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Abstract: Scaling fractional-order memristor circuit is important for realizing a fractional-order
memristor. However, the effective operating-frequency range, operation order, and fractional-order
memristance of the scaling fractional-order memristor circuit have not been studied thoroughly;
that is, the fractional-order memristance in the effective operating-frequency range has not been
calculated quantitatively. The fractional-order memristance is a similar and equally important con-
cept as memristance, memcapacitance, and meminductance. In this paper, the frequency-domain
characteristic-analysis principle of the fractional-order memristor is proposed based on the order-
and F-frequency characteristic functions. The reasons for selecting the order- and F-frequency charac-
teristic functions are explained. Subsequently, the correctness of the frequency-domain characteristic
analysis using the order- and F-frequency characteristic functions is verified from multiple perspec-
tives. Finally, the principle of the frequency-domain characteristic analysis is applied to the recently
realized chain-scaling fractional-order memristor circuit. The results of this study indicate that the
principle of the frequency-domain characteristic analysis of the fractional-order memristor can suc-
cessfully calculate the fractional-order memristance of the chain-scaling fractional-order memristor
circuit. The proposed principle of frequency-domain characteristic analysis can also be applied to
mem-elements, such as memristors, memcapacitors, and meminductors. The main contribution of
this study is the principle of the frequency-domain characteristic analysis of the fractional-order
memristor based on the order- and F-frequency characteristic functions.

Keywords: fractional-order circuits/systems; mem-element; memristor; memcapacitor; meminductor

1. Introduction

A memristor, proposed by Chua in 1971 [1], is a type of missing-circuit element.
The memristor is used to establish a constitutive relationship between charge and flux.
It is a nonlinear circuit element whose memristance changes according to the history of
the input current or voltage. Although there are broader classes of physical devices and
systems that have memristor-like properties, they cannot be used for modeling when
using the memristor to model physical devices and systems. Therefore, Chua extended
the application of the memristor to memristive systems [2]. In 2008, HP Labs produced
the first memristor device [3]. The memristor has increasingly attracted research attention
and has been widely used [4–10]. Based on the concept of the memristor, a memcapacitor
and meminductor have also been proposed. The two constitutive variables of these mem-
elements show pinched hysteretic loops [11]. Further, these mem-elements provide more
choice for circuit and system design. Moreover, they promote the realization of concepts
such as a nonvolatile trigger and parallel in-memory multiply-accumulate operations [4–7].
Research on mem-elements includes theoretical analysis [2,12–14], emulator design [15–18],
device implementation [19–21], and application system design [4–10,22–26].

According to the fractional calculus theory [27], the operation orders of the memristor,
memcapacitor, and meminductor are 0, −1, and +1, respectively. Pu and Yuan proposed
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the concept of a fractional-order memristor to obtain mem-elements with a fractional-
order [28]. The units and dimensions of the fractional-order memristance are the same as
those of a fractance. Fracmemristor and fracmemristance are portmanteaus for fractional-
order memristor and memristance, respectively [28]. Pu et al. were the first to use the
fracmemristor for designing an intelligent prediction model in the field of the financial
technology; they developed a string-scaling fracmemristor circuit [29]. Further, Pu et al.
designed a novel circuit for a fractional-order memristive neural synaptic weighting using
a fracmemristor [30].

The fracmemristor is a new concept, and there has been a lack of commercially avail-
able fracmemristor devices. Currently, memristor emulators are used in place of the
resistors in scaling factor circuits for realizing fracmemristor circuits having suitable electri-
cal characteristics. The implemented fracmemristor circuits have lattice scaling [31], ladder
scaling [32], chain scaling [33], and other configurations, which are collectively referred to
as scaling fracmemristor circuits. Such a fracmemristor is the focus of this study. There is
another type of fracmemristor, whose units and dimensions are the same as those of the
memristor and wherein the internal state variables are the fractional integral of the voltage
or current [34–36].

