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Abstract: In this work, based on the diffraction principle of reflective blazed grating, the structure
size of the convex spherical blazed grating unit is determined, the machining accuracy of the convex
spherical blazed grating is formulated, the effects of tool nose radius and Poisson burr on the
diffraction efficiency of the convex spherical blazed grating are analyzed, and the performances of
cutting convex gratings with microcrystalline aluminum RSA6061 and RSA6061+ chemically plated
NiP for two workpiece materials are compared. A convex spherical blazed grating with a radius
of curvature R = 41.104 mm, substrate diameter 14 mm, grating density 53.97 line/mm, and blaze
angle of roughly 3.8◦ is turned by a four-axis ultra-precision machining system by adjustment of
the cutting tool, workpiece material, and cutting parameters, as well as modification of the layouts
of the blazed grating on the convex sphere. The results of the testing of convex spherical blazed
grating elements in both layouts show that the size error of the grating period is close for both layouts,
the size error of grating height is smaller in the equal-along-arc layout, the blaze angle error in the
equal-along-projection layout is only 0.74%, and the average roughness of the blazed surface is less
than 5 nm to meet the processing quality requirements of the reflective convex spherical blazed
grating. The greater the blaze angle accuracy of the blazed grating, the higher its diffraction efficiency,
so the grating element with an equal-along-projection layout has a higher diffraction efficiency than
the grating element with an equal-along-arc layout. RSA6061+ chemically plated NiP material is
superior to RSA6061 material in Poisson burr height and blazed surface roughness, which is more
suitable for Offner-type imaging spectrometers in the spectral range 0.95–2.5 µm (SWIR).

Keywords: ultraprecision; blazed gratings; convex spherical substrate; Poisson burr; machining
accuracy; grating layouts

1. Introduction

Microstructured functional surfaces are widely used in advanced science and industry
for their excellent properties, but their performance is limited by the surface quality of
the fabrication method [1]. Examples of microstructured optic elements are Fresnel lenses
and diffractive optical elements (DOEs), which can be used to improve optical properties,
such as beam shaping or correction of aberrations, while reducing the weight of optical
systems. Diffraction gratings [2–4] are optical elements with a periodic, subwavelength-
scale range of optical functional structures that can spatially modulate the amplitude or
phase of the incident light, and are widely used in spectral instruments, laser modulation,
optical metrology, information processing, thin-film optics, polarization optics, and many
other fields.

Compared with other spectroscopy systems (planar grating spectroscopy, Fourier
transform spectroscopy, filter spectroscopy, liquid crystal tunable filter, acousto-optical
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modulation, etc.), the imaging spectroscopy instrument based on convex grating spec-
troscopy has the advantages of large optical relative aperture, good linearity of dispersion,
compact structure, and good image imaging quality. The Offner imaging spectrometer [5]
applies a classical grating that exhibits good field correction performance. However, most
of the available fabrication techniques, such as direct ruling, holography, photolithography,
or electron beam writing, are typically applied to simple-shaped grating surfaces, such as
planar substrates or spherical substrates with low steepness. Advanced Machine and Opti-
cal Systems (AMOS), Belgium, demonstrated the feasibility of ultra-precision machining of
free-form gratings (FFG), i.e., blazed gratings can be fabricated on surfaces without any
rotational symmetry using a cost-effective single-point diamond turning (SPDT) method [6].

