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Abstract: Understanding how neuronal activity changes and detecting such changes in both normal
and disease conditions is of fundamental importance to the field of neuroscience. Neuronal activity
plays important roles in the formation and function of both synapses and circuits, and dysregulation
of these processes has been linked to a number of debilitating diseases such as autism, schizophrenia,
and epilepsy. Despite advances in our understanding of synapse biology and in how it is altered in
disease, the development of therapeutics for these diseases has not advanced apace. Many neuronal
activity assays have been developed over the years using a variety of platforms and approaches,
but major limitations persist. Current assays, such as fluorescence indicators are not designed to
monitor neuronal activity over a long time, they are typically low-throughput or lack sensitivity.
These are major barriers to the development of new therapies, as drug screening needs to be both
high-throughput to screen through libraries of compounds, and longitudinal to detect any effects
that may emerge after continued application of the drug. This review will cover existing assays
for measuring neuronal activity and highlight a live-cell assay recently developed. This assay can
be performed with easily accessible lab equipment, is both scalable and longitudinal, and can be
combined with most other established methods.

Keywords: neuronal activity assay; live-cell assay; high-throughput drug screen; luminescence;
fluorescence

1. Introduction

Neuronal activity, including synaptic transmission and the activation of transcriptional
programs, is critical for brain development and daily behaviors [1]. To understand how
the activity of individual or sub-populations of neurons contributes to neuronal circuits, it
is essential to monitor changes in neuronal activity. Our understanding of how neuronal
activity is associated with transcriptional outputs and behaviors has advanced considerably
owing to optogenetic and chemo-genetic tools that allow for the manipulation of genetically
defined neuronal subsets. These tools have also helped elucidate the biology of neurons
and synapses in healthy and disease states [2].

Despite heavy research investment and biological advancements, developing thera-
peutics for neurological disorders remains challenging. For example, numerous genes have
been associated with autism spectrum disorders and functional studies have illustrated
their contributions to nervous system development [3]. However, targeted pharmacological
therapies remain non-existent. This is especially concerning due to the heavy burden of
neurological disorders on society [4]. The development of human induced pluripotent stem
cells (iPSCs) and particularly patient-specific iPSC-derived neurons are a major advance
not only as a physiological model for studying such diseases, but also by providing in vitro
platforms for drug screening [5]. Many live-cell assays monitoring the changes in neuronal
activity in vitro have been developed (Figure 1). However, the lack of robust, simple, and
scalable assays for neuronal activity is a major obstacle for drug screening. A number of
criteria are necessary to make a neuronal activity assay amenable to drug screens [6,7].
(i) It must be scalable and high-throughput such that diverse chemical compound libraries
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can be screened. (ii) It must be quantitative, so that the effect of such compounds can be
detected and statistically tested. (iii) It should be as non-invasive as possible, to not disrupt
cellular functions. (iv) It should be longitudinal, so that both acute and chronic drug effects
can be identified. (v) Finally, it should be simple and economical as not to deter smaller
groups from pursuing such investigations. For example, while some recently developed
imaging techniques have addressed these requirements, sophisticated equipment and
expertise is required, making them difficult to set up in a conventional laboratory setting.
In this review, we will consider existing assays for neuronal activity using these criteria
and highlight a recently developed neuronal activity reporter developed that addresses
some shortcomings of previous methods [8] (Table 1).
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Figure 1. In vitro neuronal activity assay as drug screening platforms. Primary neurons derived from
laboratory animals or induced pluripotent stem cell (iPSC)-derived human neurons are cultured and
matured in vitro. After the synaptogenic period, neuronal activity can be measured by a variety of
neuronal activity assays, including electrophysiological assays, fluorescence-based imaging, and/or
biochemical assays. The acute and delayed effect of the drug treatment on neuronal activity can
be monitored immediately or longitudinally for multiple days, respectively, depending on the
invasiveness of assays and the capability of comparing the baseline activities over time.

Table 1. Comparing neuronal activity assays for their applicability to high-throughput drug screening
in vitro.