Important parameters of the fracmemristor include the fracmemristance and opera-
tional order [31]. The fracmemristance is a similar and equally important concept as mem-
ristance, memcapacitance, and meminductance. The scaling fracmemristor circuit is impor-
tant for implementing a fracmemristor circuit [31–33]. The effective operating-frequency
range is an important index of the scaling fracmemristor circuit [32]. The scaling fracmem-
ristor circuit must meet not only the operational order requirements of the fracmemristor in
the effective operating-frequency range but also the requirements of the change in fracmem-
ristance. The fracmemristance in the effective operating-frequency range is constant when
the internal state variable is fixed. It should also change when the internal state variable
changes. However, the quantification of the numerical variation of the fracmemristance
in the effective operating-frequency range is yet to be solved [31–33]. This is because the
impedance function of the scaling fracmemristor circuit is an irregular iterative scaling
equation, the analytical solution of which remains a challenging problem [31–33,37,38].

The theory of the fractor circuit is the basis of implementing the fracmemristor cir-
cuit [31–33,37,38]. Operation order and fractance are two important parameters of the
fractor [37,38]. Yuan proposed an order-frequency characteristic function to quantify the
operational order [38], whereas Yu et al. proposed the F-frequency characteristic function
to quantify the fractance [39], of the fractor circuit in the frequency domain. The order-
and F-frequency characteristic functions have been widely used in the fractor circuit [37–44].
Pu et al. first used the order-frequency characteristic function to obtain the effective
operating-frequency range of the scaling fracmemristor circuit [32].

Small-signal analyses are important methods for analyzing the memristor and its
circuit [2,12–14]. Chua presented the small-signal equivalent circuit of a memristive system
to distinguish a memristive device from other systems [2]. Liang et al. used the small-signal
analysis to assess the importance of the DC V–I characteristics in the performance of a
locally active memristor [14]. According to the principle of small-signal analysis, the small-
signal equivalent circuit of the scaling fracmemristor circuit is the scaling fractor circuit,
and the small-signal impedance function of the scaling fracmemristor impedance function
is the impedance function of the scaling fractor circuit. The order- and F-frequency charac-
teristic functions are effectively used in the frequency-domain analysis of the operational
order and fractance of the scaling factor circuit [37–44]. An effective operating-frequency
range, operational order, and fracmemristance of the fracmemristor circuit in the frequency
domain can be obtained by applying the order- and F-frequency characteristic functions to
the small-signal equivalent circuit and impedance function of the fracmemristor circuit.

Given this context, this study introduced the order- and F-frequency characteristic func-
tions for obtaining the frequency-domain characteristic-analysis principle of the fracmem-
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ristor to calculate the fracmemristance of the scaling fracmemristor circuit. The main
contributions of this study are as follows:

• The frequency-domain characteristic-analysis principle of the fracmemristor can be
used to numerically calculate the effective operating-frequency range and frequency-
domain approximation performance of the fracmemristor circuit.

• The principle can help calculate the fracmemristance of the scaling fracmemristor circuit.
• The half-order chain-type fracmemristor circuit, which is beneficial for verifying the

correctness of the frequency-domain characteristic-analysis principle of the fracmemristor
more scientifically as compared with the scaling fracmemristor circuit, is proposed.

• The fracmemristor acts as a memcapacitor, memristor, and meminductor when its oper-
ation orders are extended to−1, 0, and +1, respectively. The principle of the frequency-
domain characteristic analysis of the fracmemristor can also be used for mem-elements,
which are widely used in memristors, memcapacitors, and meminductors.

The remainder of this manuscript is organized as follows. The basic concepts of
the fracmemristor and the research problems considered this study are introduced in
Section 2. The reason for choosing the order- and F-frequency characteristic functions
is clarified in Section 3. Further, the principle of the frequency-domain characteristic
analysis of fracmemristor is presented. In Section 4, the principle of the frequency-domain
characteristic analysis is applied to the scaling fracmemristor circuit, the approximation
performance of the scaling fracmemristor circuit is obtained, and the fracmemristance of
the scaling fracmemristor circuit is solved. In Section 5, the theory of the frequency-domain
characteristic analysis is applied to the memristor, memcapacitor, and meminductor to
demonstrate its wide applicability. Finally, Section 6 presents the conclusion of the study.

