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Abstract: In this paper, we apply the leverage amplification principle to improve the gain of a three-
degrees-of-freedom (3-DoF) micro-gyro. The gain of the micro-gyro can be improved by designing
linear and nonlinear micro-gyros with an anchored lever mechanism (ALM). First, the sensor system
of the micro-gyro is designed as a complete 2-DOF system with an ALM. The effect of the leverage
rate (LR) on the mass ratio and frequency coupling parameter (FCP) of the complete 2-DOF sense
system is studied. We analyze the variation rule of the gain of the lever’s input and output as the
LR increases. Afterwards, the bandwidth and gain performance of linear and nonlinear micro-gyros
with an ALM is investigated by applying the arbitrarily tunable characteristics of peak spacing of the
complete 2-DOF system. The influence of LR, FCP, nonlinear strength, damping, and peak spacing
on bandwidth and gain of the 3-DOF micro-gyro is analyzed. The results indicate that both LR and
FCP have a large effect on the gain and bandwidth of a micro-gyro with an ALM. The LR parameter
mainly improves the gain of the micro-gyro, and the FCP parameter mainly adjusts the bandwidth
performance. Adding levers can effectively improve the gain performance of the linear micro-gyro.
The linear micro-gyro with an ALM can improve the gain by 4.5 dB compared to the one without an
ALM. The nonlinear micro-gyro with an ALM combines two characteristics: the nonlinear micro-gyro
can improve the bandwidth, while the lever structure can improve the gain. Compared with the
linear micro-gyro without an ALM, the gain can be increased by 17.6 dB, and the bandwidth can
be improved as well. In addition, the bandwidth of a micro-gyro with an ALM is related to the
gain difference between the peaks of the lever output. The increase in the gain difference leads to a
flattening of the left peak, which effectively broadens the bandwidth. For nonlinear micro-gyros with
an ALM, the bandwidth can be further improved by increasing the nonlinear stiffness coefficient,
and better gain and bandwidth can be obtained using a vacuum package.

Keywords: leverage amplification principle; gain; complete 2-DoF system; micro-gyro; nonlinearity

1. Introduction

Micro-gyros are a kind of inertial sensors which are used to measure angular rate or
attitude angle. They are widely applied in many fields, including automotive applications
for ride stabilization and rollover detection, consumer electronic applications such as video
camera stabilization, virtual reality and inertial mice for computers, robotics applications,
and a wide range of military applications [1].

Micro-gyros can be classified into resonant and non-resonant micro-gyros ones de-
pending on their gain and bandwidth performance. For resonant micro-gyros, high gain can
be obtained by matching the drive and sense frequencies. Zaman et al. [2] investigated the
characteristics of resonant micro-gyros with different mismatch frequencies. Their results
show that frequency mismatch leads to a significant reduction in the gain of the sense mode
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and that resonant frequency matching can be controlled by adjusting the DC voltage, al-
though with a narrow bandwidth. The narrow bandwidth results in poor stability, causing
the micro-gyro to be greatly disturbed by external signals and making it more difficult to
control the DC voltage. In order to control a resonant micro-gyro to operate in the resonant
state, Fan et al. [3] proposed a novel automatic mode-matching method to reduce the fre-
quency mismatch during the operation of the micro-gyro, allowing the measured angular
velocity error to be controlled within one degree. Zhang et al. [4] proposed a scheme with a
heterodyne optical phase-locked loop technique based on acousto-optic modulation for
resonant fiber optic micro-gyros, meaning that the resonant frequency of the micro-gyro is
locked at the resonance peak. Based on an indium phosphide (InP) wafer platform, Mdc
et al. [5] demonstrated a resonator–bus–resonator anti-parity time-symmetric integrated
optical micro-gyro design, which makes the micro-gyro robust against external distur-
bances. In order to eliminate the need for complex feedback electronics for closed-loop
sensing, researchers have increased bandwidth by designing non-resonant micro-gyros (i.e.,
multi-DOF micro-gyros) to improve stability. Bukhari et al. [6] studied a micro-gyro with
a 3-DOF drive mode and a 2-DOF sense mode. Its sense mode utilized complete 2-DOF
systems with adjustable peaks spacing, ensuring high gain and improving bandwidth
performance. Wang et al. [7] investigated a multi-DOF micro-gyro. Their drive mode
adopted a complete 2-DOF system, while the sense mode adopted dual 2-DOF systems.
Their multi-DOF micro-gyro setup was able to increase the bandwidth to more than 200 Hz.

In recent years, research on the nonlinearity of micro-gyros has attracted much atten-
tion. Hao et al. [8] explored the influence of electrostatic force nonlinearity on a 2-DOF
drive mode and 2-DOF sense mode micro-gyro. The results showed that the nonlinear
strength of electrostatic force was enhanced with the increase in the overlapping size of the
comb teeth, which led to a softening stiffness characteristic of the micro-beam in the drive
direction. A reasonable design and size of the comb teeth can improve the bandwidth and
gain of the sense mode to a certain extent. Han et al. [9] discussed the effects of stiffness
nonlinearity and system parameters on the dynamic characteristics, sense bandwidth,
and working stability of a 2-DOF drive mode and 2-DOF sense mode micro-gyro. Their
results showed that the nonlinearity led to energy transfer between the various modes of
multi-DOF micro-gyros. A constant excitation frequency can obtain high response gain
and ensure good robustness. Lajimi et al. [10] investigated the softening nonlinearity of
vibrating beam micro-gyros. They analyzed the effects of parameters such as DC bias volt-
age and AC drive voltage on the system response and exploited the softening properties
to improve the bandwidth and gain. Li et al. [11] established a parameter amplification
model of a vibrating beam micro-gyro considering the influence of size-dependent and
fringing fields. The results showed that when the parametric excitation frequency is twice
the resonant frequency of the system, larger values of amplitudes in both the sense and
drive directions appear, yielding a better gain. Wang et al. [12] designed a 3-DOF nonlinear
micro-gyro with a complete 2-DOF system in the sense direction. As the Coriolis force
effect was considered in the sense direction, the frequency response of the sense mode
was coupled to the nonlinearity generated in the drive direction. When the three resonant
frequencies of the micro-gyro exhibited a specific positional relationship, a good bandwidth
platform and higher gain could be formed by designing stiffness nonlinearity.