With the improvement of ultra-precision machining technology, the preparation of
surface optical functional microstructures has become a hot research topic in the field of
precision machining. Traditional mechanical ruling is no longer suitable for the precision
fabrication of convex blazed gratings, and the single-point diamond turning process has
been proven to be suitable for processing advanced optical functional surfaces, such as
discontinuous microstructures and free-form surfaces, due to its high machining accuracy
and determinism [7,8]. Ultra-precision machining of free-form blazed gratings can be a
reliable alternative to electron beam lithography in holographic manufacturing [9,10]. By
synchronous linkage of multiple axes of ultra-precision machine tools and precise control
of the tool–workpiece relative position according to the geometry of the convex grating,
grating structures with variable pitch can be fabricated. Di Xu et al. [11] used a Moore
Nanotechnology 350 FG ultra-precision five-axis machine to cut convex gratings of variable
pitch on brass C46400 substrate with a grating density of 300 lines/mm and blazed surface
roughness of about 10–15 nm RMS and 30–45 nm Rz. The design was suitable for the
500–1100 nm spectral range. ChaBum Lee et al. [12] used the diamond tool interferometric
ruling method to prepare blazed gratings on nickel-plated molds with blazed grating di-
mensions: a grating period of 2.0 µm, grating height of 0.2 µm, and blaze angle of 5.86◦, and
the diffraction efficiency was 87.6% after replication. Chun-Wei Liu et al. [13] studied the
effects of shape design, grating period, and cutting speed on the processing performance
of the mold using diamond turning on a brass roller, and the optical measurement results
showed that the performance of the subwavelength grating matched the design at different
incidence angles, so the high-precision mold by diamond turning is a feasible way to ensure
the continuous mass production of subwavelength gratings. Tan N Y J et al. [14] developed
the Continuous Rotating Freeform Shaping (CRFS) algorithm and combined it with the
Slow Slide Servo system to machine high-curvature radial gratings and free-form gratings
using a five-axis ultra-precision machine with an average grating period of 12.5075 µm;
the average blaze angle was 8.25 ± 0.01◦, and the surface roughness Sa was 0.015 µm
and 0.018 µm, respectively, with a profile deviation of less than 0.3%. De Clercq C [6]
used a five-axis ultra-precision lathe and a single-point diamond tool to machine free-form
gratings with a diameter of 35 mm and a radius of curvature of 80 mm on a workpiece
chemically coated with NiP on the surface of an aluminum 6061T6 substrate, and showed
that the roughness measured in a single groove was close to 4 nm RMS and the blaze
angle was 1.82◦. Based on the five-axis ultra-precision single-point diamond lathe cutting
process, Zheng Zhizhong et al. [15] calculated the diamond tool tip movement error, the
standard deviation range of movement interval, and the processing deviation of grating
inscription position, and analyzed the effect of tool nose wear on the grating diffraction
efficiency, successfully developing a convex blazed grating with a substrate of 6061 alu-
minum, a curvature radius of 70 mm, inscription density of 60 line/mm, and diameter of
52 mm, whose maximum relative diffraction efficiency was greater than 80% and average
relative diffraction efficiency was greater than 60% in the spectral range of 1000~2500 nm.
Graham C et al. [16] designed an all-aluminum, rugged, lightweight, free-form grating-
based near-infrared hyperspectral moisture sensing imager, FYMOS, which was machined
on a five-axis ultra-precision diamond machine. Bourgenot C et al. [17] from Durham
University, UK, reported the technical challenges and progress in preparing such curved
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blazed gratings on an ultra-precision five-axis Moore machine, describing their application
in an integrated grating imaging spectrometer (IGIS) integral field unit prototype, in which
the free-form gratings were used as optical pupil reflectors. Bourgenot C et al. [18] also
discussed new opportunities for free-form gratings machined with diamond, and identified
NiP as the substrate providing the best roughness and profile quality in a comparison of
free-form gratings machined with RSA aluminum 6061 and RSA aluminum 443 surfaces
chemically coated with NiP with an average roughness of 2.5 nm RMS per blazed surface.
The integrated design of structure and function is the development trend of future imaging
spectroscopy instrument design, and the use of the same metal can effectively avoid the
influence of the bimetallic effect on the system stability. All of the preceding studies used
five-axis ultra-precision machines to manufacture convex blazed gratings, but did not
investigate the effect of Poisson burrs on the top of the grating on its diffraction efficiency,
nor did they investigate the relationship between grating layout on the convex substrate
and machining accuracy.

The use of homogeneous metals can effectively avoid the effect of bimetallic effects
on system stability, which is the trend of future imaging spectroscopy instrument design.
Moreau V et al. [19] introduced ELOIS (as shown in Figure 1) and CHIMA, two innovative
all-aluminum spectroscopy instruments based on free-form straight-grained diffraction
gratings that provide approximately four times smaller solutions than Offner-Chrisp spec-
trometers with comparable performance. As an alternative material for grating elements,
microcrystalline aluminum RSA6061, a new ultra-fine grain aluminum alloy with good
cutting properties can be used.
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Based on the imaging spectral range and diffraction requirements of an imaging
spectrometer, this paper determines the structure size of a convex spherical blazed grating
unit based on the diffraction principle of reflective blazed grating, develops the machining
accuracy of convex spherical blazed grating, analyzes the influence of tool nose radius and
Poisson burr on the diffraction efficiency of convex spherical blazed grating, investigates
the effect of the layout of blazed grating on the convex surface on the machining accuracy,
compares the performance of different workpiece materials cutting convex grating, and
obtains high-precision reflective convex spherical blazed grating element.

2. Reflective Blazed Grating Technical Requirements
2.1. Diffraction Principle of Blazed Grating

Wood [20] invented the “blazed” grating approach in 1910 to improve grating diffrac-
tion efficiency, which involves modifying the energy distribution of light at each diffraction
level by changing the geometry of the grating groove. If the grooved surface of the grating
is not parallel to the normal of the grating, i.e., there is a small angle θb between the two
(blaze angle, as shown in Figure 2), the grating can transfer the energy of the zero-order
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spectrum to the desired-order spectrum to achieve the “blaze” of the order, which is called
blazed grating. The wavelength corresponding to the maximum light intensity is called
the blaze wavelength. The design of the blaze angle allows the grating to be applied to a
particular order of the spectrum in a particular waveband. In Figure 2, N is the grating
normal, N’ is the normal of the grating groove (i.e., the normal of the blazed surface), θi is
the incidence angle, and θk is the diffraction angle.
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According to the grating equation.

d(sin θi + sin θk) = kλ (1)

Choosing a suitable blaze wavelength λb, the blaze angle θb can be deduced from
Equation (1):

θb = arcsin
kλb
2d

(2)

where k is the diffraction order; d is the grating period.
From Equation (1) to Equation (2), the blaze angle θb is related to the grating.