2. Preliminaries

In this section, few basic concepts of fracmemristor (e.g., impedance function and
fracmemristance) are introduced. Subsequently, the concept of the fracmemristor circuit
is discussed, and basic knowledge about the scaling fracmemristor circuit is summarized.
Finally, the research problems to be solved in this study are presented in detail.

The fracmemristor is a two-terminal circuit element that includes capacitive and
inductive fracmemristors. Pu et al. derived the driving-point impedance function of the
arbitrary operation-order fracmemristor in its natural realization form as [28,31]

FMµ =

{
FMc

µ = FMc
−(η+p) = cµ[R(s)]1−psµ(µ < 0)

FMl
µ = FMl

η+p = lµ[R(s)]1−psµ(µ > 0)
, (1)

where FMc
µ, FMl

µ, c, l,s,µ, and η + p represent the impedance of the ideal capacitive
fracmemristor, impedance of the ideal inductive fracmemristor, capacitance, inductance,
complex variable of the Laplace transform, operational order of the fracmemristor, and non-
negative real number, respectively. Further, η represents a non-negative integer and
0 ≤ p ≤ 1. η = b|µ|c, bc represents the round towards minus infinity.

The fracmemristance of the fracmemristor is given by

mµ(x) =

{
mc

µ(x) = cµL−1{[R(s)]1−p}(µ < 0)
ml

µ(x) = lµL−1{[R(s)]1−p}(µ > 0)
, (2)

where mc
µ(x), ml

µ(x), and L−1{} represent the capacitive fracmemristance, inductive
fracmemristance, and inverse Laplace transform, respectively. Further, x represents the
internal state variable. Equation (1) represents the impedance function of charge-controlled
fracmemristor, and Equation (2) represents the charge-controlled fracmemristance when
x represents the charge q. Equation (1) represents the impedance function of the flux-
controlled fracmemristor and Equation (2) represents the flux-controlled fracmemristance
when x represents the flux ϕ (the integral value of the voltage). The unit and dimension of
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the fracmemristance are the same as those of the fractance. Further, x represents a variety of
other variables such as the fractional-order integral of the voltage and the fractional-order
integral of the current. The capacitive fracmemristance mc

µ, inductive fracmemristance ml
µ,

and internal state variable x are related to other physical quantities such as voltage u and
current i; therefore, the corresponding function of the fracmemristance includes mc

µ(x, u),
mc

µ(x, i), ml
µ(x, u), and ml

µ(x, i).
Equations (1) and (2) can not only be used for the fracmemristor; they also represent

the impedance of more elements and their parameter values based on the different values
of their parameters. Equation (1) denotes the impedance function of the memristor and
Equation (2) denotes the memristance when µ = 0, η = 0, and p = 0. The impedance func-
tion of the memristor is FM0 = R(s) and the memristance m0(x) = L−1[R(s)]. Equation (1)
represents the impedance function of the memcapacitor, and Equation (2) denotes the
memcapacitance when µ = −1, η = 1, and p = 0. The impedance function of the
memcapacitor is FMc

−1 = c−1R(s)s−1; the lumped parameter value of the memcapacitor
is mc

−1(x) = c−1L−1{R(s)}. The lumped parameter value of the memcapacitor is the
inverse of the memcapacitance. Equation (1) denotes the impedance function of the me-
minductor and Equation (2) denotes the meminductance when µ = +1, η = 1, and p = 0.
The impedance function of the meminductor is FMl

+1 = lR(s)s; the meminductance is
ml

+1(x) = lL−1{R(s)}. Equations (1) and (2) can represent the impedance function of
elements such as the resistor, capacitor, inductor, and their lumped parameter values when
R(s) is constant. For example, when R(s) = R = r and µ = 0, we have η = 0 and p = 0,
where (1) denotes the impedance function of the resistor and (2) denotes the resistance.
The impedance function of the resistor is FM0 = R, and the resistance m0 = r. The types of
elements that can be represented by Equations (1) and (2) are presented in Table 1.