The gain is related to the resolution of a micro-gyro. In a micro-gyro, low gain leads
to low resolution and a weak sense signal. Multi-DOF micro-gyros enjoy improved band-
width and good stability at the expense of gain. In recent years, scholars have applied the
leverage amplification principle to increase the gain of micro-gyros and micro-resonators.
For example, Peng et al. [13] analyzed a single-DOF micro-gyro with an ALM. They added
levers in the sensor mechanism, and investigated the variation rule of the static stiffness
and resonant frequency of the micro-gyro affected by the lever. The results showed that ap-
plying the lever effectively increased the displacement of the sense mode by about 60%. Li
et al. [14] added levers in the drive mechanism of a single-DOF micro-gyro. The force in the
drive direction was amplified by the lever as a means of increasing the energy transferred
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to the sense direction in order to improve the sensor gain and accuracy. Li et al. [15] added
levers to the sensor mechanism of a tuning fork micro-gyro. They designed three sets of LRs
in order to verify the feasibility of amplifying the displacement of a tuning fork micro-gyro
with an ALM. Apoorva et al. [16] applied a lever mechanism to design a fully implantable
hearing aid. The displacement of capacitive comb teeth was amplified by the lever, thus
enhancing the capacitive sensor signal. Hong et al. [17] integrated a one-stage lever mecha-
nism into a two-axis micro-resonant accelerometer. The levers were applied to amplify the
input force in order to increase the gain of the accelerometer. Wang et al. [18] improved a
MEMS piezoelectric in-plane resonant accelerometer by designing it as a centrosymmetric
distribution structure. A two-stage lever mechanism was used as an amplifier to verify the
mass inertial force in order to improve the gain of accelerometer measurements.

Currently, there are more designs that use the leverage amplification principle for
single-DOF micro-gyros and fewer designs for multi-DOF micro-gyros. In this paper, a
3-DOF linear micro-gyro with an ALM is designed. The sense peak, gain, and bandwidth
of a micro-gyro affected by LR and FCP are analyzed. We design a nonlinear micro-gyro
based on a 3-DOF linear micro-gyro with an ALM. We analyze the gain and bandwidth of
the nonlinear micro-gyro with ALM and the affect of parameters such as LR, nonlinearity,
peak spacing, and damping coefficient. Compared with linear micro-gyros without an
ALM, the linear and nonlinear micro-gyros with an ALM have significantly improved gain
performance and their sensor bandwidth is effectively broadened. Moreover, the gain and
bandwidth enhancement of the nonlinear micro-gyro is better.

2. Dynamics Analysis of a 3-DOF Micro-Gyro with an ALM
2.1. Classification of Levers

According to the lever principle [19], a lever can be divided into three types of amplifi-
cation mechanisms. The structures of three different types of levers are shown in Figure 1.
Type I levers can amplify either force or displacement, but the input and output are in
opposite directions. Type II levers have the same input and output direction, but can only
amplify force. In [14], a Type II lever structure was applied to amplify the drive force of
a resonant micro-gyro, increasing the energy transferred from drive mode to sense mode
and thereby increasing the displacement of the sensor mass, obtaining higher sensitivity
performance. However, this method has limitations in the application of micro-gyros,
as a greater force is required to drive the mass. Compared with the above-mentioned
levers, Type III levers have a displacement amplification effect and same input and output
directions of motion. For the 3-DOF micro-gyro in this paper, the main focus is to explore
the gain of a micro-gyro with an ALM and without an ALM under the same drive excitation.
As the same input and output motion directions are required, Type III levers are used in
this study.

1 
 

  
(a) (b) 

 

 

(c)  
 

Figure 1. Classification of levers: (a) Type I; the pivot location is between input and output. (b) Type
II; the output location is between pivot and input. (c) Type III; the input location is between pivot
and output.
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2.2. Structural Design of a 3-DOF Micro-Gyro with an ALM

Figure 2 shows a schematic diagram of the 3-DOF micro-gyro with an ALM. Here, x
is the drive direction, y is the sense direction, and z is the external angular velocity input
direction. The masses mb and mp1 constitute one DOF in drive mode, while the masses mp1
and mp2 constitute the first DOF in sense mode. The mass ms (Figure 2a) or masses mp3 and
mp4 (Figure 2b) make up the second DOF in sense mode. The drive mode and sense mode
together comprise a 3-DOF system.

Figure 2. The 3-DOF micro-gyro with ALM: (a) sense system of micro-gyro without an ALM; (b) sense
system of micro-gyro with an ALM; (c) physical schematic diagram of micro-gyro.

Figure 2a shows a 3-DOF micro-gyro without an ALM. If mass ms is divided into two
masses mp3 and mp4 (i.e., ms = mp3 + mp4) and a lever is added between mp3 and mp4, the
2-DOF system is designed as a complete 2-DOF sense system with an ALM, as shown
in Figure 2b. Here, the LR B = l/L, ky11, ky12, ky2, ky3 are the equivalent stiffnesses of the
micro-beam in the sense direction, while cy1, cy2, and cy3 are the damping coefficients of
the micro-beam in the sense direction. Masses mp1 and mp2 are defined as sense-I and
mp3 and mp4 are defined as sense-II, where mp3 is connected to the lever input and mp4
is connected to the lever output. Because the spring ky11 is relatively stiff in the drive
direction, the excitation force drives the masses mb and mp1 to vibrate along the x-axis.
When the input angular velocity is present along the z-axis, the masses vibrating along
the x-axis generate a Coriolis force along the y-axis. Afterwards, the Coriolis force drives
the masses of sense-I and sense-II to vibrate along the y-axis due to the spring kb2 being
stiffer in the sense direction. Mass mp1 makes the drive and sense masses move only in
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their respective directions under the constraint of the spring, thus realizing a decoupled
design. In this process, the gain of mass mp3 is amplified by the lever, which increases the
gain transferred to mass mp4 by a factor of B. Figure 2c shows the physical schematic of the
micro-gyro with an ALM. The main structural parameters are shown in Table 1.

