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Abstract: Thermophoresis represents one of the most common methods of directing micromachines.
Enhancement of heat transfer rates are of economic interest for micromachine operation. This study
aims to examine the heat transfer enhancement within the shell and tube latent heat thermal storage
system (LHTSS) using PCMs (Phase Change Materials). The enthalpy–porosity approach is applied to
formulate the melting situation and various shapes of inner heated fins are considered. The solution
methodology is based on the Galerkin finite element analyses and wide ranges of the nanoparticle
volume fraction are assumed, i.e., (0% ≤ ϕ ≤ 6%). The system entropy and the optimization of
irreversibility are analyzed using the second law of the thermodynamics. The key outcomes revealed
that the flow features, hexagonal entropy, and melting rate might be adjusted by varying the number
of heated fins. Additionally, in case 4 where eight heated fins are considered, the highest results for
the average liquid percentage are obtained.

Keywords: PCM; FEM; tubes; wings; latent heat

1. Introduction

Global economic development is rising at a rapid rate, generating an urgent de-
mand for a secure energy source. For a long time, fossil fuels produced energy that met
and sustained human needs, and currently account for 87 percent of our energy sup-
ply [1]. However, fossil fuel sources are non-renewable, unsustainable, and volatile in price.
Additionally, they wreak havoc on the ecosystem and contribute significantly to global
warming [2]. These serious concerns have pushed scientists and engineers around the
globe to develop solutions for renewable energy production. Due to its great adaptation in
enhancing renewable energy production, the PCM-based Thermal Energy Storage (TES)
systems are recognized as critical treatment. With the aid of a PCM-based TES system, solar
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thermal energy may be stored during peak solar hours and subsequently utilized during
off-peak hours [3–5]. Storage of unused thermal energy might assist in narrowing the gap
between energy demand and renewable energy supply [6]. Jesumathy et al. [7] carried out
comprehensive research employing paraffin wax as a PCM in horizontal double-tube latent
heat thermal energy storage (LHTES) systems.

Their experimental data indicated that conduction and convection were the primary
causes of heat transport throughout melting (charging) and solidification (discharging)
situations. Zivkovic et al. [8] performed a theoretical investigation of the charging rate of
PCMs in rectangular and cylindrical compartments with a horizontal axis. They discov-
ered that in the case of equivalent volume and heated surface area, PCM in a rectangular
structure melts quicker than PCM in a cylindrical container. Saeed et al. [9] studied the
thermal performance of a new kind of plate thermal energy storage tank in an experimental
setting. Their findings indicated that the substantially enhanced design of the storage
tank was roughly 83.1 percent effective, despite the limited heat conductivity of the PCM
utilized. Tabassum et al. [10] investigated the effect of the inner tube’s cross-sectional form
and vertical location within an inverse triangular annulus filled with PCM on the PCM’s
melting rate. According to their findings, the heat exchanger with an eccentric inner circular
tube positioned vertically gives the greatest energy storage capacity. Pahamli et al. [11]
quantitatively studied the influence of eccentricity, inflow temperature, and HTF flow rate
on the charging process of RT50 as a PCM installed in the annulus space of a horizontal
double-pipe LHTES. The results from this study showed that the downward movement of
the inner pipe significantly enhanced the PCM melting process, evidenced by a reduction
in the overall melting time by roughly 64 percent. Vyshak et al. [12] conducted a numerical
analysis to determine the PCM melting rate in three different enclosures (rectangular, cylin-
drical, shell and tube). They observed that the shell-and-tube design responds the quickest
to melting processes for the same amount of energy provided. Pourakabar et al. [13] con-
ducted research on the melting and solidification of PCM within cylindrical containers with
varying shell forms and inner tube layouts. The results indicated that the case with two
vertical tubes and the case with a single tube had the greatest and lowest charging rates, re-
spectively. Senapati et al. [14] addressed the eccentricity effects in an annular cylinder with
fins statistically. They concluded that there was no discernible difference in natural con-
vection heat transfer rate between a horizontal cylinder with eccentric and concentric fins.
Sadeghi et al. [15] investigated the effects of charging and discharging multi-layer PCMs
in coaxial cylinders. According to the data, the system can save just 23.28 percent of the
intake energy when using a single layer of RT65. While the amount of energy saved inside
three-layer PCMs varies according to their thickness and configuration, the total amount of
energy saved within the cascaded PCMs is 41.67 percent. Ardahaie et al. [16] conducted a
numerical analysis of the charging phase inside an LHTES unit with a flat spiral tube. The
research examined a variety of operating scenarios and geometrical design characteristics.
Their findings indicated that the melting process of the PCM was substantially affected
by the random distribution of the flat spiral tube plane inside the shell. Sodhi et al. [17]
numerically evaluated the thermal performance of an LHTES unit with a horizontally
conical shell and a coiled tube filled with sodium nitrate as the PCM. Their research focused
on optimizing the design of the conical shell. Their findings indicated that the optimal
storage values were 98.6 mm and 54 mm for the conical shell’s inlet and outflow diameters,
respectively. Shahsavar et al. [18] conducted a numerical study to determine the effect of
porous media and surface waviness on the melting and solidification of composite PCM in
a vertical double-pipe LHTES. Their findings suggested that when porous structures with
high conductivity and wavy channels are used, the overall melting and solidification times
may be greatly lowered by up to 91.4 percent and 96.7 percent, respectively.