Table 1. Equations (1) and (2) are the types of elements that can be represented.

Element µ η p FMµ mµ(x) R(s)

memcapacitor −1 1 0 c−1R(s)s−1 c−1L−1{R(s)}

R(s)

capacitive
fracmemristor −1 < µ < 0 0 −µ cµ[R(s)]1+µsµ cµL−1{[R(s)]1+µ

}

memristor 0 0 0 R(s) L−1{R(s)}
inductive

fracmemristor 0 < µ < 1 0 µ lµ[R(s)]1−µsµ lµL−1{[R(s)]1−µ
}

meminductor 1 1 0 lR(s)s lL−1{R(s)}
capacitor −1 1 0 c−1rs−1 c−1r

r

capacitive
fractor −1 < µ < 0 0 −µ cµr1+µsµ cµr1+µ

resistor 0 0 0 r r

inductive
fractor 0 < µ < 1 0 µ lµr1−µsµ lµr1−µ

inductor 1 1 0 lrs lr

Therefore, researchers have proposed a variety of fracmemristor circuits to study
the theory and application of the fracmemristor [31–33]. The electrical characteristics of
fracmemristor are approximately realized under an effective operating-frequency range and
acceptable accuracy. In terms of physics, the active two-terminal circuit network that can be
realized by the circuit is used for investigating the electrical and operational characteristics
of the fracmemristor. In terms of mathematics, a circuit-realizable impedance-function
approximation (1) as shown in the impedance is constructed.

The fracmemristance and operational order can be solved by the impedance function
Z̄(s) of the scaling fracmemristor circuit. Further, Z̄(s) should be calculated from the
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scaling iteration formula; the corresponding irregular iterative scaling equation is [31–33]
given as

Z(s) = F(αZ̄(αβs)), (3)

where α and β are the progression ratio of the reference memristance and reference capaci-
tance, respectively. α and β are positive real numbers, and α 6= 1 and β 6= 1. The iterative
scaling equation analytic solution is a challenging mathematical problem [31–33,37,38].
The operational order of the scaling fracmemristor circuit is obtained using an approximate
solution [31–33]. The operation order of the scaling fractional memristor is [31–33]

µ ≈ − lg α/ lg(αβ). (4)

The fracmemristor circuit of arbitrary fractional operation order can be obtained by
adjusting the values of α and β. The operation order µ is an approximate value, and its
error must be quantified and analyzed. The analytical solution of the fracmemristance
including the approximate solution remains an unsolved problem.

The electrical characteristics of the fracmemristor can be realized in the effective
operating-frequency range of the scaling fracmemristor circuit. Pu et al. were the first to
obtain the effective operating-frequency range of the scaling fracmemristor circuit using the
order-frequency characteristic curve [32]. An important property of the fracmemristor is
that the fracmemristance varies according to a change in the state variable x. The fracmem-
ristance mµ(x) in the effective operating-frequency range is constant when the state variable
x fixed. The scaling fracmemristor circuit not only fulfills the operational order require-
ments, but it also satisfies the requirements of the change in the fracmemristance mµ(x).
However, only the operational order µ within the effective operating-frequency range can
be obtained using the order-frequency characteristic. The variation of fracmemristance in
the effective operating-frequency range is yet to be confirmed. Further, the fracmemristance
of the scaling fracmemristor circuit has not been solved theoretically. With the further study
of the fracmemristor, it is necessary to quantify the fracmemristance and the approximate
accuracy of the operational order in the frequency domain.

To solve the aforementioned problems, this study introduced the order- and F-frequency
characteristic functions to obtain the frequency-domain characteristic-analysis principle of
the fracmemristor.