Table 1. The parameters of the micro-gyro.

Parameters Values Parameters Values

t 80 µm lcap 16 × 10−6 µm
mb 2.85 × 10−7 Kg ycomb 10 × 10−6 µm
mp1 2.6 × 10−7 Kg ycap 4 × 10−6 µm
mp2 2 × 10−7 Kg F0 5.34 × 10−6 N
mp3 1 × 10−7 Kg cb 4.5 × 10−5 N·s/m
mp4 0.2 × 10−7 Kg cy1 3.4 × 10−5 N·s/m

Ncomb 270 cy2 7.088 × 10−6 N·s/m
Ncap 500 cy3 1.07 × 10−5 N·s/m
lcomb 40 × 10−6 µm lcap 16 × 10−6 µm

According to Newton’s Second Law, the dynamic equation of the 3-DOF micro-gyro
with an ALM is established as follows:

Drive direction:
mx

..
x + cb

.
x + kbx = F0 sin(w0t) (1)

Sense direction:
Sense-I

mY1
..
y1 + cY1

.
y1 + (kY1 + kY2)y1 − kY2y2 = −2mY1Ωz

.
x (2)

Sense-II
mp3

..
y2 + cY2

.
y2 − kY2y1 + kY2y2 + fL11 = −2Ωzmp3

.
x

mp4
..
y3 + cY3

.
y3 + kY3y3 = fL12

fL11 = B× fL12

y3 = B× y2

(3)

In the above equation, y1, y2 and y3 are displacements of masses mp2, mp3, and
mp4, respectively.

Rectifying Equation (3) yields(
mp3 + B2mp4

) ..
y2 +

(
cY2 + B2cY3

) .
y2 + (kY2 + B2kY3)y2 − kY2y1 = −2mp3Ωz

.
x (4)

where mx, cb, and kb are the mass, damping, and spring coefficients in the drive direc-
tion, F0 is the amplitude of the exciting force, ω0 is the excitation force frequency, and
mx = mb + mp1, kY3 = ky3, mY1 = mp1 + mp2, kb = kb1 + kb2, kY1 = ky11 + ky12, and
kY2 = ky2; furthermore, x = Ax sin(ω0t− ϕ) is the steady-state solution of drive mode.
Thus, we obtain

Ax =
F0(

kb

√((
1− ω0

2

ωx2

)2
+ 4ξx2 ω0

2

ωx2

)) (5)

φ = arctan

 2ξxω0

wx

(
1− ω0

2

ωx2

)
, ωx =

√
kb
mx

, ξx =
cb

2mxωx
(6)

where Ax, ϕ, ωx, and ξx are the amplitude, phase, resonant frequency, and damping ratios
of the drive mode, respectively.
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2.3. Design of a Complete 2-DOF Sense System with an ALM

As the complete 2-DOF sense mode and drive mode are not coupled to each other, they
can be designed independently. The structural frequency of the sense system is assumed
to be

ω2
A =

kY1 + kY2

mY1
, ω2

B =
kY2 + B2 · kY3

mp3 + B2 ·mp4
, ω2

C =
kY2√(

mp3 + B2 ·mp4
)
·mY1

(7)

Equation (7) has a stiffness kY2 term in the numerator of structural frequencies ωA,
ωB, and ωC, however, ωC has no kY1 and kY3 terms. Thus, ωA and ωB can be designed
independently of the coupling frequency ωC [6]. The mass ratio µ1 of the micro-gyro with
ALM is

µ1
2 =

mp3 + B2mp4

my1
(8)

In Equation (8), the mass ratio is a function of LR B.
Substituting Equations (7) and (8) into the eigenvalue equation of Equations (2) and

(4), the resonant frequency of the sense mode can be solved for

p2
1,2 =

1
2

(
ω2

A + ω2
B ∓

√
(ω2

A −ω2
B)

2
+ (2ω2

C)
2
)

(9)

where [M1] =

(
mY1 0

0 mp3 + B2 ·mp4

)
, [K1] =

(
kY1 + kY2 −kY2
−kY2 kY2 + B2 · kY3

)
.

It is assumed that the parametric frequency ωr used to design the 2-DOF system is
equal to the distance between the two resonant frequencies of the sense mode.

Therefore, the resonant frequency of the sense mode is p1,2 = ωr ∓ ∆/2, where
∆ = p2 − p1 and ∆ is the peak spacing. Substituting these into Equation (9), we obtain

ωA,B
2 =

1
4

(
42 + 4ω2

r ± 4
√
−ω4

C +42ω2
r

)
(10)

The constraint condition for the establishment of Equation (10) is 42ω2
r − ω4

C ≥ 0.
By introducing the FCP ε1, set ω2

C = ε14 ωr(0 ≤ ε1 ≤ 1) and then substituting it into
Equation (10), we obtain

ωA,B
2 = ω2

r +

(
4
2

)2
±ωr4

√
1− ε1

2 (11)

Substituting Equations (7) and (8) into Equation (11), the stiffness of the beam in the
sense direction can be found as follows:

kY2 = ε1∆
√(

mp3 + B2mp4
)
mY1ωr;

kY1 = mY1ω2
A − kY2;

kY3 =
(mp3+B2mp4)ω2

B−kY2

B2

(12)