θb = arcsin(
sin θi ± sin θk

2
) (3)

When the incident light is parallel to the line AB, the grating top angle θa is obtained
as follows:

θa = 90◦ − θb + |θi| (4)

where θb is the blaze angle, ◦; θi is the incidence angle of the light.
The grating period d satisfies the following equation:

d =
1000

f
(5)

where d is the grating period, µm; f is the grating frequency (density), line/mm.
In the grating unit structure4OAB, it is known from the sine theorem:

d
sin θa

=
OA

sin(180◦ − θa − θb)
(6)

where θa is the top angle of the grating; OA is the length of the blazed surface, µm.
The grating height (groove depth) h can be given by the following equation.

h = OA sin θb (7)

Therefore, from Equation (5) to Equation (7), it can be shown as follows.

h =
1000 sin(180◦ − θa − θb)

f sin θa
sin θb (8)

Therefore, the grating height (groove depth) h is determined by the grating top angle,
blaze angle, and grating density.
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2.2. Accuracy Requirements of Convex Spherical Blazed Grating
2.2.1. Dimensional and Surface Accuracy

The specifications of the convex spherical blazed grating, which was designed by
Shanghai Institute of Technical Physics, Chinese Academy of Sciences, are shown in Table 1.
The designed application spectral range is 0.95–2.5 µm (SWIR), and the corresponding
diffraction angle is 17.629◦ when the incidence angle is −25.962◦. According to the spec-
ifications of convex spherical blazed grating and the Equations (1)–(8), the geometry
of convex spherical grating can be calculated as follows: curvature radius R = 41.104
mm, base diameter of 14 mm, grating blaze angle θb = 3.8681868◦, grating top angle
θa = 112.0938132◦. From the grating density of 53.97 line/mm, the grating period can be
calculated as d = 18.5288123 µm and the grating height h = 1.212900274 µm. The dimen-
sions of the convex spherical blazed grating are shown in Figure 3. Since various errors
in convex spherical blazed gratings can directly affect the grating diffraction efficiency,
rigorous demands are placed on the processing accuracy of the diffraction element. For
optical components, the roughness of the grating blaze surface needs to be less than 10 nm
to meet the optical quality requirements [21]. The dimensional error of the grating period
is required to be between ±3 µm, the dimensional deviation is less than 3%, and the blaze
angle error is required to be between ±0.05◦. To achieve such high machining quality
requirements, machining by forming method can effectively replicate the shape of the tool
and ensure the dimensional accuracy of the finished product.

Table 1. Specifications of convex spherical grating.

Parameter Content

Wavelength 0.95–2.5 µm (SWIR)
Surface profile Convex spherical
Surface shape Circular

Substrate radius of curvature (mm) 41.104
Clear aperture/Diameter (mm) 14
Groove frequency (line/mm) 53.97

Substrate material Optical grade aluminum
Coating material Gold

Incidence angle (◦) −25.962
Diffraction order used −1

Max diffraction efficiency >82%
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2.2.2. Effect of Shape Accuracy on Diffraction Efficiency

In cases where the machine tool itself meets the accuracy requirements, it is still
necessary to consider the stability of the environment and the machine error caused by
thermal control and tool wear during a long cycle time. The long cycle time of the machining
process is not enough to keep the forming error within the allowable range; the forming
error needs to be solved by temperature control and long-term drift experiment. The
single-point diamond tool tip wears during the cutting process, which can lead to residual
rounding at the bottom of the grating, resulting in an invalid diffraction area. As the tip
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wears, the tool nose radius increases accordingly, the residual rounding angle at the bottom
of the grating increases with it, and the grating diffraction efficiency decreases instead [15].
At the same time, Poisson burrs inevitably remain at the top of the blazed grating due to
the plastic flow of the material [22]. When the flow stress equals the shear yield strength,
the plastic workpiece begins to have plastic side flow. Under the action of high pressure,
the workpiece material flows in the direction of least resistance. If the pressure is greater
than the shear yield strength, the workpiece material will flow out of the free surface at
the front end, forming Poisson burrs. The relationship between Poisson burr height hp and
undeformed chip thickness dc can be shown as follows [23]:

hp = (k1 ln
E cot β

2
σ

+ k2)dc − dc (9)

where, hp is Poisson burr height, µm; dc is undeformed chip thickness, µm; the parameters
k1 and k2 can be calibrated by ultra-precision cutting experiments [24]; E is the material
elastic modulus, GPa; σ is the flow stress, Mpa; β is the included angle of the tool.

