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Abstract: Tool condition monitoring (TCM) is of great importance for improving the manufacturing
efficiency and surface quality of workpieces. Data-driven machine learning methods are widely used
in TCM and have achieved many good results. However, in actual industrial scenes, labeled data are
not available in time in the target domain that significantly affect the performance of data-driven
methods. To overcome this problem, a new TCM method combining the Markov transition field (MTF)
and the deep domain adaptation network (DDAN) is proposed. A few vibration signals collected
in the TCM experiments were represented in 2D images through MTF to enrich the features of the
raw signals. The transferred ResNet50 was used to extract deep features of these 2D images. DDAN
was employed to extract deep domain-invariant features between the source and target domains,
in which the maximum mean discrepancy (MMD) is applied to measure the distance between two
different distributions. TCM experiments show that the proposed method significantly outperforms
the other three benchmark methods and is more robust under varying working conditions.

Keywords: tool condition monitoring; transfer learning; deep learning; domain adaptation; Markov
transition field; variable conditions

1. Introduction

The computerized numerical control (CNC) machine is a part of the important equip-
ment in the advanced manufacturing industry. As one of the core components of the CNC
machine, the cutting tool is the most vulnerable and wasteful component [1,2]. Along
with the increasing wear of the tool, the cutting force, cutting heat, and cutting vibration
increase significantly, which will lead to the decline of the workpiece’s surface quality. To
achieve efficient machining processes, many researchers have conducted numerous studies
on the wear mechanism of tools [3–5]. Zhang et al. [6] investigated diamond scratches
during ultra-precision grinding. Wang et al. [7] used diamond tools to grind the cracks and
studied the microstructure of the surface in detail. This method opens a new pathway to
investigate the fundamental mechanisms of cutting [8]. In addition, a novel model of the
maximum undeformed chip thickness is suggested for cutting, which is in good agreement
with the experimental results [9]. However, the lack of timely tool change will affect the
quality of the workpiece and even cause damage to the machine. Therefore, it is necessary
to develop a reliable and robust tool condition monitoring (TCM) system to achieve timely
tool replacement and make full use of the tool [10,11].

Since the late 1980s, TCM has been widely studied [12,13]. Since the mechanical
equipment is becoming increasingly complicated, the traditional condition monitoring
methods based on physical models and signal processing techniques have been less ef-
fective in TCM. With the great promotion of big data technology, data-driven methods
have shown remarkable superiority in processing complex signals [14,15], which have
also been introduced in TCM. For example, Yu et al. developed a novel approach based
on the weighted hidden Markov model for tool remaining life prediction and tool wear
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monitoring [16]. Benkedjouh et al. proposed a nonlinear feature reduction and support
vector regression for tool condition monitoring and remaining life prediction [17]. Pri-
eto et al. proposed a deep neural network based on convolution long- and short-term
memory (CLSTM) to predict vibration data of rotating machinery [18]. Mikolajczyk et al.
presented a two-step method to automatically predict tool life in turning operations [19].
However, these data-driven methods need sufficiently labeled training samples to learn
the model [20,21], which is difficult for TCM in the machining process due to the high cost
of a lot of experiments [22]. The performance of data-driven methods could be poor with
few labeled training samples [23,24]. To solve this problem, transfer learning (TL) has been
developed with a small labeled sample in the target domain [25–27]. Li et al. proposed a
partial domain adaptation method to achieve fault diagnosis [28]. Guo et al. developed a
new intelligent method called the deep convolutional transfer learning network by using
unlabeled data [29]. Chen et al. proposed a novel method for calibrating data labels using
transfer learning algorithms that provides important insights into the application of unsu-
pervised learning in wind turbine fault diagnosis [30]. Yang et al. proposed a feature-based
transfer neural network (FTNN) that utilizes laboratory diagnostic knowledge to identify
the health status of actual cases [31]. Marei et al. developed a convolutional neural network
(CNN) method based on a transfer learning strategy to predict the tool conditions [32]. The
above-mentioned works are helpful to build a transfer learning-supported TCM. However,
in the actual industrial scene, there are missing categories in the target domain and varying
working conditions, leading to the distributions between training data (source domain)
and testing data (target domain) being significantly different, which dramatically lowers
the performance of TL-based methods [33,34].