Based on the known mY1,, mp3, mp4, B, ωr, the stiffness coefficient of the sensor beam
can be calculated by defining the peak spacing, ∆. The gain of the Coriolis peak has a
large influence on the sense gain of a micro-gyro, and the gain of the Coriolis peak has a
maximum value with respect to the FCP, ε1 [20]. In order to further investigate the effect of
FCP on the Coriolis peak gain, we apply the transfer function method to solve the frequency
response of Equations (2) and (4), which yields

B1
Ωz

=

∣∣∣∣∣−B2mp4
(
s2 + ω2

B
)
+ mp3

(
s2 + ω2

B + ω2
Cµ1

)
∇(ω0)

∣∣∣∣∣ (13)
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B2
Ωz

=

∣∣∣∣∣−B2mp4ω2
C + mp3

(
ω2

C + s2µ1 + ω2
Aµ1

)
∇(ω0)µ1

∣∣∣∣∣ (14)

where ∇(ω0) =
(
mp3 + B2mp4

)(
s4 + s2ω2

B + ω2
A
(
s2 + ω2

B
)
−ω4

C
)
.

The frequency response equation of the mass mp4 connected to the lever output is
as follows:

y3 = B ∗ B2
Ωz

= B ∗
∣∣∣∣∣−B2mp4ω2

C + mp3
(
ω2

C + s2µ1 + ω2
Aµ1

)
∇(ω0)µ1

∣∣∣∣∣ (15)

Substituting s = iωx (where i is imaginary units) and Equation (11) into Equation (15),
the Coriolis peak gain at the lever output of Sense-II is obtained as

G2 = −
4
(

4B2ε1mp4ωr + mp3

(
4µ1 + 4

(
ε1 +

√
1− ε1

2µ1

)
ωr

))
4µ1

(
mp3 + B2mp4

)
(42 − 16ω2

r )
(16)

The peak spacing ∆ is set to 230 Hz, while the LR B values are chosen to be 1 (no am-
plification of gain at B = 1) and 4, respectively. According to Equation (16), the relationship
between the gain, G2, and FCP, ε1, is shown in Figure 3.

Figure 3. Gain G2 versus FCP ε1 curve: (a) B = 1, (b) B = 2.4.

In Figure 3, curves 1, 2, and 3 show the gain versus FCP for mass ratios equal to 0.1,
0.5, and 1, respectively. It can be seen that as the mass ratio decreases, the Coriolis peak
gain increases gradually. In order to find the maximum value of the Coriolis peak at the
lever output of sense-II, Equation (16) can be differentiated with respect to ε1 and made
equal to zero to find the extreme point, εep; thus, we obtain

εep =
mp3 + B2mp4√

m2
p3 + µ1

2m2
p3 + 2B2mp3mp4 + B4m2

p4

(17)

Equation (17) shows that the extreme point εep is a function of LR. It implies that εep is
influenced by changes in LR.

As both the mass ratio µ1 and extreme point εep are functions of LR B in a micro-
gyro with an ALM, according to Equations (8) and (17) the relationship between µ1 and
εep with respect to B can be obtained at different masses mp4, as shown in Figures 4
and 5, respectively. The parameters of the linear part analysis are selected as ∆ = 230,
ωx = ωr = 5400× 2π rad/s.



Micromachines 2022, 13, 1201 8 of 20

Figure 4. The relationship between µ1 and B.

Figure 5. The relationship between εep and B.

It can be seen from Figure 4 that the mass ratio shows a gradual upward trend with
the increase of LR. The smaller mass mp4 is, the slower the increasing trend of mass ratio.
This means that the micro-gyro has greater potential to improve the gain. This is due to
the gain being higher when the mass ratio is smaller (Figure 3). As a result, as small a
mass mp4 as possible should be chosen in the design. It can be seen from Figure 5 that the
extreme point εep of FCP is in the range of (0.92,1). With increasing LR, the εep increases
and approaches 1. If the selected mass mp4 is smaller, the trend of the extreme point εep
appears to be smoother. In summary, the choice of mass mp4 has a significant impact on the
potential lever amplification of gain. In order to better improve the gain of the micro-gyro
in sense mode, the mass mp4 should be selected in order to be as small as possible.

2.4. Effect of LR and FCP on the Gain of Peak

The effect of LR on the sense gain of the multi-DOF micro-gyro varies as well. Here, in
order to study the effect of LR on the gain of Sense-I and Sense-II, the LR B is chosen to be
1.4, 2.4, and 4.4, respectively.

Based on Equations (13)–(15), the frequency response of the gain of the sense mode at
different LR values is calculated as shown in Figure 6. Figure 6a shows that the Coriolis
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peak gain of Sense-I gradually increases as the LR increases, while the gain of the peaks
on both sides gradually decreases. The gain between peaks (the gain of the valley) is
relatively increased. Figure 6b shows that the overall gain at the lever input of Sense-II is
reduced. The above conclusion is due to the mass ratio becoming larger with increasing
LR (see Figure 4), leading to an improvement in the gain of Sense-I and a decrease in the
dynamic amplification at the lever input of Sense-II. This conclusion is consistent with
reference [21]. As the LR increases from 1.4 to 2.4, the gain at the lever output of Sense-II
increases significantly. The Coriolis peak becomes more prominent, while the peaks on
both sides gradually flatten out. However, the gain is not increased significant when LR
increases from 2.4 to 4.4, as shown in Figure 6c. This is due to the fact that the gain at the
lever output is equal to the gain at the lever input multiplied by LR (see Equation (15)), and
the gain at the lever input decreases as LR increases.

Figure 6. The relationship between gain and LR in sense mode: (a)Sense-I, (b) Sense-II (at lever
input), (c) Sense-II (at lever output).

The above analysis shows that the LR has different effects on the left peak and Coriolis
peak at the lever output of Sense-II. In order to analyze in more detail how the peak gain
(sense gain) at the lever output of sense-II is affected by the FCP and LR, the FCP is selected
as 0, 0.4, 0.8, and 1, while the LR is selected as 1.4, 2.4, and 4.4, respectively. The variation
rule of the gain of each peak can be obtained as shown in Figures 7 and 8.