The distribution locations of the residual rounding angle and Poisson burrs are shown
in Figure 4a. Both of these have an effect on the grating diffraction efficiency. The diffraction
efficiencies of natural light, TE polarized light, and TM polarized light under ideal contours
of the convex spherical blazed grating were simulated using PCGrate software, which uses
the exact boundary integral equation method. The simulation parameters were consistent
with the structural design parameters, and the simulation results are shown in Figure 4b.
The variation of diffraction efficiency in the spectral range of 0.95–2.5 µm when the Poisson
burr height values are 0 µm, 0.1 µm, 0.3 µm, 0.5 µm, 1.0 µm, and 2.0 µm for the actual
profile of the convex blazed grating. From Figure 4c, it can be seen that with the increase
in Poisson burr height, the grating diffraction efficiency in the spectral range gradually
decreased. When the Poisson burr height was less than 0.5 µm, the effect of the Poisson
burr on the grating diffraction efficiency could be neglected. Therefore, it was necessary to
suppress the Poisson burr at the top of the blazed grating and reduce the residual rounding
rε at the bottom of the blazed grating to achieve higher diffraction efficiency.
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3. Cutting Experiments for Convex Spherical Blazed Grating
3.1. Machining Equipment and Tools

In order to avoid the machining error caused by the variation of cutting depth, the
shaping method of turning was used in the four-axis (XZBC) ultra-precision machining
system. As shown in Figure 5a, the special fixture was designed to be mounted on the
spindle vacuum chuck. The workpiece was mounted on the side of the special fixture. At
this time, the structure of the workpiece and the special fixture after assembly was not
rotationally symmetric, so it was necessary to rely on the balance screw on the special
fixture for spindle dynamic balancing adjustment before the cutting experiment. This
reduced noise effects due to vibrations caused by such loadings, which may be reflected on
the surface of the workpiece. The balance deviation was steadily controlled within 2 nm
along the axis of the workpiece when the spindle speed was 1000 rpm. The rotating tool
holders of the B-axis were mounted side by side with a single-point diamond tool with
a large and a small tool nose radius. The V-shaped diamond tool for cutting the blazed
grating should be mounted at the center of rotation of the B-axis as far as possible, using
the virtual center of the four-axis ultra-precision machine tool for machining. The R-shaped
diamond tool with a large tool nose radius was first used to turn the convex spherical
substrate so that the curvature center of the convex spherical substrate fell on the spindle
centerline. After obtaining a high-quality convex spherical substrate, the tool holder was
rotated around the B-axis by the first angle value B1 (calculated by the MATLAB program),
and the V-shaped diamond tool nose for machining the blazed grating was aligned with
the convex spherical surface. The main cutting motion was the direction of the workpiece
rotating with the C-axis. Through stepping motion by X-axis, the cutting depth direction
movement of each blazed grating could be achieved. The tool tip moved along the convex
spherical generatrix and stepped along the Z-axis direction while deflecting the tool angle
through the B-axis to adapt to the change in the blaze angle directly on the convex spherical
surface, so as to realize the machining of all radial blazed gratings on the convex spherical
substrate surface, as shown in Figure 5b.
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In order to improve the forming accuracy of the grating structure, single-point di-
amond was chosen as the tool material and the geometric parameters of the tool was
checked by an optical microscope. For ultra-precision turning by forming method, the
included angle of the forming tool was the same as the angle between the grooves of
the blazed grating (i.e., the top angle of the blazed grating), and the tool rake angle of
0◦ was selected to reduce the influence of the tool forming error on the turning accuracy
by forming method. In microfabrication, the cutting-edge radius had a great influence
on the machining quality [25]. Wu [26] showed that the burr height increased with the
increase in the cutting-edge radius. Considering the strength and wear rate of the tool,
the cutting-edge radius of the diamond tool was selected as 0.1 µm, and the accuracy of
the forming surface was improved by ultra-precision grinding of the cutting edge of the
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diamond tool. The increase in the radius of the tool nose will increase the area of the invalid
diffraction area at the bottom of the blazed grating, thus directly affecting the diffraction
efficiency of the convex spherical blazed grating. Thus, considering the wear rate of the
diamond tool tip, the tool nose radius was chosen to be 0.1 µm. The geometric parameters
of the forming turning tool are shown in Table 2.

Table 2. Tool geometry parameters.

No. Type Rake Angle (◦) Clearance
Angle (◦)

Included
Angle (◦)

Tool Nose
Radius (µm)

Cutting Edge
Radius (µm)

1 R-shaped diamond tool 0 10 60 200 0.1
2 V-shaped diamond tool 0 15 110 0.1 0.1

The workpiece materials used in this paper were microcrystalline aluminum RSA6061
and RSA6061+ chemically plated NiP. The composition of microcrystalline aluminum
RSA6061 mainly consisted of 98.1% aluminum (Al), 0.3% copper (Cu), 1.1% magnesium
(Mg), and 0.5% silicon (Si). RSA6061+ chemically plated NiP is a modified layer of high
phosphorus nickel-phosphorus alloy with a thickness of 150 µm, and the contents of Ni and
P elements are 87.6% and 12.4%. The physical properties of the two workpiece materials
and the diamond tools are shown in Table 3. During the cutting process, spray cooling was
used at the diamond tool nose, and the air conditioning cooling system of the machining
system was turned on to remove the cutting heat generated during the machining process,
so that the cutting environment temperature was kept within ±0.1 ◦C to minimize the
machining error caused by the change in the temperature field.