To overcome this problem, here, a new TCM method is proposed based on the Markov
transition field (MTF) and the deep domain adaptation network (DDAN). MTF is employed
to encode raw signals into 2D images according to the timeline, which can enrich the
features of raw signals to assist the monitoring model in learning the condition pattern of
tools. Transferred ResNet50 is employed to extract the deep features of these 2D images.
Then, the extracted deep features of the source domain and target domain are adapted by
the DDAN with maximum mean discrepancy to realize good performance under varying
working conditions and missing categories.

The rest of this paper is organized as follows. Section 2 introduces the theoretical
background, Section 3 presents the proposed method, Section 4 discusses the experimental
settings and the analysis of the results, and the conclusion is presented in Section 5.

2. Theoretical Background
2.1. Markov Transition Field

MTF was proposed by Wang and Oates in 2015 and encodes one-dimensional time-
series data into 2D images with time sequence [35].

An m-states Markov chain with states: s1, . . . , sm, can be represented by an m×m
Markov transition matrix, Pmm, where pij is the probability of state si transiting to state sj,
∑i pij = 1, and 1 ≤ i,j ≤ m, as shown in Equation (1):

Pm×m =


p11 p12 · · · p1m
p21 p22 · · · p2m

...
...

. . .
...

pm1 pm2 · · · pmm

 (1)

Given a timeseries X = (x1, x2 , . . . , xn), a data point xt at time step t (1 ≤ t ≤ n) is
first normalized using min–max normalization and scaled to between 0 and 1, as shown in
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Equation (2). Then, X is assigned to a corresponding state sj (or a quantile bin, qj), where
1 ≤ j ≤ m, and m is the number of states (or quantile bins).

X =
X−min(X)

max(X)−min(X)
(2)

In this way, an m×m Markov transition matrix, Pmm, associated with the timeseries X
can be derived by first calculating cij (1 ≤ i, j ≤ m), which is the count of data points
in state si transiting to state sj. Afterwards, each entry, pij, of Pmm can be derived as
pij=cij/ ∑i cij. It can be easily checked that ∑i pij = 1. In practice, MTF captures the multi-
span transition probability between any two data points in X, and constructs a transition
matrix, Mn×n= pij( 1 ≤ k, l ≤ n, and 1 ≤ i, j ≤ m) , as shown in Equation (3), in
which pij is the probability that state si of data point xk at time step k transits to state sj of
data point xl at time step l. Compared with the Markov transition matrix, the MTF has
extra-temporal information besides state transition possibilities. It is thus more suitable
for representing and extracting features of timeseries. For a timeseries of a number, n, of
data points, its associated MTF is an n×n matrix, which is usually regarded as an image to
analyze and visualize. The characteristic representation flowchart of the one-dimensional
timeseries processed by MTF is shown in Figure 1.

Mn×n =


pij
∣∣x1 ∈ si, x1 ∈ sj pij

∣∣x1 ∈ si, x2 ∈ sj · · · pij
∣∣x1 ∈ si, xn ∈ sj

pij
∣∣x2 ∈ si, x1 ∈ sj pij

∣∣x2 ∈ si, x2 ∈ sj · · · pij
∣∣x2 ∈ si, xn ∈ sj

...
...

. . .
...

pij
∣∣xn ∈ si, x1 ∈ sj pij

∣∣xn ∈ si, x2 ∈ sj · · · pij
∣∣xn ∈ si, xn ∈ sj

 (3)
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2.2. Domain Adaptation

Traditional machine learning algorithms perform poorly when the training and test
data come from different distributions. In this case, domain adaptation becomes useful [36].
A domain consists of a data space, x, and a probability distribution, PX, on its samples
X ∈ x. Domain adaptation means to adapt useful knowledge from a source domain, S,
to a target domain, T. Specifically, we are provided a source dataset (XS, YS) = { (X 1

s , Y1
s ),

(X 2
s , Y2

s ), (X 3
s , Y3

s ), . . . , (Xm
s , Ym

s )} and a target dataset with limited unlabeled data (XT)
={ (X 1

t ), (X 2
t ), . . . , (X n

t
)
} for model building. The trained model is expected to demon-

strate great classification or regression accuracy on new target domain samples. Figure 2
illustrates the basic problem of domain adaptation.
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3. Proposed Method
3.1. Framework MTF-DDAN