Patch-Clamp
Recordings

Microelectrode
Arrays (MEA)

Genetically Encoded
Calcium Indicators

Genetically Encoded
Neurotransmitter
Indicators

Genetically
Encoded Voltage
Indicators

SNAR

Scalability Low
MEA: medium-high
High density-MEA:
Low

Medium-high:
automation of
imaging: 96 wells
possible

Medium-high:
automation of
imaging: 96 wells
possible

Low: need to
optimize each tool
for each new screen

Very high, the
whole assay can
be automated

Dynamic Range,
Signal to noise ratio Very high Very high High, continue

increasing

Glutamate and
dopamine: High
Others: low-medium

Low

Very high:
luciferases are
linearly
quantitative

Biological
disruption

Very high: cells
usually die
afterward

Minimal, more from
high density

Low, some cytotoxic
effects Low Low

Very low: the
reporter is
secreted

Longitudinal Low: see above

Extremely high if
culture survives
plating on
electrodes

Medium, some care
needs to be taken
comparing between
days

Medium, some care
needs to be taken
comparing between
days

Medium

Extremely high:
can be followed
for hours, days,
or weeks

Simplicity
Skill, time, and
equipment
intensive

Complicated to
manufacture

Variable: automated
imaging, optimization
of indicator

Variable: automated
imaging, optimization
of indicator

Complicated: tools
are being optimized

Easy to use,
simple lab
equipment, easy
controls, and
optimization

Temporal resolution <1 ms <1 ms 200–800 ms 10–800 ms <1 ms–200 ms 30 min

Spatial scale Whole-cell to axon Network to synapse Brain to synapse Brain to synapse Brain to synapse Network

Computational
requirements

Low-medium with
established
software

High: spike sorting
and noise
deconvolution: new
technology

Medium-high
depending on screen

Medium-high
depending on screen

Medium-high
depending on
screen

Very low
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2. Electrophysiological Recordings

Likely the longest standing method to measure neuronal activity, electrical recordings
from a single neuron continues to be one of most thorough and precise approaches to the
quantification of neuronal activity changes. In patch clamp, a glass pipette is placed on the
cell surface to create a tight electrical seal between the pipette and the cell membrane [9].
Measuring electrical current and voltage changes across the membrane can reveal both
presynaptic and postsynaptic characteristics and is highly suitable for detecting immediate
effects of pharmacological treatments and other manipulations [10]. The resulting data can
be of high quality and reproducibility, unfortunately, though, it is also a high skill technique
with an expert being able to patch 15–30 cells per day. Patch-clamp automation systems
have been developed but come with considerable caveats. They are difficult to optimize,
may produce lower quality data, most are used with cell lines to study ion channel biology
as opposed to action potentials in neurons, and only modestly increase the throughput of
manual patch clamping [9–11] (for a detailed review of these technologies see [9]). These
techniques have been used to characterize patient derived human neurons from iPSC, but
they are not yet suited for high throughput drug screens [12]. Moreover, since the duration
of the recording is limited by the viability of cells patched with an electrode, it cannot be
used to monitor long-term changes in cellular physiology. This is an area to watch as the
field continues to work to adapt this powerful assay to a high throughput format.

Another form of electrical recordings are field recordings, where an electrode is placed
extracellularly and can record population level electrical impulses as opposed to single
cell membrane potential changes [13]. In most cases this is not advantageous because
disease-causing cells are often near healthy cells making it computationally difficult to
separate the signal from each cell. However, when large scale electrical disturbances are
induced, as is the case in epilepsy models, they can be useful [14]. Unfortunately, even
with the use of multiple electrophysiology recording rigs this remains a low to medium
throughput approach. Combining multiple electrodes together constitutes a multi-electrode
array (MEA), which can be used with multiple types of samples, such as primary neuron
cultures or organoids. Although MEA can increase throughput and automation, they do not
allow for recording from specific sub-populations of neurons, and require spike sorting and
careful signal analysis [13]. As well, the density of electrodes does not allow for subcellular
resolution and may misattribute single action potentials. However, in the last decade,
commercially available high-density MEA (HD-MEA) have been fabricated that allow for
subcellular resolution and higher temporal resolution, significantly increasing signal to
noise and spike sorting to individual synapses and cellular compartments [15–19]. These
devices have been used to map each synapse along an axon, track action potential progress
along an axonal arbor, analyze whole network activity in culture over multiple days or
organotypic slice, characterize disease models, and toxicity studies [16,17,19–23]. As a
passive, noninvasive technique, HD-MEA can be paired with conventional endpoint assays
and single cell omic analysis, as well as the genetic tools described below. This technology
is clearly suited for high-throughput drug screening. Unfortunately, several technological
hurdles have prevented HD-MEA from being employed in this capacity. Chief among them
is fabricating these arrays into multi-well formats for high-throughput screening (HTS),
the ability of neurons to grow on HD-MEA in these new formats, and the necessary data
management and analysis systems necessary to sort mutli-day recordings from thousands
of electrodes with microsecond temporal resolution [16,17,21,22]. If these hurdles are
overcome, HD-MEA will be a valuable tool in drug screening for neurological therapies
due to the multiple levels of analysis, non-invasiveness, and spatiotemporal resolution.