Table 3. Tool and workpiece material properties.

Material Density
ρ/g·cm−3

Young’s
Modulus

E/GPa

Tensile/Compressive
Strength бb/MPa

Yield Strength
σ0.2/MPa

Thermal
Conductivity
/W·m−1·K−1

Poisson’s
Ratio Hardness

RSA6061 2.7 70 330 300 160 0.33 110 HB
RSA6061+ chemically

plated NiP 7.75 50~70 700 \ 4.19 0.3 485 HB

Single crystalline
diamond 3.5 960 2000 N.A. 2000 0.2 8000 HB

3.2. Machining Path Planning

When the center of curvature of the convex spherical substrate falls on the machine
spindle, there are two different layouts of the blazed grating on the convex spherical surface,
namely, equal-along-arc and equal-along-projection. The size of the blazed grating unit is
the same for both layouts, but the actual cross-sectional profile of the grating is different,
resulting in different diffraction efficiency. The two layouts also lead to different coordinates
of the tool tip point position, which are calculated as given below.

(1) The following Figure 6 is the processing diagram for the convex spherical blazed
grating with an equal-along-arc configuration. Each blazed grating corresponds to an equal
arc length (i.e., the central angle is equal).

Depending on the relative position of the machine tool and the workpiece, the follow-
ing geometric relationships are satisfied:

L1 − L2 = 2R sin
α

2
(10)

where L1 is the distance between the coordinate origin and the farthest end of the side of
the workpiece, mm; L2 is the distance between the coordinate origin and the nearest end of
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the side of the workpiece, mm; R is the substrate curvature radius of the workpiece, mm; α
is the central angle corresponding to the chord length (L1 − L2):

d = 2R sin
α1

2
(11)

where d is the blazed grating period, µm; α1 is the central angle corresponding to the chord
length d (i.e., grating period).
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Thus, n blazed gratings can be arranged on a convex spherical substrate.

n =

[
α

α1

]
([] is the upward rounding function) (12)

The α-central angle is divided n equal parts, where α1 = α2 = . . . = αn.
The blazed grating closest to the coordinate origin is defined as the 1st blazed grating,

followed by the 2nd, 3rd, . . . , nth blazed grating along the +Z-axis direction in turn.
Therefore, the Z-axis coordinate point Zn of the nth grating’s blaze angle can

be calculated:

Zn = L1 −
L1 − L2

2
− (R− h) cos[(n− 1)α1 +

180◦ − α

2
] (13)

where h is the blazed grating height, µm.
Therefore, the X-axis coordinates point Xn of the nth grating’s blaze angle can

be calculated.
Xn = (R− h) sin[(n− 1)α1 +

180◦ − α

2
] (14)

Therefore, the B-axis coordinates point Bn of the nth grating’s blaze angle can
be calculated:

Bn = 180◦ − [(90◦ − 180◦ − α

2
) +

180◦ − α1

2
+ θb +

β

2
] + (n− 1)α1 (15)

where θb is the grating blaze angle; β is the included angle (in this case the included angle
is 110◦).

(2) The following Figure 7 is a processing diagram for a convex spherical blazed
grating set in equal-along-projection.
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On a convex spherical substrate, n blazed gratings can be arranged:

n =

[
L1 − L2

d

]
([] is the upward rounding function) (16)

where L1 is the distance between the coordinate origin and the farthest end of the workpiece,
mm; L2 is the distance between the coordinate origin and the nearest end of the workpiece,
mm; d is the blazed grating period, µm.

Since the substrate curvature radius corresponds to the coordinates of the center of
the circle as (ZO, XO), the standard equation of the circle based on the radius of substrate
curvature is shown as follows:

(z− ZO)2 + (x− XO)2 = (R− h)2 (17)

where R is the substrate curvature radius of the workpiece, mm; h is the blazed grating
height, µm.

The blazed grating closest to the coordinate origin is defined as the 1st blazed grating,
and the 2nd, 3rd, nth blazed grating along the +Z-axis direction in turn.

Therefore, the Z-axis coordinate Zn of the nth grating’s blaze angle point can
be calculated.

Zn = L2 + (n− 1)d (18)

Therefore, the X-axis coordinates Xn of the nth grating’s blaze angle point satisfy the
following relationship (Xn values are taken as positive solutions).

(Zn − ZO)2 + (Xn − XO)2 = (R− h)2 (19)

Therefore, the B-axis coordinates Bn of the nth grating’s blaze angle point can
be calculated:

Bn =
180◦ − β

2
− arctan

Xn+1 − Xn

Zn+1 − Zn
− θb (20)

where θb is the grating blaze angle; β is the included angle (in this case the included angle
is 110◦).