The framework of the proposed TCM method based on the MTF and DDAN (MTF-
DDAN) is shown in Figure 3, including feature representation, feature extraction, domain
adaptation, and classification. In the proposed MTF-DDAN method, MTF is employed to
represent the implicit features of the original timeseries and ResNet50 as a feature extractor
to extract the high-dimensional features (H) in the samples. The DDAN model objective
function consists of the following two parts:

Micromachines 2022, 13, x FOR PEER REVIEW 5 of 14 

 

 

 
Figure 3. The MTF-DDAN framework. H represents the high-dimensional features extracted by the 
deep network, ℒclc(YS,Y෡S) refers to the classification loss function, YS,Y෡S represent source label and 
predicted label, respectively, ℒmmd(XS, XT) stands for MMD loss function, and XS and XT represent 
source and target data, respectively. 

3.2. MTF-DDAN Model Training Phase 
Due to the new processing conditions, it is difficult to obtain labeled data in time, 

and only unlabeled data can be obtained in the milling process and cannot be effectively 
learned using traditional deep learning methods. Firstly, the raw signals collected from 
the experiment could be represented in 2D images through MTF as training samples. Sec-
ondly, ResNet50 pre-trained on ImageNet [37] was chosen to extract deep features from 
the source and target domains. After feature extraction, DDAN can achieve domain-in-
variant knowledge learning by calculating MMD between two distributions in RKHS, au-
tomatically. It achieves the DDAN by using the Adam optimizer through the back-prop-
agation algorithm. 

In the model testing stage, timeseries signals collected by an acceleration sensor were 
characterized by MTF and input into the trained model for condition prediction. The 
model parameters are shown in Table 1. 

Table 1. Model parameters. 

Parameter Image Size Learning Rate Dropout Batch Size Optimizer Loss Function 
Value 224 × 224 × 3 5×e−4 0.5 8 Adam Cross-Entropy Loss 

4. Experiment Investigation 
4.1. Experimental Setup 

The milling experiments were carried out on a CNC milling machine (DMTG 
VDL850A), and AISI 1045 steel was used as the workpiece material with L300 mm × W100 
mm × H80 mm. The cutting tool is a three-flute uncoated carbide end-milling cutter with 
a 10 mm diameter. Milling experiments were tested via dry milling. Experimental settings 
are shown in Figure 4.  

Figure 3. The MTF-DDAN framework. H represents the high-dimensional features extracted by the
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(1) The basic classification loss (Lclc) for source supervised learning. This part uses
a typical supervised learning scheme for source domain data only and employs a cross-
entropy loss function.

(2) The maximum mean discrepancy (MMD) loss (Lmmd) between the distributions
of Ds and Dt. MMD is a method of distance measurement which measures the distance
between two different but similar distributions in the reproducible kernel Hilbert space,
Hk(RKHS). It is a kernel learning method that maps the original variables into the RKHS
space. MMD can be estimated using Equation (4):

MMD2
k(Ds, Dt) =

∥∥∥∥∥ 1
m

m

∑
i=1

ϕ(xs
i )−

1
n

n

∑
j=1

ϕ(xt
j)

∥∥∥∥∥
2

Hk
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The MMD value is expected to be a small quantity if the distributions of Ds and Dt
are similar, where φ(·) is the nonlinear mapping from the original feature space to RKHS,
representing the features extracted by the deep model. The inner product in the RKHS
space can be converted into a kernel function, so MMD can be calculated directly from the
kernel function, as shown in Equation (5):

MMD2
k(Ds, Dt) =

1
m2

m

∑
i=1

m

∑
j=1

k(xs
i , xs

j )−
1

mn

m

∑
i=1

n

∑
j=1

k(xs
i , xt

j) +
1
n2

n

∑
i=1

n

∑
j=1

k(xt
i , xt

j) (5)

where k(·, ·) is a kernel function. Here, the Gaussian kernel function is used as the charac-
teristic kernel. Two different domain features would be drawn closer in Hk by minimizing
Equation (5).

