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Abstract: The aim of this work was a deep spectroscopical characterization of a thick 4H SiC epitaxial
layer and a comparison of results between samples before and after a thermal oxidation process
carried out at 1400 ◦C for 48 h. Through Raman and photoluminescence (PL) spectroscopies, the
carrier lifetimes and the general status of the epilayer were evaluated. Time-resolved photolumines-
cence (TRPL) was used to estimate carrier lifetime over the entire 250 µm epilayer using different
wavelengths to obtain information from different depths. Furthermore, an analysis of stacking fault
defects was conducted through PL and Raman maps to evaluate how these defects could affect the
carrier lifetime, in particular after the thermal oxidation process, in comparison with non-oxidated
samples. This study shows that the oxidation process allows an improvement in the epitaxial layer
performances in terms of carrier lifetime and diffusion length. These results were confirmed using
deep level transient spectroscopy (DLTS) measurements evidencing a decrease in the Z1/2 centers,
although the oxidation generated other types of defects, ON1 and ON2, which appeared to affect the
carrier lifetime less than Z1/2 centers.

Keywords: epitaxial growth; carrier lifetime; thermal oxidation process; 4H SiC; neutron detection;
longitudinal optical phonon plasmon coupling (LOPC); photoluminescence; time resolved
photoluminescence (TRPL); deep level transient spectroscopy (DLTS)

1. Introduction

The field of application of wide-band-gap solid-state detectors is expanding in those
environments where radiation hardness is an indispensable feature. Among these fields
of application are environments where high neutron flux is a problem, such as high flux
neutron sources and thermonuclear fusion environments. Among the materials used for
the detection application, silicon carbide (4H SiC polytype) could be considered the best
choice, particularly where environmental conditions are critical for other materials, such
as silicon [1,2], thanks to its radiation hardness. Nowadays, the best detectors used in
this field are diamond-based, single-crystal diamond (SCD), with important performances,
but the production capability of large-area wafers and the lower cost, with respect to the
diamond, allow the use of SiC material. In a previous paper, the comparison between
diamond and 4H SiC detectors with thicknesses of 100 micron was performed [3]. It has
been noted that the efficiency of diamond detectors increases with increasing thickness
because the probability of an interaction between the neutrons and the diamond substrate
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increases considerably. Then, also in the case of SiC, it is necessary to increase the thickness
of the SiC layer to increase the efficiency of the detector. This can be done by using semi-
insulating substrates that are 500 microns thick, or by trying to increase the thickness of the
epitaxy. The first approach has been used in the past, but the performance of the detector
was limited by the high defect densities of this material and its low carrier lifetime that
reduce its charge collection [4]. Furthermore, this approach also shows some polarization
effect and instability at high temperatures [5]. For this reason, a 250 micron epilayer was
grown with a high growth rate process and a low doping level. In a previous paper [6],
Kleppinger et al. characterized the defects in a 4H SiC Schottky barrier radiation detector
fabricated on 250 µm epitaxial layers, highlighting the possibility of using SiC detectors in
harsh environments. Epitaxy allows a high, precise control of thickness, homogeneity and
doping concentration. In a previous paper, the epitaxial growth mechanism of this process
using TCS (trichlorosilane) was described [7] and showed that it is possible to obtain
very low doping levels, sharp interfaces, a low density point and extended defects. All
these properties are important for neutron detectors. In fact, the low doping concentration
is fundamental to using a lower depletion voltage for a thick detector. The low point
defect density produces a large carrier diffusion length and then a good charge collection
efficiency of a detector, while the low density of extended defects generates a high yield
of the large-area detectors. In fact, from a previous paper it has been observed, through
simulation with the FLUKA tool [8], that both thickness and area are important to increment
a detector’s efficiency.

An in-depth study of the epilayer is critical to understand the performance of a future
device. Some growth parameters influence the quality of the final layer. Among all, the
conditions of growth rate and the Si/C ratio play an important role in the defect formation
and annihilation. Stacking fault (SF) defects are commonly present in the epitaxial layers.
In general, as reported by Kimoto [9] and La Via [10], they are obtained from basal plane
dislocation (BPD) propagation from the substrate into the epilayer, but they also can appear
directly in the epilayer during growth. Previous studies evidenced the influence of this SF
defect on the increment in the recombination current, and this recombination is dependent
on the levels introduced in the band gap by the different kinds of SF defects [11].

