal axes and
vertical axes denote the index and acceleration [m/s2], respectively).

Figure 6. Comparison between the velocity obtained by only integration and the velocity obtained
by the Zero Velocity Update and integration (the horizontal axes and vertical axes denote the index
and velocity [m/s], respectively).

3.9. Pedestrian Position Estimation (Step 10)

The pedestrian position is estimated on the complex plane using the following equations
(Figure 7).

p′n = pn−1 + ||rn − rn−1||i (20)

pn = (p′n − pn−1eiψn) + pn−1 (21)
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(p0 = 0)
pn is the pedestrian position.

Figure 7. The pedestrian position in the global coordinates (pn and pn−1 denote the current pedestrian
position and previous pedestrian position, respectively. Coordinate (pX , pY) is the global coordinate
of the floor).

4. Experiments

The two experiments were conducted for accuracy examination of the system. The ex-
periments were conducted indoors. Figure 8 shows the implementation of the system,
and Figure 9 shows the location of the IMU sensor. The IMU sensor (Wonder-Sense,
developed in our laboratory) was used.

Figure 8. Implementation of the experiments.

4.1. Exp. 1: Gait Phase Estimation Test

This experiment’s objective is accuracy examination for gait-phase estimation. We de-
fined the True label by synchronizing the collected data with videos taken during collecting
the data. If the True label is 0, this indicates mid-stance. On the other hand, if the True label
is 1, this indicates the other gait phases. The estimation error (ER) is calculated with the
below equation.

ER = (1− True Positive
True Positive + False Negative

)× 100 [%] (22)

Table 1 shows the estimation error of mid-stance by the gait-phase-estimation algo-
rithm shown in Section 3.4. Three sets of straight walking data of one person were collected.
Figures 10–12 show the wave-form of data collected in first time, second time and third
time. The wave-form in the first line shows the acceleration data in the x axis (acceleration
data of the traveling direction) in local coordinates. The wave-form in the second line
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shows the squared pitch angle θ′a,n
2. The wave-form in the third line shows the squared

pitch angle’s gyro ω′y,n
2. The wave-form in the fourth line shows a comparison between

the true label and estimated label.

Figure 9. The placement location of the IMU sensor on a shoe.

The gait-phase-estimation algorithm should be improved from the data in Table 1.
Estimation error of mid-stance was about 7.34% in average. However, each estimation
error is scattered. A reliable gait-phase-estimation algorithm should have a lower error and
low variance.

Table 1. The results of Experiment 1.

Estimation Error of Mid-Stance [%] Measurement Time [s]

first time 7.38 16.2

second time 4.66 15.3

third time 9.99 15.6

Figure 10. The wave-form of the data from the first data collection.
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Figure 11. The wave-form of the data from the second data collection.

Figure 12. The wave-form of the data from the third data collection.

4.2. Exp. 2: Test for Estimation of Walking Trajectory

This experiment’s objective was the examination of the accuracy of the trajectory
estimation. The relative error (RE) shown in the following equation calculates the accuracy
of the distance estimation.

RE=
Estimated distance−Walked distance

Walked distance
× 100 [%] (23)

Figure 13 shows the walking routes of this experiment. Figures 14–16 show the esti-
mated walking trajectory. Tables 2–4 show the results of the estimated distance. The walking
data of one person were collected. This experiment was conducted in the laboratory.
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The relative error of distance is much larger than in related studies, and the yaw angle
estimation is not good as shown Figures 15 and 16. One of the possible reasons for the
bad yaw angle estimation is the effect of magnetism from the other electronic devices. It is
possible that the Kalman filter could not accurately estimate the yaw angle due to the large
magnetism noise. Therefore, the yaw angle estimation in this paper should be improved
referring to papers on the heading estimation method, such as [12,13].

Figure 13. The walking routes of Experiment 2.

Figure 14. The results of route 1.

Table 2. The results of route 1.

Walked Distance [m] Estimated Distance [m] Relative Error [%] Measurement Time [s]

1 (d = 1) 0.88 −11.964 11.9

2 (d = 2) 1.893 −5.355 13.3

3 (d = 3) 2.887 −3.752 14.3

4 (d = 4) 3.658 −8.545 12.5
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Table 3. The results of route 2.

Walked Distance [m] Estimated Distance [m] Relative Error [%] Measurement Time [s]

4.7 (d = 2) 4.911 4.491 17.0

6.7 (d = 3) 7.846 17.103 17.6

8.7 (d = 4) 9.061 4.147 18.3

Figure 15. The results of route 2.

Figure 16. The results of route 3.
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Table 4. The results of route 3.

Walked Distance [m] Estimated Distance [m] Relative Error [%] Measurement Time [s]

8 7.883 −1.466 20.8

16 (1 round-trip) 19.688 23.049 28.9

32 (2 round-trip) 37.357 16.739 47.5

48 (3 round-trip) 54.02 12.541 67.8

64 (4 round-trip) 71.809 12.201 85.8

80 (5 round-trip) 91.037 13.797 101.4

96 (6 round-trip) 110.206 14.798 114.1

112 (7 round-trip) 128.723 14.931 129.9

5. Conclusions and Future Work

The norm of the relative errors of distance was about 7.40% in the case of straight
walking and a short distance. On the other hand, the relative error of distance was about
12.27% in the case of a shifting travel direction. In comparison with with related research,
the relative errors of the system in this paper were larger. In particular, the relative error
of distance was much larger in the shifting travel direction. Future work must verify the
accuracy of the system for the case of walking on a ramp. We could not verify this due to
time constraints in our research. In addition, the roll/pitch update method in Section 3.5
was proposed in the case of a ramp, and the gait-phase-estimation method in Section 3.4
was proposed in the case of no ramp. Therefore, the gait-phase-estimation method should
be modified when the roll/pitch update is verified in the case of walking on a ramp.
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