3.2. MTF-DDAN Model Training Phase

Due to the new processing conditions, it is difficult to obtain labeled data in time,
and only unlabeled data can be obtained in the milling process and cannot be effectively
learned using traditional deep learning methods. Firstly, the raw signals collected from
the experiment could be represented in 2D images through MTF as training samples.
Secondly, ResNet50 pre-trained on ImageNet [37] was chosen to extract deep features
from the source and target domains. After feature extraction, DDAN can achieve domain-
invariant knowledge learning by calculating MMD between two distributions in RKHS,
automatically. It achieves the DDAN by using the Adam optimizer through the back-
propagation algorithm.

In the model testing stage, timeseries signals collected by an acceleration sensor were
characterized by MTF and input into the trained model for condition prediction. The model
parameters are shown in Table 1.

Table 1. Model parameters.

Parameter Image Size Learning Rate Dropout Batch Size Optimizer Loss Function

Value 224× 224× 3 5×e−4 0.5 8 Adam Cross-Entropy Loss

4. Experiment Investigation
4.1. Experimental Setup

The milling experiments were carried out on a CNC milling machine (DMTG VDL850A),
and AISI 1045 steel was used as the workpiece material with L300 mm×W100 mm×H80 mm.
The cutting tool is a three-flute uncoated carbide end-milling cutter with a 10 mm diame-
ter. Milling experiments were tested via dry milling. Experimental settings are shown in
Figure 4.

The experiment implemented a total of three tools to simulate the complex working
conditions in the machining process. The parameters of each experimental procedure are
variable, and D1, D2, and D3 were combined to construct the source domain dataset and
the target domain dataset. Experiment parameters are displayed in Table 2.

Vibration signals are mainly caused by dynamic components in the cutting force, which
are closely related to the dynamic characteristics of the whole cutting system [38,39]. It often
contains the most abundant condition information in the process of machining. Compared
with a dynamometer, a single acceleration sensor has the advantages of low cost, convenient
installation, and does not affect normal machining. The acceleration sensor was installed
on the lower surface of the workpiece, and data were collected by employing a signal
acquisition device (ECON dynamic signal analyzer, as shown in Figure 4b). The sampling
frequency was set to 12,000 Hz. Tool wear was measured using a tool microscope (GP-300C)
containing a CCD camera (Figure 4d). The end-milling cutter was placed vertically under
the microscope to measure the wear length of each blade. Figure 5 shows the time domain
signals of three milling tools, where each tool is plotted with three different wear states,
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from top to bottom showing slight wear, stable wear, and sharp wear, respectively. In
general, there were differences in the signals with different cutting parameters. It can be
seen from Figure 5 that this difference was more obvious when the spindle speed was not
the same, and this case tended to have a negative transfer phenomenon, which made the
next experiments challenging.

According to ISO3685-1977, the tool wear is defined as the wear width VB on the side
of the tool, but since the variation of the wear width on the side is not obvious enough
during the actual experiment, which can easily lead to measurement errors, we chose the
maximum wear length on the end face of the tool as the wear standard, VB = Max (VB1,
VB2, VB3). Since the tool and the workpiece were dry-cut during our experiments, the
tool wear was relatively fast, and the offline measurement of tool wear was performed
once for every cutting of the same feed length of the milling cutter. Our milling cutter
reached the end of life after ten measurements, so we only divided the dataset into three
wear states: slight wear (VB ≤ 0.8 mm), stable wear (VB = 0.8~1.6 mm), and sharp
wear (VB ≥ 1.6 mm). Figure 6 shows the tool wear after 1, 5, and 10 finishes on a single
workpiece surface. Figure 7 shows the change in the wear value of the experimental tool at
each downtime measurement.
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4.2. Datasets’ Description

Six transfer tasks were designed to verify the effectiveness of MTF-DDAN, including
task 1 (D1→D2), task 2 (D2→D1), task 3 (D1→D3), task 4 (D3→D1), task 5 (D2→D3), and
task 6 (D3→D2). The left and right sides of “→” denote the source and target samples,
respectively, and the working conditions between the three domains were different. The
source domain dataset in each transfer task during the experiment was labeled during the
training process, and the target domain was unlabeled. In the experiments, the sample
size of both the source and target domain datasets was 300. Each sample contained
3000 data points of timeseries and was converted into 2D images with a size of 224 × 224
through MTF.