Figure 7. Variation rule of left peak (ω0 = p1): (a) 3D diagram, (b) gain derives the partial differential
for LR, (c) gain derives the partial differential for FCP.
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Figure 8. Variation rule of Coriolis peak (ω0 = ωx): (a) 3D diagram, (b) gain derives the partial
differential for LR, (c) gain derives the partial differential for FCP.

If the excitation frequency in Equation (15) is equal to the low-order resonant frequency
of sense mode, i.e., ω0 = p1, a 3D diagram of the left peak versus the LR and FCP can be
obtained. Afterwards, Equation (15) can be differentiated for B and ε1, respectively, and the
variation relationship of left peak with respect to LR and FCP can be analyzed, as shown in
Figure 7. In Figure 7a,b, it can be seen that the left peak has a maximum value with respect
to B, and the value of B corresponding to the maximum value increases as FCP increases.
Observing Figure 7b, it can be seen that the value of B corresponding to the maximum
value of the left peak is less than 2. However, in order to improve the gain of the sense
mode of the micro-gyro, a larger LR should be selected. If ε1 is equal to 1, the left peak
takes the maximum value, corresponding to the value of, B taken as 1.4. Thus, when B is
greater than 1.4, the gain of the left peak decreases as B increases. Figure 7c shows that the
derivatives of left peak with respect to ε1 are all greater than zero. This implies that the
gain of the left peak increases with ε1 and grows rapidly within ε1 ∈ (0.92, 1). Therefore,
the gain of the left peak becomes lower with increasing LR and higher with increasing FCP.

In order to analyze the variation rule of the gain of the Coriolis peak with the LR and
FCP, the above steps can be repeated such that the excitation frequency in Equation (15) is
equal to the resonant frequency of the drive mode, i.e., ω0 = ωx, as shown in Figure 8. In
Figure 8a,b, if ε1 ∈ (0, 0.92), the Coriolis peak first increases and then decreases with the
increase of LR. If ε1 ∈ (0, 0.92), the Coriolis peak becomes higher with increasing B and
gradually becomes flat. Figure 8c shows that the derivative is greater than zero for B = 4.4.
The Coriolis peak becomes higher gradually as ε1 increases, which means that the extreme
point of the Coriolis peak is infinitely close to 1 at this time. When B is small (B = 1.4), the
derivative decreases from greater than zero to less than zero, which means that the Coriolis
peak increases first and then decreases as ε1 increases, i.e., there is an extreme point εep,
and εep ∈ (0.92, 1). This verifies that the Coriolis peak gain becomes higher as B increases
when ε1 ∈ (0, 0.92).

The above analysis shows that the left peak decreases with increasing B and improves
with increasing εep. The two parameters have opposite effects on the left peak of the
micro-gyro. When εep ∈ (0.92, 1), the Coriolis peak increases with B. However, combined
with Figures 6c and 8, it can be seen that the Coriolis peak does not increase infinitely with
B. Therefore, the value of B should be chosen reasonably. For a 3-DOF micro-gyro system,
through investigating how the peak gain of the sense mode is influenced by the LR and
FCP, the gain of the valley can be enhanced by adjusting the height of the peak.

3. Gain Performance Analysis of a Micro-Gyro with an ALM

The effect of LR and FCP on the gain of the peaks at the lever output of Sense-II in the
previous section shows that the left peak becomes higher with increasing FCP, whereas the
Coriolis peak becomes higher with increasing LR when ε1 ∈ (0, 0.92). As the valley of the
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3-DOF micro-gyro has good bandwidth performance, the valley is chosen as the bandwidth.
It is necessary to investigate whether the valley near each peak of the micro-gyro with ALM
has good gain effect. Thus, ε1 is set to 0.4, 0.8, εep, and 1, respectively, for analysis. This
section mainly analyzes the gain and bandwidth performance of the micro-gyro with an
ALM through the frequency response of the lever output of Sense-II. The bandwidth is
selected using Equation S(ω)− S(ω0) = 3dB, where S(ω) = 20 log(y3), S(ω) is the gain,
and y3 is the displacement at the lever output.

3.1. Analysis of the Linear Micro-Gyro

In order to facilitate comparison with the nonlinear micro-gyro, the frequency response
at the lever output of Sense-II is analyzed for a linear micro-gyro system to investigate the
amplification effect of increasing LR on the gain. Here, the LR is selected as 1.4, 2.4, and 4.4
respectively. The stiffness of the support spring can be calculated using Equation (12). In
accordance with [22], we select the pressure P = 10 Pa. The frequency response curve can
be obtained by substituting s = iω0 into Equation (15), as shown in Figures 9 and 10.

Figure 9. Effect of LR on the gain of the micro-gyro: (a) ε1 = 0.4, (b) ε1 = εep (B = 1.4, εep = 0.93;
B = 4.4, εep = 0.98 ).

Figure 10. Gain is affected by FCP: (a) B = 2.4, (b) B = 4.4.

The gain and bandwidth data for the linear micro-gyro with an ALM are shown in
Table 2. Combined with Table 2 and Figure 9, it can be seen that for the same LR, the overall
gain of the sense mode is lower for smaller values of FCP (ε1 = 0.4). Even if a larger LR
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is selected (B = 4.4), as shown by curve 3 in Figure 9a, the overall gain is not significantly
improved, and that there is no amplification effect of gain at this time. Figure 9b shows
that the higher gain at the Coriolis peak leads to better amplification of the overall sense
gain when FCP is set to a larger value, while the gain of the right valley increases more
significantly compared to that of the left valley.

Table 2. Gain and bandwidth of linear micro-gyro under typical parameters.