While a literature review demonstrates that PCM has several disadvantages, including
phase separation, corrosion potential, leakage issues, supercooling, poor specific heat, and
thermal conductivity, there are solutions available to alleviate or mitigate these disadvan-
tages [19–24]. Using performance improvement approaches, the PCM’s phase transition
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rate, thermal conductivity, latent heat storage capacity, and thermo-physical stability are
all enhanced. On the other hand, nanofluids are well known for their ability to enhance
heat transfer rates [25–28]. However, unlike PCM, nanofluids are not able to restore or
release heat. Recent studies have found that the phase change rate may be improved
with the addition of nanoparticles [29]. This implies a decrease in the time required to
store/release thermal energy. In a cylindrical TES unit, Ebadi et al. [30] investigated the
effect of nanoparticles on a bio-based nano PCM. They discovered that whereas the early
stages of the charging process were the same with or without nanoparticles, the nanopar-
ticles accelerated the phase transition process relative to pure PCM. Sarrafha et al. [31]
investigated the thermal transient behavior of MWCNT/PCM implanted in a multi-layered
wall. The collected findings indicate that enhancing the thermal conductivity of the PCM
by MWCNT inclusion results in a more comfortable thermal environment on chosen winter
and fall days but not on summer days. Kashani et al. [32] discussed the effect of surface
waviness nanoparticle volume fraction on solidification process of Cu-water nanofluid
considered as nano-enhanced PCM (NEPCM). Zirui et al. [33] investigated the heat storage
capacity and heat transmission rates of NEPCM (graphene nanoplatelets/1-tetradecanol)
melting in a differentially heated rectangular chamber. They discovered that increasing
the concentration of GNP results in a slight reduction of both heat storage and heat trans-
mission rates during melting in all geometrical and thermal settings. This suggests that
using NEPCM in such a cavity may be ineffective at increasing heat storage rate due to
the dramatic increase in viscosity, which significantly deteriorates free convection heat
transfer during melting to outweigh the enhanced heat conduction provided by a modest
increase in thermal conductivity. Jesumathy et al. [34] investigated the thermal properties
of paraffin wax incorporated with nanoparticles of copper oxide. The findings clearly
indicated that a higher mass fraction of copper nanoparticles increased the thermal con-
ductivity of the NEPCM. Furthermore, various fin shapes and designs can be employed
to enhance PCM/TES thermal performance [35–39]. Abdulateef et al. [40] found that the
heat enhancement factor was directly proportional to the number and size of these fins.
Duan et al. [41] evaluated the influence of fins on phase change enhancement. The findings
suggest that when the fin number is set, PCM’s total melting and solidification times in
an annulus with spiral fins may be reduced by up to 57.60 and 74.13 percent, respectively.
Sciacovelli et al. [42] investigated the impact of Y-shaped fins inserted in a shell-and-tube
LHTES system using numerical simulations. They determined that the unit’s efficiency
increased by 24 percent. They note that a large angle between the fins’ branches increases
the rate of phase shift. Al-Abidi et al. [43] investigated the PCM charging duration in a
triplex finned-tube heat exchanger using numerical simulations. They discovered that the
thickness of the fins had a negligible effect on the phase transition rate in comparison to
the size and number of the fins. Mazhar et al. [44] radially placed rectangular copper fins
around heat exchanger pipes to improve heat transmission in a PCM used for low-grade
heat harvesting. Li-Wu Fan et al. [45] investigated the impact of melting temperature and
the presence of internal fins on the performance of a PCM-based heat sink used to control
the thermal performance of commercial CPUs used in modern personal computers.