One of the main parameters that influence the performances of a device is the carrier
lifetime, and this parameter could be affected by various kinds of defects.

Carrier lifetimes in n-type 4H SiC have been intensively investigated in recent
years [12–14]. Despite the relatively long carrier lifetime obtained in previous studies [15,16],
it is possible to improve this parameter by identifying and reducing the causes that lead to
the reduction in the lifetime, therefore the killer defects.

Many types of defects can adversely affect the carrier lifetime, in particular the Z 1/2,
which is considered the dominant lifetime killer, and it is a common intrinsic defect in this
material. In previous studies, the influence of growth parameters during the CVD process
was evaluated [17–19]. Moreover, a direct correlation between Z1/2 centers and carrier
lifetime was defined through low-energy electron irradiation that allows a displacement of
carbon atoms, highlighting that this type of defect could be a carbon vacancy or carbon
interstitial [12,20]. There are some processes that allow reduction or elimination as either
carbon ion implantation [21,22] or thermal oxidation [23,24].

The Z 1/2 center, which is located at 0.65 eV below the conduction band edge, is now
recognized as the dominant lifetime killer, at least, in n-type 4H SiC. As described in the
literature, thermal oxidation or carbon ion implantation followed by high-temperature
annealing was used to eliminate or reduce the Z1/2 center concentration. On the contrary,
new depth levels, ON1 (EC −0.84 eV) and ON2 (EC −1.1 eV), are detected after thermal
oxidation or C+ implantation, followed by Ar annealing [21], which could be related to
interstitials diffusing from the SiO2/SiC interface (oxidation), or from the implanted region
(C+ implant). Although the effects of the centers ON1 and ON2 on the lifetime are negligible
with respect to the effects of the Z1/2 centers [25], they may have an effect, not yet well
identified, on the carrier lifetime but still less than that of the Z1/2 centers. The decrease in
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carrier lifetime is attributed not only to Z1/2, but also surface and interface recombination
and extended defects as staking faults [26,27].

In a previous paper, the effect of different stacking fault defects was evaluated [28],
and a decrement of carrier lifetime, on and around the SFs, was observed. In the present
work, the carrier lifetime in n-type 4H SiC was further improved by employing a high-
temperature and long oxidation process, 1400 ◦C for 48 h, for a very thick epilayer. In
order to obtain this information, PL and LOPC Raman spectroscopies were used. Time-
resolved photoluminescence was used to evaluate the carrier lifetime across the entire
epilayer, using different wavelengths of the source. The decrease in Z1/2 centers, which
led to an increase in the carrier lifetime after thermal oxidation process, was evaluated
using DLTS measurement. Then, a study of the influence of different kinds of SF defects
on the carrier lifetime was evaluated after the oxidation process and compared with a
non-oxidated sample.

2. Materials and Methods

A 4H SiC (0001), n-type, silicon face and an off axis of 4◦ was used as a substrate. A
thick (250 µm) and low-doped (5× 1013/cm3) epitaxial layer was grown using the chemical
vapor deposition process in a horizontal hot-wall reactor (LPE PE106).

The oxidation process was conducted after the deep cleaning of the sample with
acetone, isopropanol and methanol, each in an ultrasonic bath for five minutes. After an
RCA process (20 min), cleaning with piranha solution and HF was performed. Furnace
ramp up and ramp down was performed at 8 ◦C/min in Ar atmosphere, and then pure dry
O2 oxidation (0.5 L/min) at 1400 ◦C for 48 h was conducted.

Micro Raman and photoluminescence maps were acquired using an HR800 integrated
system Horiba Jobin Yvon [29] in the back scattering configuration. The accuracy of
the instrument at room temperature (±1 ◦C) is about ±0.2 cm−1. The spatial resolution
achievable with the motorized stage is 0.5 µm and is also used for spot laser definition. A
He-Cd Laser with a wavelength of 325 nm was used for these measurements. The laser
power was changed from 0.15 to 15 mW using different filters. A x40 objective was used to
focus the laser. The diameter of the laser spot was about 9 µm. This value was extracted
following the Raman signal across a metal line previously realized using photolithography.
Each Raman spectrum was collected with an acquisition time of about 1 s. For the lowest
laser power (0.15 mW), the acquisition time was increased (12 s) in order to obtain an
appreciable signal.