Another approach to combining multiple electrodes together consists of microelectrode
probes, such as the Utah electrode array and more recently the neuropixel probes [24]. Since
these microelectrode probes are most adequate for in vivo studies wherein a probe can be
implanted into a specific brain region, they are considered more invasive and would require
large numbers of animals. Although not practical for initial screening, this technique is
being used to characterize compounds from in vitro screens. One of the issues of developing
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drugs for the nervous system is the complexity of how a drug will interact with other types
of cells, as compared to the specific target cell(s) analyzed during screening [25]. By
measuring how the electrical activity changes at the population level throughout the brain,
these probes may more clearly reveal side-effects, such as a slow toxicity that may not be
as apparent by animal behavior or phenotype [26]. Although there is much promise in
the field of electrophysiological recordings for high throughput screening, the technical
hurdles of reproducibility, scalability, and data management prevents its use in large scale
drug screens.

3. Calcium and Neurotransmitter Indicators

Calcium is an important second messenger in many cell types, including neurons.
Indeed, action potentials trigger a rise in intracellular calcium, that can be used as a measure
of neuronal activity [27]. Genetically encoded calcium indicators have become widely used
in recent years, the most prevalent of which is the GCaMP series. GCaMP is a fusion protein
of calmodulin, the M13 myosin light chain kinase sequence, and a circularly permuted
GFP (cpGFP) [27]. Upon binding cytoplasmic calcium, the excitation efficiency of the
cpGFP increases, resulting in brighter fluorescence. The temporal resolution of GCaMPs
has steadily increased, with the first generation able to reliably detect bursts of action
potentials [28,29] and newer versions reportedly able to detect single action potentials
triggered by electrical stimulation [28,30,31]. In practice though, the kinetics of GCaMPs
limit them to suprathreshold events and a temporal resolution of 200–800 ms [28,32].
Neurotransmitter indicators work via a similar mechanism, but calmodulin is replaced by a
domain, usually tethered to the membrane, that binds a specific neurotransmitter allowing
for picomolar to micromolar detection thresholds depending on the neurotransmitter and
temporal resolution ranging from tens to hundreds of milliseconds with a high dynamic
range for glutamate and dopamine but much lower for other neurotransmitters [27,33].
These genetically encoded tools can be transgenes packaged into viral vectors, or induced
by a recombinase, allowing for both temporal and spatial specificity. As well, they are being
continuously improved upon by directed evolution for better sensitivity, brightness and
kinetics [27–30,34–37].

Control and ALS patient derived human neurons expressing GCaMP6 were used to
screen 1903 compounds and the authors functionally describe 3 of these [38]. These re-
porters can also be directed to distinct subcellular compartments by fusing a tag or protein
to answer specific biological questions. Untagged GCaMPs measure cytosolic calcium
which reports on burst activity sacrificing spatial resolution for increased signal [39,40]. A
group recently used a glutamate indicator and calcium indicators targeted to either the
postsynaptic compartment or the presynaptic compartment with electrical or pharmacolog-
ical stimulation a in 96 well plates. Using self-fabricated plates and a custom microscope
automation setup and a novel analysis pipeline, they were able to visualize calcium tran-
sients in aggregate and in individual spines, allowing for dissection of mechanisms of the
few compounds tested [40]. Although their platform has not been used for HTS so far, they
discuss the promise of this platform.

Zebrafish are particularly amenable to in vivo live imaging with genetically encoded
indicators, due to being optically transparent, as well as high throughput drug screening
due to their conservation of genes and pathways with mammals and ease of compound in-
troduction and scalability [41–45]. For example, to find molecules that that effect dopamine
neuron survival in a Parkinson’s disease model, 1043 bioactive molecules were screened
(with 57 hits) in a zebrafish model using a dopamine indicator [46]. Whole brain imaging
of larval zebrafish with GCaMP6 combined with machine learning was able to predict the
therapeutic potential of a compound based on an initial known test library [47]. Recently,
calcium imaging from free swimming zebrafish helped screen epilepsy drugs [48]. Calcium
imaging in third instar fly larvae was also used to screen anticonvulsant drugs, although
only a handful of compounds [49].
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Most of the screens described required building and calibration of imaging automation
equipment to correct unequal field illumination, and customized analysis software to
deconvolute signal and resolution [50]. Moreover, as the reporter is consistently replenished
by a constitutive promoter or the promoter activity can be affected by the compound added,
it can be challenging to directly compare the baseline fluorescence intensity change over
multiple imaging sessions following drug treatment. Hence, the imaging for such screens
is usually carried out over one day, usually in one or two sessions total [38,40,46].