In all the aforementioned studies, the authors neglected the case of nano-enhanced
phase change materials (NEPCM) and examination of heat transfer enhancement using
multi-heated fins. Therefore, this study aims to cover this gap using either the novel shape
of LHTES or novel type of the mixture, namely NEPCM. In fact, thermophoresis, which
can be defined, as using temperature difference to control movement, is one of the methods
used in operating micromachines. Enhancing the heat transfer rate would bring added
economical value in directing micromachines. This study’s specific objective is to enhance
the design and analysis of LHTES systems for real-world applications. The literature shows
that attempts were presented to improve the thermal performance of shell-and-tube LHTES
units by augmenting the PCM’s thermal conductivity in the LHTES, and optimizing the
design of the LHTES, thereby reducing the required time for charging/discharging the
latent energy stored in PCM. The novel design proposes to develop an efficient PCM
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melting situation by adopting a hexagonal shape for the shell and attaching fins to the
tube. Another goal is comparing the performance of NEPCM with improved thermal
conductivity with that of pure PCM.

Another important objective of this study is examination of the entropy of the system.
In fact, entropy plays a large role in the second law of thermodynamics, which states that
atoms tend to become freer and randomly arranged, so that throughout the universe, the
level of entropy is rising at a steady rate. With this law also comes the notion that thermal
energy moves along a thermal gradient from hotter to colder areas, but does not flow in the
opposite direction (from cold to hot). Here, both the entropy due to the heat transfer and
entropy due to the fluid friction together with values of the Bejan number are computed
and discussed.

2. Methodology and Problem Definition

The present computational model is shown in Figure 1. The working fluid is nano-
enhanced phase change material (NEPCM) consisting of copper nanoparticles and/ paraffin
wax, where Table 1 includes their thermal properties. The effect of fins is investigated with
four distinct configurations, as seen in Figure 2. The nano-enhanced PCM begins with a
liquidus temperature of 323.15 K. The fins are kept at a high temperature (Th = 333.15 [K]),
whilst the hexagonal surfaces are kept adiabatic. The circumradius of the hexagonal shell is
L = 21.64 mm, and the radii of the inner circular tubes as well as the fins lengths are 6 mm.
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Table 1. Summary of the properties of nanoparticles and PCM.

Property Cu Paraffin Wax (Liquid/Solid)

ρ
[
kg/m3] 8954 775 833.6

β× 105
[
K−1

]
1.67 714

k [w/mK] 400 0.15 0.15
L [KJ/kg] - 184.48
Melting temperature (K) - 54.32
µ× 103 [Pa.s] - 6.3
Cp [J/kgK] 383 2440 2384
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2.1. Problem Formulation

We assumed Newtonian and laminar flow to represent this transient phenomenon.
The Boussinesq estimate was utilized to account for the gravitational force effect. The
following are the formulae, which may be found in [46]:

∇ ·
→
V = 0 (1)(

∂v
∂t

+
→
V · ∇v

)
= vC

(λ− 1)2

ε+ λ3 +
1
ρnf

(
−∇P + µnf∇2v

)
+

1
ρnf

(ρβ)nfg(T− Tref) (2)

∂u
∂t

+
→
V · ∇u = uC

(λ− 1)2

ε+ λ3 +
1
ρnf

(
−∇P + µnf∇2u

)
(3)

(
ρCp

)
nf

∂(ρLλ)nf
∂t

+
(
ρCp

)
nf

∂T
∂t
− knf∇2T = −

(
ρCp

)
nf

→
V · ∇T (4)

where C = 1× 105, ε = 0.001.
The NEPCM properties are predicted using the following single-phase situation:(

ρCp

)−1

f

(
ρCp

)
nf
= (1−φ) +φ

(
ρCp

)
s

(
ρCp

)−1

f
(5)