Time-resolved photoluminescence measurement was conducted using a 5 µs pulsed
lamp. The wavelengths of the polychromatic emission pulse were selected with a low
straylight double monochromator before reaching the sample. The luminescence decay
was recorded with a photomultiplier and using a decay-by-decay technique, with a time
window of 0.1 ms.

Deep level transient spectroscopy (DLTS) measurements were carried out by means of
a Sula Technologies, Ashland in Oregon (USA), double boxcar spectrometer with exponen-
tial correlator measurements in the temperature range 100–750 K by using rate windows in
the range 2–200 s−1.

3. Results and Discussion

The status of epitaxy evaluation was performed through room temperature photolu-
minescence to define the presence of SF defects. A comparison between the 4H SiC thick
sample before and after the thermal oxidation process was evaluated.

Photoluminescence spectroscopy allows the detection and analysis of different crys-
talline defects inside the epitaxial layer. These defects act as recombination centers and, in
some cases, we could define, in particular for bar-shaped SFs, the depth at which the defect
is generated, knowing its length and the step flow direction. Therefore, it is possible to
calculate if the SF defects start from the epilayer/substrate interface in the basal planes [30].
As shown in Figure 1a, a photoluminescence map of the entire 4-inch wafer was performed,
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evidencing the presence of some stacking fault defects, mostly located on the left edge of
the wafer, and this observation was confirmed by the wavelengths of the peaks obtained,
specific for this type of stacking fault. This position is generally observed in thick epilayer
growth and is due to the fact that the step flow is going from the left of the wafer to the
right and in the left border, the growth is on-axis, and the probability of stacking fault
formation is much higher than in the case of step flow.
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Figure 1. Photoluminescence analysis of the 4H SiC 4-inch wafer (a) and the common stacking fault
defect on the highlighted quarter of the wafer (b) located mainly on the edge side.

Only a quarter of the wafer was used for the oxidation process, in particular the area
delimited by the blue lines in Figure 1a. In this quarter, just two kinds of SFs are present,
at 430 and 490 nm of wavelength (Figure 1b), but we cannot see the presence of carbon
vacancies directly.

The most common defects that can strongly affect the carrier lifetime are not only the
carbon vacancies, defined as Z1/2 centers, but also extended defects, such as stacking faults.
In 4H SiC epilayers, the carrier lifetimes can be limited by other recombination paths, such
as recombination near the epilayer/substrate interface and surface recombination [31,32].
The thermal oxidation process, as mentioned before, leads to an increment in carrier lifetime
thanks to the Z1/2 centers’ decrement confirmed using DLTS measurements.

Figure 2 shows the DLTS spectra acquired at a rate window of 4.65 s−1 of the non-
oxidized sample (black line) and after thermal oxidation (red line). The dominant levels in
the no-ox sample are Z1/2 (Ec −0.62 eV) and EH6/7 (Ec −1.5 eV); the energy levels were
determined, as usual, using an Arrhenius plot of measurements performed at different
rate windows. The concentration of these levels was 0.8 × 1012 cm−3 and 0.6 × 1012 cm−3,
as reported in the literature [6] for this thick epilayer, and also, the small capture cross
section of 10−15–10−16 cm2 indicated that these defects were mostly single atoms, rather
than clusters. Despite this, Z1/2 centers could influence lifetime, but these two levels
disappeared after oxidation, while two new traps, ON1 (Ec−0.78 eV) and ON2 (Ec−1.1 eV),
were generated near the surface region, but could be extended further across the entire
epilayer using a higher temperature for a long time [33]. The concentration of ON1 and
ON2 levels was 3.8× 1012 cm−3 and 1.5× 1012 cm−3, respectively. In this case, an oxidation
process at 1400 ◦C for 48 h was performed, and despite the fact that annealing with Ar as
the post-oxidation process was not conducted, the Z1/2 centers were eliminated. However,
ON1 and ON2 centers appeared, and the exact structure and formation reaction of these
centers was not known, but the concentration decrease with the depth and their influence
on carrier lifetime was negligible compared to Z1/2 centers [34].
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Figure 2. Deep level transient spectroscopy (DLTS) measurements on non-oxidated (black line) and
post-oxidated (red line) samples with the appearance of new ON1 and ON2 centers.