3.3. Cutting Parameter Selection

The processing of convex spherical blazed gratings with equal-along-projection and
equal-along-arc is carried out in two steps, with the same cutting parameters for the two
different convex spherical grating layouts. Whether processing convex spherical substrate
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or blazed gratings on a convex spherical substrate, the cutting speed vc of a diamond
tool is defined as the tangential speed between the contact point of the tooltip and the
corresponding rotating circle around the spindle, that is, peripheral cutting speed vp:

vc = vp =
2πRnnc

60
(21)

where Rn is the radius of gyration at the point of contact between the tool tip and the
workpiece, mm; nc is the spindle speed of the C-axis, rpm.

For the machining of blazed gratings, the radius Rn (Rc) of gyration around the C-axis

at any point on the arc
_

AB is equal, so the tangential speed of any point on the arc
_

AB
is the same. The cutting speed for cutting the same grating groove remains unchanged,
that is, vpc1 = vpc2 = . . . = vpck = . . . = vpcn. However, the radius Rn (Rz) of gyration around

the C-axis corresponding to any point on the arc
_
EF in the radial direction of the Z-axis is

different, expressed as Rz1, Rz2, . . . , Rzk, Rzn, respectively. Its numerical value corresponds
to X1, X2, . . . , Xk, Xn, calculated by Equations (14) and (19). Therefore, from Equations

(14), (19), and (21), the peripheral cutting speed of any grating groove on the arc
_
EF can be

calculated as vpz1, vpz2, . . . , vpzk, vpzn. The feed rates in the X-axis and Z-axis directions are
vfx and vfz, respectively, as shown in Figure 8.
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presents a sinusoidal distribution on arc
_
EF, as shown in Figure 8. The maximum periph-

eral cutting speed vpz(max) appears at the highest point of the arc
_
EF, and the minimum

peripheral cutting speed vpz(min) appears at the lowest point of the arc
_
EF.

(1) Convex spherical substrate machining
Convex spherical substrate machining is further divided into rough and finish ma-

chining. With other cutting parameters unchanged, the main cutting force and burr height
gradually increase with the increase in undeformed chip thickness [27]. Considering that
the tool nose radius and cutting-edge radius of the diamond tool used are 0.1 µm, and the
larger cutting force easily leads to microchipping of the tool, the rough cutting depth was
selected as 8 µm to improve the machining efficiency. During finishing stage, the cutting
depth was reduced, the surface quality was better, and the burr size was also smaller.
However, as the depth of cut further decreased, the cutting process transformed into a
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plowing process and no longer produced chips, and the surface quality became worse at
this time [28]. Thus, the finish depth of cut was 1.4 µm to improve the convex spherical
surface shape accuracy. Under the same cutting depth, the smaller the cutting speed, the
larger the shear strain ε, and the more likely the plowing phenomenon [29]. Taking into
account the stability of the machine tool and cutting efficiency, the spindle speed nc was
chosen to be 1000 rpm, and the unit displacement along the Z-axis was 2 µm. The feed rate
in both the X-axis and Z-axis directions was vfx = vfz = 50 mm/min. It can be estimated
that the maximum peripheral cutting speed vpz(max) was 4.328 m/s, and the minimum
peripheral cutting speed vpz(min) was 4.265 m/s. The machining time of the blazed grating
can be estimated to be about 0.5 h.

(2) Blazed grating machining
In order to avoid surface quality degradation caused by plowing, plowing phe-

nomenon starts to occur at undeformed chip thickness of 1 µm and surface roughness
starts to deteriorate according to previous studies [30]. Since the blazed grating height of
h = 1.212900274 µm, the undeformed chip thickness was the grating height since the blazed
grating was processed only by the one-step method. In order to reduce the radial runout at
the axis end of the special fixture, the spindle speed nc was chosen to be 1000 rpm, and the
unit displacement along the Z-axis was all grating periods of d = 18.5288123 µm. The feed
rate in the Z-axis direction was vfz = 50 mm/min, and the feed rate in the X-axis direction
was vfx =10 mm/min. It can be estimated that the maximum peripheral cutting speed
vpz(max) was 4.304 m/s, and the minimum peripheral cutting speed vpz(min) was 4.241 m/s,
either equal-along-arc layout or equal-along-projection. Combining the substrate diameter
and the grating density, the machining time of the blazed grating can be estimated to be
about 2.5 h.

4. Cutting Quality Characterization for Convex Spherical Blazed Grating

The arithmetic average surface roughness was defined according to ISO25178 standard.
There are many different roughness parameters in use, but the arithmetic average surface
roughness Ra is by far the most common. Ra is the arithmetic mean of the filtered roughness
profiles determined from the deviation of the centerline within the evaluation length. For
equal-along-projection, 756 lines need to be machined within the diameter of 14 mm, while
for equal-along-arc layout, 760 lines need to be machined within the diameter of 14 mm.
Therefore, along the diameter direction of the Z-axis, the surface roughness of the blazed
surface was detected every 20 lines, as shown in Figure 9. The Zygo NewView 700 white
light interferometer was used to measure the blaze surface roughness Ra of the RSA6061
convex grating and RSA6061+ chemically plated NiP convex grating, as well as the equal-
along-arc and equal-along-projection layouts, respectively. At the equal-along-projection
layout, a scanning electron microscope was utilized to analyze the surface morphology of
RSA6061 convex gratings and RSA6061+ chemically plated NiP convex gratings, as well as
comparing the creation of Poisson burrs.
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4.1. Surface Roughness Distribution in the Diameter Direction