4.3. Results and Discussion

To verify the sensitivity of the experimental data to tool wear, we decomposed the
original signal into different frequency bands using wavelet packet decomposition, and
then analyzed the reconstructed signal for each band. Figure 8 shows the performance
of MTF-DDAN using different frequency band data. It can be seen that the important
information related to tool wear was mainly distributed in the low-frequency part of the



Micromachines 2022, 13, 873 9 of 12

frequency range (0~1500 Hz). Therefore, we used reconstructed signals in the (0~1500 Hz)
frequency band for different transfer task experiments.
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Figure 8. Classification accuracy (%) on MTF-DDAN in different frequency bands.

The prediction results of DDAN and three benchmark methods (AlexNet, ResNet, and
DAAN) on the six TCM transfer tasks are shown in Table 3 and Figure 9. The results of
each transfer task are the average of five times. From the average classification accuracy
of the six transfer tasks, it can be seen that the method proposed in this paper had a more
stable performance and can realize the condition monitoring of the tool in the case of
variable working conditions. Since there were missing labeled target data, the AlexNet and
ResNet50 methods were not adapted to train directly on unlabeled data and could only rely
on labeled source domain data. The DANN (dynamic adversarial adaptation network) is an
adversarial learning transfer method. It can be seen that DDAN significantly outperformed
the other methods in most transfer tasks and achieved comparable performance in task
4. D1 and D3 had great differences in cutting parameters: only the feed speed was the
same, which led to the poor performance in transfer tasks 3 and 4 compared to other tasks.
Transfer tasks 1 and 2 still showed more than 85% classification accuracy in the case of large
differences in cutting parameters, which was at least 4.47% higher than the other three
comparison methods. The classification accuracy improvement shows that our proposed
MTF-DDAN method can achieve better performance across different working conditions.

Table 3. Classification accuracy (%) on the TCM dataset with six transfer tasks.

Method D1→D2 D2→D1 D1→D3 D3→D1 D2→D3 D3→D2 Average

AlexNet 66.87 78.67 39.12 64.27 62.80 69.33 63.51
ResNet50 73.79 65.27 46.80 70.73 69.07 71.93 66.27
DAAN 82.40 77.20 68.40 79.00 74.80 67.40 74.87
DDAN 86.87 85.20 73.33 79.80 80.87 92.13 83.03

Figure 10 reflects the average standard deviation of each method for the six transfer
tasks, and it can be seen that the traditional deep learning methods using only source
domain data for training could not achieve better classification results in the target domain
and were less stable. The domain adaptation methods represented by DAAN and DDAN
had better results for tool condition monitoring under variable working conditions, and
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their stability had obvious advantages compared with other methods. In general, our
proposed DDAN can achieve better classification performance and stability under variable
working conditions.
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5. Conclusions

In this paper, a new TCM method combined with the Markov transition field and
the deep domain adaptation network (MTF-DDAN) was proposed. The experimental
results showed that the generic information related to tool wear under different working
conditions was mainly contained in the (0~1500 Hz) frequency band, which is helpful for
the following tool condition monitoring under variable working conditions. Six transfer
tasks’ result showed that the proposed method significantly outperformed three other
benchmark methods, whereby the average classification accuracy of the proposed method
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was at least 8% higher than that of the other methods. Therefore, the proposed method in
this paper holds the promise of being effectively applied to realistic machining processes
to accurately identify the wear condition of tools so that they can be replaced in time.
Furthermore, to improve the prediction accuracy of TCM, the kernel function and its
parameter of MMD could be optimized by data-driven methods, and the MTF could be
improved in the time and frequency aspects.
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