As mentioned before, the oxidation process allows a consistent decrement in Z1/2
centers, thanks to the reduction in carbon vacancies, leading to carrier lifetime increment
into the epilayer. This increment was appreciable using Raman spectroscopy, focusing the
attention on the longitudinal optical peak shift, and is shown in Figure 3. The longitudinal
optical phonon–plasmon coupling mode (LOPC) was used to extract carrier density and
carrier lifetime. This method is widely described in the literature [35–37] and usable for
low-doped samples [38].
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Figure 3. Carrier lifetime as a function of induced carriers, before (NO Ox) and after (Post OX) the
oxidation process.

In Figure 3, the carrier lifetime as a function of the induced carriers using different laser
powers during the Raman analysis is shown, observing an increment in carrier lifetime
as the induced carriers decrease. The red points are the data obtained after the oxidation
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process, and it seems that there was an increment in the carrier lifetime, more visible at
lower induced carrier values. This was due to the fact that if we have an injection level
under a value of 1018 cm−3, the Auger recombination (AR) can be neglected [13]. However,
as reported in the literature [39], monomolecular, bimolecular and Auger recombination
coefficients can influence carrier lifetime. Auger recombination (AR) became important
when the doping or the excess carrier density became higher. Moreover, there is a tempera-
ture dependence of the Auger recombination coefficient (γ3

eeh), specifically, the higher the
temperature is, the lower the Auger recombination coefficient is. Finally, this AR coefficient
can directly be derived from the relationship γ3

eeh = [τN2
D]−1, where τ is the carrier life-

time and ND is the carrier concentration; the oxidated sample shows a lower AR coefficient
than a non-oxidated sample, hence a minor contribution of Auger recombination at high
carrier density values favors a higher carrier lifetime.

These measures were conducted in SF-free areas and allow us to understand the
direct increment in the carrier lifetime after the oxidation process in the high injection
regime. This hypothesis is also supported by time-resolved photoluminescence (TRPL)
measurements to evaluate the carrier lifetime in a low injection regime using different
wavelengths to study different penetration depths. The comparison between oxidated (Post
OX) and non-oxidated (NO Ox) samples is shown in Figure 4.
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Figure 4. Time-resolved photoluminescence measurements at different source wavelengths in order
to obtain information from different depths, before and after oxidation process (a), and the decay
curve obtained by this measure at 330 and 360 nm for both samples (b).

The wavelengths used for the measurements were ranging from 300 to 380 nm with
penetration lengths between 4 and 600 µm. The last point at 380 nm is referred to as a deep
penetration depth, because the greater the wavelength, the deeper the beam penetrates,
hence we were going through the entire epitaxial layer until we reached the top of the
substrate. For this reason, the carrier lifetime value was lower than the measurements at
lower wavelengths. Due to the large spot of the lamp, the signal obtained was averaged
over the analyzed area, but the trend was clear and showed an increment in carrier lifetime
for the oxidated sample compared with the non-oxidated sample, especially close to the
substrate interface. The different decays at the same wavelength are shown in Figure 4b,
where a lower decay and then a higher carrier lifetime value can be observed for Post
Ox samples. This difference was particularly evident at higher wavelengths or higher
penetration depths. It should be remembered that the measurement of the lifetime was
strictly linked to the measurement technique used and, in this case, the values obtained with
TRPL were greater, as we were in a low injection regime compared to the measurements
made with Raman.
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Through this analysis, we confirmed the possibility of increment in carrier lifetime
after an oxidation process, which also leads to an increase in the diffusion length, obtained
by LD = √Dτ , where D is the diffusion coefficient and τ is the lifetime of the excited carrier.
Considering a mobility value of 900 cm2/Vs and a doping concentration of about 1014

cm−3 (low injection regime), an increment in diffusion length was observed from 712 µm
(NO Ox) to 911 µm (Post Ox).

As stated above, carrier lifetime evaluation was conducted far from any SF defects,
but they were present in the epilayer, even if in low percentages, and could affect the
performances of the devices by increasing the leakage current and decreasing the carrier
lifetime. For this reason, a study of the influence of different SF defects on carrier lifetime
was performed to estimate if the oxidation process improves the lifetime on and around
these defects.