ρnf = φρs + ρf(1−φ) (6)

(ρβ)nf = φ(ρβ)s + (1−φ)(ρβ)f (7)

(ρL)f =
(ρL)nf
(1−φ) (8)

knf =
2kf + 2φ(ks − kf) + kp

kp −φ(ks − kf) + 2kf
kf (9)

µnf =
µf

(1−φ)2.5 (10)

Enthalpy formulated as:

h = href +
∫ T

Tret

(
Cp
)

nfdT (11)

=


1 T < Tl
T−Ts
Tl−Ts

Ts < T < Tl, He = h + λL
0 T < Ts

(12)
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the formula of HT entropy, FF entropy, and total irreversibility are:

Sgen,T = Sgen,HT + Sgen, FF

= knf
T2

[(
∂T
∂x

)2
+
(

∂T
∂y

)2
]

+µnf
T

{
2
[(

∂u
∂x

)2
+
(

∂v
∂y

)2
]
+
(

∂u
∂y + ∂v

∂x

)2
} (13)

The outer conditions imposed to the aforementioned system are no-slip boundary
conditions (u = v = T = 0) while on the included fins (u = v = 0, T = Th).

2.2. GFEM Treatments

In the next step, mathematical tools are used to obtain the outcomes. A Galerkin Finite
Elements treatment is used to solve the aforementioned PDE’S (1)–(4), which contain the
flow and HT processes, together with the imposed B.C’s. The non-strong versions of the
governing equations are defined, and a non-uniform grid mesh discretization is applied.
The procedure is fully explained in [47]. The current algorithm is validated and shown in
Figure 3 utilizing additional numerical data from Arasu and Mujumdar [48]. Based on this
number, we may be sure of our conclusions.
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3. Results and Discussion

The findings of an investigation into the effects of melting on the mixture flow con-
taining a Phase Change Substance (PCS) are presented and analyzed in this section. The
working fluid is Cu/paraffin wax in this case and the area of flow is a cylindrical pipe with
fins at the cross-section. Isotherms, velocities, and concentration of NP characteristics are
investigated for a variety of heating scenarios, including a hexagon with two horizontal
fins, a hexagon with two vertical fins, a hexagon with four fins, and a hexagon with eight
heated parts. The time interval between shots is between 100 s and 600 s, and the volume
percentage of nanoparticles is between 0–0.08. To offer a complete examination of the liquid
fraction’s average values, Bejan number Be avg, and HT rate Nu avg are plotted against
time over a broad range of the investigated parameters. In addition, the wholly melted
condition (liquid fraction = 1) may be utilized to end the calculations.
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The isotherms, velocities, local Bejan number, as well as liquid fraction at different
situations of inner heated are shown in Figure 4. It is worth observing that the temperature
characteristics are gathered close to the fins for all instances, indicating the presence of
a non-heated zone around the outer hexagon’s bottom. These temperature distributions
peak in C4 (eight fins), indicating a reduction in the aforementioned non-heated area at
the lower part. Additionally, it was noted that raising the number of wings reduces the
temperature differences, resulting in a decrease in both gradients of the temperature and
HT rate. Moreover, as the number of wings increases, a noticeable reduction of velocity
values is observed. Physically, raising the number of wings enhances the complexity of
the flow region, hence increasing flow resistance. In a related context, the Bejan number
characteristics demonstrate that increasing the number of heated fins lowers temperature
gradients, and therefore irreversibility of the fluid friction becomes higher. Additionally,
the mushy zone is visible at the top half of the area in all considerations, and the heated
fins numbers increase the melted region.
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ϕ = 0.03.

The isotherms, velocities, local Be issue, and local liquid percentage are all illustrated
in Figure 5 as they vary with time. Throughout these calculations, case 3 is employed, which
employs an outer hexagon with four fins. Obtained findings revealed that at the start of all
computations (short time values), isotherms, velocities, and Bejan number distributions
occurred around the included heated region, suggesting the presence of a non-active zone
towards the outer limits. As time passes, the suspension begins to convey and disperse the
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isotherms across the area. Thus, for time = 600, suitable thermal domains are created by
increasing the velocity towards the outer boundary’s bottom.
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Additionally, the greater time values favor the irreversibility of fluid friction towards
the bottom over the irreversibility of heat transport. The physical standpoint states that the
mentioned tendency owes to the fact that as time passes, the velocity gradients become
more pronounced, causing an irreversible rise in friction of the fluid layers. Additionally,
the mushy area is visible throughout the whole flow domain as time values grow.