It is also notable that GCaMP transgenic animals display abnormalities, such as
epileptiform activity [51]. Although the mechanism of these phenotypes has not been
fully understood, GCaMPs may buffer cytoplasmic calcium and potentially cause bio-
logical changes [27,35]. Also, continued imaging sessions can lead to cellular phototox-
icity [27,31,34,38,52]. As these tools are vital to the neuroscience community, they are
constantly being optimized and assays for HTS may soon become much easier to use
as automation becomes standardized and software is shared among the community. Al-
though for now these tools lack some of the key characteristics of HTS, such as specialized
equipment, issues with longitudinal studies and harm to the cells, they are still extremely
powerful, especially in in vivo systems such as the fly and fish.

4. Membrane Voltage Indicators:

Another class of genetically encoded reporters are fusions of the voltage sensing
domains of different proteins to a fluorescent reporter [27]. Since they are genetically
encoded fluorescent reporters, they have similar benefits and limitations as GCaMPs.
Essentially, membrane depolarization causes a conformational shift in the voltage sensing
domain, which changes the fluorescence of the attached reporter. These genetically encoded
voltage indicators report directly on neuronal activity, as opposed to a proxy such as calcium
or neurotransmitter release and some are able to detect subthreshold events that do not
result in calcium release [53]. To detect these events, very fast kinetics of less than a
microsecond is necessary, which creates a difficult tradeoff between temporal resolution
and dynamic range [36,45,53,54]. They have been used both in culture and in living animals
and can image entire networks of traveling action potentials [27]. There is large variability
in the types of fusion proteins and their kinetics, and each needs to be carefully optimized.
Some of these reporters work by using FRET donor-receptor pairs and their kinetics can
resolve single action potentials [27]. They are, however, much more vulnerable than GCaMP
to low signal to noise ratio, membrane localization, and photobleaching by high sampling
rates. These assays continue to undergo further optimization [36], and are already having
an impact on the field when combined with other assays. The ability to visualize slight
changes in membrane potential as well as suprathreshold events holds a promise to find
therapeutics for specific phenotypes.

5. Immediate Early Genes

Immediate early genes are genes whose transcription is upregulated upon neuronal
activation, which include Arc/Arg3.1, c-fos, and Npas4. These have been used as a readout
of neuronal activity for many years. For example, transcripts of Arc/Arg3.1 can be detected
within minutes after a variety of neuronal stimulations [55,56]. Immunostaining for these
proteins has been used to create maps of neuronal activation after various behavioral
tasks [57,58]. The specific network of neurons activated by these behavioral tasks is termed
an ensemble. By mapping the expression of IEGs and using them to drive reporter ex-
pression, these ensembles can be reliably labeled [59]. Expression of an optogenetic or
chemogenetic tool allows for selectively manipulating the activity of neurons in an ensem-
ble whereas driving a synaptic tag with a photo reversible fluorophore can allow for spatial
and temporal neuronal activation information. These results support that the promoter
activity of immediate early genes reliably reflect neuronal activity in vivo. While there is
much excitement about these tools to help understand learning and memory, they seem to
have little application to drug screening. However, regulatory elements of an immediate
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early gene can be coupled with a biochemical reporter such as a luciferase, allowing for
continued monitoring of expression over time [60]. By combining a regulatory region of
the Arc/Arg3.1 gene with a secreted Gaussia luciferase (Gluc), we created a neuronal activity
reporter which we have named secreted neuronal activity reporter (SNAR) [8].