From both maps in Figure 5 showing before and after the oxidation process, it is
possible to evaluate the same SF defects in the same position. However, from a thorough
analysis, we observed different behavior after the oxidation process for the defects at
490 nm (2.53 eV), compared to the defects at 430 nm (2.88 eV).
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Figure 5. Photoluminescence map of the same quarter of the 4H SiC wafer highlighted in Figure 1a,
before (a) and after (b) oxidation process.

Both defects show a lower carrier lifetime than the values obtained in the SF-free area
and the LO shift difference between IN and OUT SF decreases when the laser power used
was decreased, obtaining the same carrier lifetime values for a particular power of the laser.
However, this decrement differs depending on the type of defect. As shown in Figure 6,
for a 430 nm defect, the Raman maps obtained following the LO peak position show a
uniform contrast at 3.8 mW, which are the same results of the non-oxidated sample for the
same defect.

Instead, for the 490 nm defect, it was observed that when using 15 mW of laser power,
the data acquired on the SF defect showed a strong Raman shift reduction, suggesting a
trapping of free carriers. Before the oxidation process, both defects analyzed were observed,
and under 3.8 mW, there are no differences between IN and OUT SF spectra; instead, it was
different for the oxidated sample, where a larger contrast was observed.

Figure 7 shows, as in the previous figure obtained for 430 nm SF, PL and Raman maps
of a 490 nm SF defect related to the laser power used. It is evident that, moving to a low
injection region, the influence of the SF defect on carrier lifetime decreased. This effect is
more evident for the oxidated sample, where a minor influence on the part of the SF was
observed, as is shown in Figures 6 and 7. This suggests that the same values of carrier
induced, and the lifetime IN and OUT, of the defect (in proximity) are obtained when low
laser power is used. This difference is more evident in Figure 8.
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From these results, it is evident that the oxidation process leads to an improvement
in the carrier lifetime. Moreover, not all the stacking fault defects undergo the same
improvement. Considering the lifetime, the 490 nm defect is much more influenced by
the oxidation process than the 430 nm. In fact, the 490 nm SF shows a large increase in
the carrier lifetime at induced carriers of about 4 × 1017/cm−3 after the oxidation process;
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before this process, the increase in carrier lifetime is around 1.5 × 1017/cm3 (Figure 8b).
Instead, in the case of the 430 nm SF, the increase in the carrier lifetime remains the same,
at the same induced carrier conditions.
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Despite this different behavior of the defects, even after oxidation, they lead to a de-
crease in the lifetime, compared to the SF-free areas (Figure 8a), leading to a recombination
or trapping of the free carriers. In fact, it is clearly shown in Figure 8a that the induced
carriers, at which a large increase in the carrier lifetime is observed, increases with respect
to the region without SFs both for the 430 and the 490 nm SFs. It seems that the 490 nm SF
is less efficient in the reduction in the carrier lifetime, with respect to the 430 nm.

4. Conclusions

A spectroscopical characterization of a 250 µm thick epitaxial layer was performed
using Raman spectroscopy in longitudinal optical phonon–plasmon coupling mode for
high carrier densities and time-resolved photoluminescence for low carrier densities. This
material will be used for the fabrication of devices for neutron detection in harsh environ-
ments and, for this application, it is important to have a consistent volume to improve the
detector’s efficiency. Not only the volume but also the quality is fundamental for good
reliability, and the carrier lifetime plays an important role because it can strongly affect the
performances of the devices. An oxidation process was conducted evaluating an increment
in carrier lifetime, especially going towards a low injection regime. This phenomenon is
also supported by the low impact of the SFs on carrier lifetime at low carrier injection,
which became important for detector applications, where particles induce a very low carrier
injection. Furthermore, the oxidation process influences, in different ways, the kinds of SFs
analyzed, where the 490 nm defects increase the carrier lifetime value compared to the value
of the non-oxidated sample, while the 430 nm does not seem to be affected by the oxidation
process. Finally, the development of epitaxial growth and the possibility of increasing the
carrier lifetime through the oxidation process allow performance improvement compared
to the previous detectors studied with thicknesses of 100 µm.
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