The isotherms, velocities, local Bejan number, and liquid fraction distributions are
shown in Figure 6 as a function of the NP concentrations. In this situation, outer hexagons,
including four fins, are employed. It is noticed that with increases in the mixture’s viscosity,
there is a decrease in convective transport. The findings suggest that the velocity and
temperature gradients reduce as it grows. Additionally, with low values of ϕ, the domain
Bejan number occurs close to the wings rather than the lower borders. On the contrary,
increasing ϕ increases the mushy region inside the active flow area until it demonstrates
entirely melted behaviors at ϕ ≥ 0.06. Major changes in the values of the velocity and
melting features can be noted as ϕ increases. Here, the value ϕ = 0.03 gives a higher
velocity and melting process compared to other values of ϕ.
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Figures 7 and 8 depict the liquid fraction mean values, means Bejan number Beavg,
and mean Nusselt coefficient Nuavg profiles for the impact of the heated fins count, time
parameter, and NP concentration parameter. The findings indicated to C4, which assumes
eight heated fins, resulted in the higher mean liquid fraction behaviors. Moreover, when the
issue of heated fins increases, the mean Bejan and Nusselt values decline. In addition, the
mean rate of heat transmission decreases as the temperature gradients lessen. Furthermore,
the higher values result in a greater dominance of heat transfer irreversibility over fluid
friction irreversibility. Finally, it was noted that enhancing the volume fraction parameter
increases the mushy zone, resulting in an increase in the average liquid fraction.
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4. Conclusions

This article provides a numerical analysis of the melting effects on the convection of
Phase Change Substance in hexagon-shaped containers with heated cross-sections. Based
on the number of heated wings, four instances were considered: C1 (two-horizontal fins),
C2 (two-vertical fins), C3 (four fins), and C4 (eight-heated parts). We investigated the
buoyancy-driven flow and assumed entirely melted circumstances. The governing system
was solved using the Finite Elements Technique (FET), and the pressure was computed
using the Poisson formula. Significant discoveries include the following: Temperature,
velocity, and Bejan number distributions increase when the heated wings are augmented
owing to the buoyancy–convective scenario being enhanced.

Additionally, in C4, the melted region is confined to the majority of the flow domain.
At low time values, isotherms, velocities, and the liquid fraction are seen close to the

inner heated parts, while time progression results in the formation of a suitable temperature
and melting of flow hexagons.

The rise in NP concentration increases the mixture’s dynamic viscosity, and hence the
velocities decrease as ϕ grows.

As time passes, the entropy caused by viscous dissipation becomes more critical than
the irreversibility caused by heat transfer.

The presented results recommend the use of two heated fins in the design of LHTSS to
obtain a higher rate of heat transfer.

Using a 6% concentration of NP (nanoparticles) is recommended to reduce the heat
transfer irreversibility within LHTSS.
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Nomenclature
C Mushy zone morphology constant
Cp Heat capacity (J/kg.K)
g Gravity acceleration (m.s−2)
href Reference sensible enthalpy
k Thermal conductivity (W/m.K)
L Latent heat coefficient (KJ/kg)
p Pressure (N/m2)
Sgen,T Total system entropy
Sgen,HT Heat tranfer entropy
Sgen,FF Fluid friction entropy
t Time (s)
T Temperature (K)

Ts PCM’s solid temperature (K)
Tl PCM’s liquid temperature (K)

(u, v) Velocity components (m/s)
PCM Phase change material
2D Two-dimensional
3D Three-dimensional
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LHTES Latent heat thermal energy storage
HTF Heat transfer fluid
NEPCM Nanoparticles-enhanced PCM
FEM Finite Element Method
ρ Density

(
Kg/m3)

µ Dynamic viscosity (Pa · s)
α Thermal diffusivity

(
m2/s

)
β Thermal expansion coefficient (1/K)
φ Volume fraction
ref Reference case
nf Nanofluid
s Solid
f Fluid
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