For equal-along-projection and equal-along-arc layout, peripheral cutting speed and
surface roughness distribution in the diameter direction on RSA6061 convex gratings are
shown in Figure 10. The difference between the maximum peripheral cutting speed vpz(max)
and the minimum peripheral cutting speed vpz(min) was only 0.06 m/s. Roughness was
distributed 3–4 nm along the Z-axis diameter direction, and was only slightly affected by
peripheral cutting speed.
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projection 
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4.2. The Effect of Grating Unit Layout on Dimension Accuracy

The structural dimensions of the convex blazed grating were measured at equal-along-
arc and equal-along-projection layouts using the 20X lens of the Zygo NewView 700 white
light interferometer. In the three random sampling zones, the grating period, grating
height (groove depth), and blaze angle were all measured. For each of the five grating
structures in the three sampling zones, the average value and deviation were computed.
The cross-sectional profile of the convex spherical blazed grating is shown in Figure 11.
The average values and deviations were calculated for each of the five grating structures in
each of the three sampling areas, as shown in Table 4.
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Table 4. Dimensions and roughness measurements of convex spherical blazed grating elements.

Grating Layouts Random
Sampling Area

Grating Period/d Grating Height/h Blaze Angle/θb
Blaze Surface

Roughness (nm)Average Value
(µm) Deviation Average Value

(µm) Deviation Average Value
(deg) Deviation

Equal-along-
projection

1 18.3 −1.23% 1.23750 2.03% 3.89952 0.81% 3.89
2 18.3 −1.23% 1.28228 5.72% 3.86385 −0.11% 3.611
3 18.7 0.92% 1.27487 5.11% 3.92659 1.51% 3.443

Average value 18.43 −0.53% 1.26488 4.29% 3.89665 0.74% 3.645

Equal-along-arc

1 18.3 −1.23% 1.20314 −0.80% 3.62372 −6.32% 3.817
2 18.3 −1.23% 1.16814 −3.69% 3.69477 −4.48% 3.285
3 18.4 −0.70% 1.16703 −3.78% 3.76656 −2.63% 3.966

Average value 18.33 −1.07% 1.17944 −2.76% 3.69502 −4.48% 3.689

Figure 12 shows a physical view of the obtained convex spherical blazed grating
elements and a comparison of the values of the grating period, grating height, and blaze
angle of the grating unit, where the average value of each dimension is very close, but the
dimensional deviation from the design value is different.
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Figure 12. Comparison of grating period, grating height, blaze angle, and blaze surface roughness of
blazed grating at different layouts.

As shown in Figure 13, comparing the convex spherical blazed grating samples of
the two arrangements, it can be concluded that the grating period with an equal-along-
projection layout was close to that with an equal-along-arc layout; the deviation of the
grating height with equal-along-arc layout was better than that with the equal-along-
projection layout; the accuracy of the blaze angle with equal-along-projection layout was
better than that with the equal-along-arc layout. Since the actual cutting volume was small
and there was almost no wear on the single-point diamond tooltip, the effect of residual
rounding angle on the grating diffraction efficiency can be disregarded for the time being.

Micromachines 2022, 13, x FOR PEER REVIEW 15 of 19 
 

 

Equal-along-
arc 

2 18.3 −1.23% 1.16814 −3.69% 3.69477 −4.48% 3.285 
3 18.4 −0.70% 1.16703 −3.78% 3.76656 −2.63% 3.966 

Average 
value 

18.33 −1.07% 1.17944 −2.76% 3.69502 −4.48% 3.689 

Figure 12 shows a physical view of the obtained convex spherical blazed grating ele-
ments and a comparison of the values of the grating period, grating height, and blaze 
angle of the grating unit, where the average value of each dimension is very close, but the 
dimensional deviation from the design value is different. 

 
Figure 12. Comparison of grating period, grating height, blaze angle, and blaze surface roughness 
of blazed grating at different layouts. 

As shown in Figure 13, comparing the convex spherical blazed grating samples of 
the two arrangements, it can be concluded that the grating period with an equal-along-
projection layout was close to that with an equal-along-arc layout; the deviation of the 
grating height with equal-along-arc layout was better than that with the equal-along-pro-
jection layout; the accuracy of the blaze angle with equal-along-projection layout was bet-
ter than that with the equal-along-arc layout. Since the actual cutting volume was small 
and there was almost no wear on the single-point diamond tooltip, the effect of residual 
rounding angle on the grating diffraction efficiency can be disregarded for the time being. 

 
Figure 13. Comparison of dimensional deviations of blazed grating at different layouts. 