6. SNAR

To generate an activity-dependent, live-cell assay, we used Gluc [61], which offers
significant advantages: (i) it is a small protein (19 kDa) allowing for easy packaging into
viral vectors; (ii) it is naturally secreted upon synthesis, allowing for continued monitoring
of the reporter by sampling the cell culture media over time; (iii) it is 1000 fold brighter
than the more commonly used Firefly and Renilla luciferases making it extremely sensitive.
Gluc has been used as a reporter for monitoring other biological systems, such as a tumor
model [62] and more recently the dynamics of Arc/Arg3.1 translation [63]. SNAR consists
of a construct where Gluc is driven by a promoter constructed of several repeats of a regu-
latory region of the Arc/Arg3.1 gene previously shown to respond to synaptic activity [64]
(Figure 2).
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Figure 2. Schematic of secreted neuronal activity reporter (SNAR) assay. Human iPSC-derived
neurons or primary neuron cultures are transduced with SNAR. Media samples are collected at
multiple time points and luciferase activity is recorded after the addition of the Coelenterazine,
the Gaussia luciferase substrate by a luminometer. SNAR is calcium dependent and predominantly
induced by NMDA receptor activation. Voltage gated calcium channels (VGCC) as well as the
Erk/MAPK pathway also contribute to SNAR, albeit to a lower extent.

Consistent with other studies on the regulation of endogenous Arc/Arg3.1, SNAR
dynamically responds to various manipulations of neuronal activity (Figure 1). Blockage of
neuronal firing, NMDA receptor transmission, or voltage-gated calcium channels suppress
SNAR activity. On the other hand, inhibition of GABA receptor transmission or the
application of either astrocyte-conditioned medium or BNDF induces SNAR activity. The
SNAR assay reliably detects changes in neuronal activity caused by epilepsy drugs, further
demonstrating its application as a drug screening tool. This assay is ideal for drug screening
as media sampling can be automated, allowing easy scalability. Similarly, it requires no
specialized equipment, and has minimal impact on the biology of the cell as Gluc is secreted
after being produced. Reliable measurements can be made from as little as one microliter of
media, allowing for repeated sampling of between 5 and 20 microliters without replenishing
the media, although multiple time points within the same day may disturb the culture if it
is repeatedly withdrawn from the incubator. In addition, this assay can be combined with
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any of the assays listed above, optogenetic and chemogenetic tools, other imaging-based
approaches, and conventional endpoint assays. It can also be applied to patient-derived
iPSC neurons to characterize neuronal activity defect in the disease state and simultaneously
screen the drugs that reverse it. Thus, it can potentially be used to screen for personalized
medicines for specific neurological disorders such as drug-resistant epilepsy. By using
Cre-recombinase specific expression, we can screen for drugs that specifically change a
subpopulation of neurons. It is notable that different immediate early genes show varied
temporal kinetics and can be induce by distinct upstream signaling [56,65,66]. Since
SNAR is monitoring the activity of Arc regulatory elements, combining SNAR with other
immediate early gene reporters will provide a broader neuronal activation profile.

The use of Gluc as a reporter makes SNAR extremely simple and sensitive, however
there are some limitations that should be taken into consideration. Due to the ongoing
release of luciferase that was already synthesized, there is a lag-time, limiting the time-
resolution of the assay. Thus, SNAR is not ideal for detecting immediate neuronal responses.
Since Gluc is secreted, SNAR does not provide spatial resolution. However, this can be
addressed by conventional imaging techniques or inducing cell-type specific expression of
SNAR by a recombinase. Similar to other genetically encoded reporters, the absolute level
of the SNAR reporter can be variable depending on the culture conditions and infection
rate. Thus, normalization of the SNAR signal to a pre-treatment state or a control reporter
is critical. Since SNAR is based on multiple quantitative samples from the same neuronal
population, a paired analysis of the same neurons before and after the manipulation greatly
improves the consistency of the assay.

7. Conclusions

Developing therapeutics for neurological disorders has lagged behind our understand-
ing of synapse and neuronal biology. This can be partially attributed to the lack of an
optimal neuronal activity assay for high-throughput drug screening. In this review, we
compared the available assays for neuronal activity with an assay recently developed in
our lab for their practicality in drug screening (Table 1). Although each of the established
assays-electrophysiology, calcium, voltage and neurotransmitter indicators, and immediate
early genes-can monitor neuronal activity, none of them are ideal for large scale drug
screening due to throughput, technical considerations, or difficulties optimizing conditions
across multiple sessions. SNAR, based on a secreted luciferase driven by a neuronal activity
promoter, is ideal for large scale initial drug screening because of its intra-assay reliability,
longitudinal tracing, ease of use, and quantitative nature.
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