∆ = 230, ωx = 5400×2π Gain (dB) y3Growth Rate (%) Bandwidth (Hz) Bandwidth Growth Rate (%)

B = 1 (without an ALM) −174.2 / 64 /
B = 1.4, ε1= 1 −173.2 12.5 67 4.7

B = 1.4, ε1 = εep(0.93) −172.7 18.5 68 6.3
B = 2.4, ε1= 1 −170.8 47.1 73 14.1

B = 2.4, ε1 = εep(0.95) −170.6 50.9 98 53.1
B = 4.4, ε1= 1 −169.7 66.0 94 46.9

B = 4.4, ε1 = εep(0.98) −169.9 65.1 90 40.6

In Figure 10a, when the LR B = 2.4 is compared with the case of ε1 = 1, the gain of
the left valley is higher when ε1 = εep(εep = 0.95). However, when the LR B = 4.4, the gain
of the left valley is lower when ε1 = εep(εep = 0.98), as shown in Figure 10b. The above
opposite situation occurs because the gain of the Coriolis peak at B = 4.4, ε1 = εep is close to
that at B = 4.4, ε1= 1, while the left peak becomes higher as ε1 increases (see Figure 7c). At
this time, setting ε1 as 1 will relatively increase the gain of the left valley, and there will be
a special case in which the gain of the left valley becomes lower as ε1 decreases (see B = 2.4
and 4.4 in Table 2). It should be noted that the data for gain and bandwidth in Table 2 are
compared with the linear micro-gyro without an ALM (B = 1), where the gain column is
the lowest gain point of 3 dB.

The third column in Table 2 shows the percentage increase of the displacement y3 at the
lever output; for example, when B = 2.4 and ε1= 1, the gain increases by 3.4 dB compared to
without an ALM, while y3 increases by 47.1% according to the Equation S(ω) = 20 log(y3).

It can be seen from Table 2 that when the FCP ε1 is set to εep or 1, the linear micro-gyro
with an ALM has a good gain amplification effect. For example, the gain is improved by
3.4 dB and 4.5 dB when B is set to 2.4 and 4.4, respectively, and the displacement of the lever
output is improved by about 47–66%. Moreover, as the LR increases, the gain performance
of the micro-gyro improves significantly. However, the second column in Table 2 shows that
the sense gain improvement gradually becomes slower as the LR increases. For instance,
when ε1 is set to 1 and B = 2.4 the gain is improved by 2.4 dB compared to B = 1.4; however,
B = 4.4 improves the gain by only 1.4 dB compared to B = 2.4. In addition, the bandwidth is
increased to an extent compared to the micro-gyro without an ALM, although the width of
the bandwidth depends on the peak-to-peak gain difference (see Figure 10) and becomes
narrower as B increases.

For the linear micro-gyro system with an ALM, the gain of the micro-gyro can be
improved using the leverage amplification principle; the gain of the right valley improves
more significantly. A larger FCP value should be selected in order to avoid negating the
gain amplification effect. When ε1 is larger, the sensor gain of the micro-gyro is mainly
affected by the LR, and is mainly reflected in the height of Coriolis peak. In addition, the
FCP ε1 mainly adjusts the width of the bandwidth. Only when the LR is large and causes
εep to approach 1 does ε1 take a value greater than εep to boost the gain. For example,
when B = 4.4, ε1= 1, the gain is increased to −169.7 dB, which is optimal (as in Table 2),
and its bandwidth is 94 Hz, which is only 4 Hz lower than B = 2.4 and ε1 = εep. However,
compared with B = 4.4, ε1 = εep, the gain is increased by 0.2 dB and the bandwidth is
increased by 4 Hz.
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3.2. Analysis of the Nonlinear Micro-Gyro

Because the lever is added in the sense system, the nonlinear equation of the drive
mode is the same as the equation of the 3-DOF nonlinear micro-gyro without an ALM
in reference [12]. Therefore, the dynamic Equation (1) of the drive mode is rewritten as
follows:

mx
..
x + cb

.
x + kbx + kdx3 = F0 sin(w0t) (18)

..
x + CB

.
x + ω2

xx + KDx3 = F sin(w0t) (19)

where, ω2
x = kb

mx
, CB = cb

mx
= 2ξxω2, ξx = cb

2mxωx
, KD = kd

mx
, F = F0

mx
.

Equation (19) is the forced vibration of a single-DOF damped Duffing system under
harmonic excitation. By introducing the detuning parameter σ, the approximate peri-
odic response of the primary resonance can be analyzed using the multiple timescales
method [23]. Referring to reference [12], the equations solved by applying the multiple
timescales method are as follows:

16(cB Axωx)
2 + (3kD A3

x − 8ωx Axσ)
2
= 16 f 2 (20)

Design of a nonlinear micro-gyro requires the interaction of the left and Coriolis peaks
to produce high gain and wide bandwidth. An exploration of the gain and bandwidth of
a nonlinear micro-gyro affected by the spacing between left and Coriolis peaks is shown
in Figure 11. The different values of LR B lead to different height differences between the
Coriolis peak and left peak, thus, B is taken as 1.4 and 4.4 for comparison, where kd = 12.2,
ε1 = εep.

Figure 11. Gain and bandwidth affected by spacing between Coriolis and left peaks: (a) B = 1.4,
(b) B = 4.4.

Comparing the three response curves in Figure 11, it can be seen that when the distance
between the Coriolis peak and left peak is close (curves 2 and 3), a stable high gain can be
obtained over a wide frequency range. When the Coriolis peak is located in the middle of
the two sense peaks (curve 1), the bandwidth range of the high gain is significantly reduced.
When LR B is set to 1.4 (in Figure 11a) and 4.4 (in Figure 11b), a good bandwidth platform
can be obtained by setting the resonant frequency ωx of the drive mode to 5320 × 2π rad/s
and 5300 × 2π rad/s, respectively. However, comparing the two cases, it is found that
a larger LR results in a narrower response platform bandwidth than a smaller LR, and
results in a higher gain. Therefore, the design requirements for bandwidth and gain can be
satisfied by selecting a suitable LR and frequency spacing between the Coriolis peak and
left peak.
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The gain and bandwidth of a micro-gyro are mainly affected by LR and FCP. The
influence of B and ε1 on the shape of the nonlinear frequency response curve is shown
in Figures 12 and 13. In Figure 12 the FCP ε1 is set as εep, and in Figure 13 the LR B is
set as 2.4.