4.3. The Effect of the Workpiece Material on the Roughness of the Blaze Surface 
The blaze surface roughness of a single blazed grating was investigated using the 

MetroPro software’s Mask Data tool. After filtering the substrate’s spherical waveform, a 
rectangular area of 0.01 mm × 0.25 mm was chosen. The average blaze surface roughness 

0

5

10

15

20

A
ve

ra
ge

 v
al

ue

 Equal-along-projection
 Equal-along-arc

Grating period/μm            Grating height/μm               Blaze angle/deg        Blaze surface roughness/nm  

0

1

2

3

4

5

0.53

Grating period     Grating height        Blaze angle    

|D
ev

ia
tio

n|
/%

 Equal-along-projection
 Equal-along-arc

0.74

Figure 13. Comparison of dimensional deviations of blazed grating at different layouts.



Micromachines 2022, 13, 1115 15 of 18

4.3. The Effect of the Workpiece Material on the Roughness of the Blaze Surface

The blaze surface roughness of a single blazed grating was investigated using the
MetroPro software’s Mask Data tool. After filtering the substrate’s spherical waveform, a
rectangular area of 0.01 mm × 0.25 mm was chosen. The average blaze surface roughness
Ra of the convex grating along the equal-along-projection layout was up to 3.645 nm
on the RSA6061 workpiece surface, while the average blaze surface roughness Ra of the
blazed grating with the equal-along-arc layout was up to 3.689 nm, with both grating
layouts having almost no effect on the blaze surface roughness. Furthermore, according
to the above analysis, the convex blazed grating was machined on the surface of the
RSA6061+ chemically plated NiP workpiece using the same cutting parameters and equal-
along-projection layout. The RSA6061+ chemically plated NiP workpiece’s typical convex
grating blazing surface roughness curve is illustrated in Figure 14b. Its surface roughness Ra
reached 1.131 nm. The measured roughness of the 15 blaze surfaces could be arithmetically
averaged to 1.523 nm, which was half of the roughness value of the RSA6061 workpiece
blaze surface, but both fulfilled the criteria of the surface roughness of optical components
being less than 10 nm.
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4.4. The Effect of Workpiece Material on the Height of the Poisson Burr

The influence of residual rounding on grating diffraction efficiency may be ignored
for the time being because the actual cutting volume was minimal, and the single-point dia-
mond tooltip showed essentially little wear before and after the experiment. Poisson burrs
were found on the top of some of the blazed grating units on the RSA6061 workpiece with
a height measurement of about 0.3 µm, which was the critical value, due to the plastic flow
of the material, as shown in Figure 15, while no obvious Poisson burrs were found on the
RSA6061+ chemically plated NiP workpiece. This is because RSA6061+ chemically plated
NiP had a higher hardness value than RSA6061 and had a lower flow stress, indicating that
the RSA6061+ chemically plated NiP material may have effectively reduced the develop-
ment of Poisson burr on the top of the grating. When comparing the SEM pictures of the
convex gratings of the two materials, it could be seen that the RSA6061 workpiece’s con-
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vex grating surface created evident cutting tool marks, whereas the RSA6061+ chemically
plated NiP workpiece’s convex grating surface did not.
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5. Conclusions

According to the spectral range and diffraction requirements of the imaging spec-
trometer, the structure size of the convex spherical blazed grating unit and the machining
accuracy were determined. The ultra-precision four-axis machining system was used to
design the tool geometry angle and optimize the cutting parameters according to the ma-
chining scheme. The surface roughness Ra was less than 5 nm, and the shape accuracy met
the diffraction efficiency requirement. The minimum resolution according to the Z-axis was
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200 nm, so the limit of the groove frequency that could be processed was 5000 line/mm.
It was possible to apply this processing method to fabricate the blazed gratings used for
visible wavelengths.

(1) Simulation results of the effect of different residual rounded corners and Poisson burr
sizes on the diffraction efficiency of the actual profile of the convex spherical blazed
grating showed that the diffraction efficiency of the grating gradually decreased in
the spectral range as the residual rounded corners and Poisson burr sizes increased.
When the Poisson burr height is less than 0.5 µm, the effect of Poisson burrs on the
grating diffraction efficiency can be neglected.

(2) The use of low spindle speed in the ultra-precision machining system can effectively
reduce the actual cutting speed, which is conducive to the entry of cutting fluid into the
first deformation zone and chip removal. In addition, it can avoid large fluctuations
in cutting force caused by changes in cutting temperature and can improve the
machining accuracy of microstructures.

(3) Under the same cutting parameters, the grating with an equal-along-projection layout
and equal-along-arc can maintain the dimensional accuracy of the grating period.
However, in terms of grating height dimensional accuracy, the equal-along-arc layout
is superior to equal-along-projection. In terms of blaze angle dimensional accuracy,
equal-along-projection is superior to equal-along-arc.

(4) Both grating layouts have the same roughness of blaze surface, and the dimensional
accuracy of the grating period is close, but the diffraction efficiency is superior that
of the equal-along-arc layout due to the higher accuracy of the blaze angle of the
equal-along-projection layout.

(5) The RSA6061+ chemically plated NiP material is superior for diamond turning of
convex blazed gratings, because it has fewer Poisson burrs on the top of the grating
and the blaze surface roughness value is lowered to Ra1.523 nm.
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