Figure 12. The shape of the frequency response curve is affected by LR: (a) ωx = 5400× 2πkd = 12.2,
(b) ωx = 5320× 2πkd = 12.2, (c) ωx = 5320× 2πkd = 12.5.

Figure 13. The shape of the frequency response curve is affected by FCP: (a) ωx = 5400× 2πkd = 12.2,
(b) ωx = 5320× 2πkd = 12.2, (c) ωx = 5320× 2πkd = 12.5.

Figure 12 shows that for a constant spacing between the left and Coriolis peaks, the
LR and nonlinear coefficient have little effect on the shape of the frequency response
curve, while the spacing between the left and Coriolis peaks plays a decisive role in the
shape of the frequency response curve. Compared with Figure 12b,c, it is found that the
nonlinear micro-gyro with an ALM is very sensitive to nonlinearity and that the bandwidth
is significantly improved when the nonlinear coefficient is 12.5 compared to 12.2.

Figure 13 shows that the FCP has little effect on the shape of frequency response curve,
and is similar to the linear case (see Figure 9), i.e., the overall gain is better when ε1 is set to
a larger value.

The above analysis shows that the shape of the frequency response is only affected
by the spacing between the peaks, and increasing of nonlinear coefficient can further im-
prove the bandwidth. When the FCP is larger, the overall gain effect is better. Therefore,
we set ωx = 5320× 2π rad/s, ωr = 5400× 2π rad/s and ∆ = 230 to make the Coriolis
peak close to the left peak. This makes it possible to investigate how the gain and band-
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width of the nonlinear micro-gyro with an ALM is affected by LR and FCP, as shown in
Figures 14 and 15.

Figure 14. Gain is affected by the LR: ε1 = εep(B = 1.4, εep = 0.93;B = 2.4, εep = 0.95).

Figure 15. Gain is affected by FCP: (a) B = 2.4, (b) B = 4.4.

Figure 14 shows that the gain of the nonlinear micro-gyro with an ALM gradually
increases as the LR is gradually increased. When B is set to 1.4, although the 3 dB minimum
gain of the micro-gyro is lower (see Table 2), the gain is reduced by 1.1%; there is actually
a wide platform in its gain and a relative increase in overall gain. This is because the
3 dB bandwidth is selected downwards from the highest point of gain, while the left peak
becomes lower as the LR increases.

As can be seen in Figure 15, the response is approximately synthesized as one peak
when the Coriolis and left peaks are close to each other, i.e., there is no increase of the left
peak to boost valley gain when ε1 is set to 1 (comparing to Figure 10). It is worth noting
that the micro-gyro can obtain a better bandwidth platform when ε1 is set to 1. Therefore,
for the nonlinear micro-gyro with an ALM the FCP ε1 is mainly used to adjust the sense
bandwidth and cannot yet enhance the gain performance.

The gain and bandwidth data for the nonlinear micro-gyro with an ALM are shown in
Table 3, and the data are compared to the nonlinear micro-gyro without an ALM (B = 1).
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Table 3. Gain and bandwidth of nonlinear micro-gyro under typical parameters.

∆ = 230, ωx = 5320×2π Gain (dB) y3 Growth
Rate (%)

Bandwidth
(Hz)

Bandwidth
Growth Rate (%)

B = 1 (without an ALM) −159.5 / 106 /
B = 1 .4, ε1 = 1 −158.7 9.6 108 1.9

B = 1 .4, ε1 = εep(0.93) −159.6 −1.1 109 2.8
B = 2.4, ε1 = 1 −158.3 14.8 105 −0.9

B = 2.4, ε1 = εep(0.95) −157.8 21.6 100 −5.7
B = 4.4, ε1 = 1 −156.7 38.0 89 −16.0

B = 4.4, ε1 = εep(0.98) −156.6 39.6 86 −18.9

Combining Table 3 and Figure 14, it can be seen that the nonlinear micro-gyro with
an ALM has a good gain amplification effect. Although the proportional increase of
displacement y3 at the lever output is not as high as in the linear case, the nonlinear system
without an ALM inherently has higher gain than the linear micro-gyro without an ALM.
For example, when B = 1, the gain of the linear micro-gyro is −174.2 dB and the gain of the
nonlinear micro-gyro is −159.5 dB. The gain of the nonlinear micro-gyro is improved by
14.7 dB compared to the linear system, which is due to the effect produced by the small
spacing between the Coriolis and left peaks. The optimal gain of the linear micro-gyro with
an ALM in Table 2 is −169.7 dB, which is an improvement of only 4.5 dB compared to the
linear system without an ALM. However, the optimal gain of the nonlinear micro-gyro with
an ALM in Table 3 is −156.6 dB, which is 17.6 dB higher than the linear system without an
ALM. The nonlinear micro-gyro with an ALM combines the characteristics of nonlinearity
and the lever amplification effect to greatly increase the gain. In addition, observing the
bandwidth in the fourth column in Table 3, the bandwidth of the nonlinear micro-gyro
with an ALM is narrowed with the increasing LR. When B = 4.4 and ε1 = εep(0.98), its
bandwidth is 86 Hz. Compared with other cases, although sacrificing a certain bandwidth,
its gain is greatly improved to −156.6 dB.

3.3. Effect of Nonlinear Stiffness and Damping Coefficient on Gain and Bandwidth

The nonlinear stiffness has a certain effect on the bandwidth [24]. According to [25],
the dimensions of the straight beam can be designed in order to obtain different nonlinear
stiffness coefficients at large deformations. The bandwidth and gain of a micro-gyro are
affected by the nonlinear stiffness, as shown in Figure 16, where B = 2.4, ε1 = εep.

Figure 16. Gain and bandwidth are affected by nonlinear coefficients.
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Figure 16 shows that as the nonlinear stiffness coefficient increases, the bandwidth
of the micro-gyro gradually increases while the gain at the peaks decreases slightly. This
indicates that the bandwidth of a micro-gyro with an ALM can be effectively increased by
enhancing the nonlinearity.

The gain and bandwidth performance of the micro-gyro have a strong relationship
with the damping coefficient; in particular, the gain is limited by the damping coefficient.
For frame-type micro-gyros, the damping coefficient is affected by the variation of the
package pressure [12]. The package pressure may vary due to different operating envi-
ronments, such as mechanical shock, vibration, and high temperature. Different package
pressures were selected here in order to investigate the effect of the damping coefficient for
a nonlinear micro-gyro with an ALM, as shown in Figure 17.

Figure 17. Gain and bandwidth are affected by damping coefficient for kd = 12.5; (a) ωx = 5320× 2π,
P = 10 Pa, (b) ωx = 5320× 2π, P = 20 Pa .

When the damping coefficient in Figure 17a is lower, the bandwidth of the nonlinear
micro-gyro without an ALM (B = 1) is about 151 Hz and the bandwidth of the nonlinear
micro-gyro with an ALM (B = 2.4) is about 155 Hz. When the damping coefficient is larger,
as in Figure 17b, the bandwidth of the nonlinear micro-gyro without an ALM is 74 Hz and
the bandwidth of the nonlinear micro-gyro with an ALM is 58 Hz. It is found that after
increasing the damping coefficient, the bandwidth of the nonlinear micro-gyro without an
ALM is reduced by 51% and the bandwidth of the nonlinear micro-gyro with an ALM is
reduced by 62.6%. In contrast, as the damping coefficient of the system increases, the peak
gain becomes significantly lower and the 3 dB bandwidth decreases. The bandwidth is
narrower with an ALM than without an ALM. Therefore, for a multi-DOF micro-gyro with
an ALM, increasing the damping coefficient of the system reduces peak gain, suppresses
system nonlinearity, and reduces the bandwidth of the system. In conclusion, a vacuum
package of nonlinear micro-gyros with an ALM can achieve better gain and bandwidth.

4. Conclusions

In this paper, the leverage amplification principle is applied to design the sensor
structure of a 3-DOF micro-gyro. Taking advantage of a complete 2-DOF sense system
with arbitrary adjustable peak spacing, we investigated the variation rule of the gain and
bandwidth of linear and nonlinear micro-gyros with an ALM.

For linear and nonlinear micro-gyros with an ALM, the LR can effectively improve
the gain of the micro-gyro. However, the mass ratio of the 2-DOF system increases with LR,
resulting in a diminishing gain enhancement effect. The FCP mainly adjusts the bandwidth
performance of the micro-gyro. If FCP is chosen to be larger, the bandwidth can be widened



Micromachines 2022, 13, 1201 18 of 20

while retaining the gain amplification effect. In the linear system, as the Coriolis peak and
left peak do not merge into one peak, εep converges to 1 when B is large, and ε1 can be set
to 1 in order to obtains the maximum effect on gain.

For linear micro-gyros, adding levers can effectively improve gain performance. Com-
pared with a linear system without an ALM, a linear micro-gyro with an ALM can improve
gain by 4.5 dB. A nonlinear micro-gyro with an ALM combines the characteristics of non-
linearity and the lever amplification effect. Compared with the linear system without
an ALM, gain is improved by 17.6 dB, and it can greatly enhance the gain effect of a
nonlinear micro-gyro.

In addition, the bandwidth of a micro-gyro with an ALM is related to the gain differ-
ence between peaks at the lever output of Sense-II. Increasing the gain difference leads to a
flattening of the left peak thus widening the bandwidth. For a nonlinear micro-gyro with an
ALM, increasing the nonlinear coefficient kd can further improve bandwidth performance.
Therefore, the leverage amplification principle leads to a multi-DOF micro-gyro with high
gain performance while effectively widening the sensor bandwidth. In addition, a vacuum
package of nonlinear micro-gyros with an ALM can achieve better gain and bandwidth.
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List of Symbols

t Thickness of structural layer
mb Mass of the drive frame
mp1 Mass of the decoupling frame
mp2 Mass of the sense frame
mp3 Mass of the sense-II (Connecting lever input)
mp4 Mass of the sense-II (Connecting lever output)
Ncomb Number of comb fingers in drive direction,
Ncap Number of comb fingers in sense direction
Icomb Overlapping length of driving comb fingers
Icap Overlapping length of sensing comb fingers
ycomb Gap between the comb fingers in drive direction
ycap Gap between the comb fingers in sense direction
F0 Amplitude of the exciting force
cb Damping coefficient in drive direction
cy1 Damping coefficient of mp1 and mp2
cy2 Damping coefficient of mp3
cy3 Damping coefficient of mp4
B Leverage rate (LR)
ε1 Frequency coupling parameter (FCP)
εep Extreme point of the Coriolis peak at the lever output of sense-II
µ1 Mass ratio
kb stiffness of beam in drive direction
kd Nonlinear stiffness of beam in drive direction
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Ax The amplitude of the drive mode
ϕωξ The phase of the drive mode
ωx The resonant frequency of the drive mode
ξx The damping ratios of the drive mode
ωA, ωB, ωC The structural frequency of the sense system
P1,2 The resonant frequency of the sense mode
∆ The peak spacing
ωR The parametric frequencies
kY1, kY2, kY3 The stiffness of the beam in the sense direction
Ωz Input angular velocity
y1, y2, y3 The displacements of masses mp2, mp3, and mp4
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