3. Frequency-Domain Characteristic-Analysis Principle of the Fracmemristor

In this section, the frequency-domain characteristic-analysis principle of the circuit
elements is introduced. This is followed by the explanation for choosing the order- and
F-frequency characteristic functions to obtain the frequency-domain characteristic-analysis
principle of the fracmemristor. Subsequently, the impedance function of the ideal fracmem-
ristor and small-signal analysis method are used to verify the accuracy of the frequency-
domain characteristic analysis of the fracmemristor using the order- and F-frequency
characteristic functions. Finally, a half-order chain-type fracmemristor circuit is proposed
to verify the principle of the frequency-domain characteristic analysis. The frequency-
domain characteristics of the small-signal equivalent circuit of the half-order chain-type
fracmemristor circuit are analyzed theoretically. The results of the analysis not only proves
the principle of the frequency-domain characteristic analysis of fracmemristor but also
verifies its accuracy from a circuit perspective.

3.1. Frequency-Domain Characteristic-Analysis Principle of Circuit Elements

If the impedance function of the linear circuit element is Z(s), the variable s is replaced
by the frequency index variable v [37]. That is,

s = j2π10v. (5)
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Thus, the amplitude–frequency characteristic function of Z(s) is obtained as

Λ(v) = lg
∣∣Z
(
j2π10v

)∣∣, (6)

and the phase–frequency characteristic function as

θ(v) = arg
{

Z
(

j2π10v
)}

. (7)

The amplitude–frequency characteristic function Λ(v) denotes the peak-to-peak ratio
of the sinusoidal voltage signal at the terminal of the element to the corresponding sinu-
soidal current signal. The phase–frequency characteristic function θ(v) denotes the phase
difference between the sinusoidal voltage signal at the terminal of the element and the
corresponding sinusoidal current signal.

The order-frequency characteristic function can be used not only for researching the
fractor circuit but also for the quantitative analysis of the circuit elements, linear circuits,
and systems in the frequency domain. The order-frequency characteristic function of Z(s)
is [38]

O(v) =
dΛ(v)

dv
=

lg|Z(j2π10v)|
dv

. (8)

The F-frequency characteristic function of Z(s) is [39]

Γ(v) = lg F(v) = Λ(v)−O(v)[v + lg(2π)] = lg
∣∣Z
(
j2π10v

)∣∣−O(v)[v + lg(2π)]. (9)

The F-frequency characteristic function can also be used in the frequency-domain
quantitative analysis of circuit elements, linear circuits, and systems.

The order-frequency characteristic functions of the ideal resistor, capacitor, and in-
ductor are O(v) = 0, O(v) = −1, and O(v) = +1 respectively; further, the F-frequency
characteristic functions F(v) indicate its resistance, inverse of the capacitance, and induc-
tance, respectively.

The amplitude–frequency and phase–frequency characteristic functions are especially
important frequency-characteristic functions in circuits and systems [45]. The amplitude–
frequency and phase–frequency characteristics are used in the analysis of linear systems.
Mem-elements belong to the category of nonlinear systems. The small-signal analysis
method is required for using the amplitude–frequency and phase–frequency characteristics
functions in the analysis of mem-elements [2,12–14]. According to Equations (8) and (9),
both the order- and F-frequency characteristic functions are contained in the amplitude-
frequency characteristic function.

3.2. Order-Frequency and F-Frequency Characteristics of the Ideal Fracmemristor
Impedance Function

The small-signal impedance function of the ideal fracmemristor is substituted into
the order- and F-frequency characteristic functions; the accuracy of the application of the
order- and F-frequency characteristic functions to the frequency-domain characteristic
analysis of the fracmemristor is verified. According to Equation (2), the fracmemristance
is controlled by the state variable x, which results in the impedance function FMµ of
the ideal fracmemristor as a nonlinear function. Assuming that the operating point of
ideal fracmemristor is Q(U0, I0) and the corresponding state variable x = X0, R(s) = r
in Equations (1) and (2). The small-signal impedance function can be represented by
Z(s, Q) = FMµ(s, Q)|R(s)=r. According to Equation (8), the order-frequency characteristic
function value can be obtained as

O(v, Q) =
lg
∣∣FMµ(j2π10v, Q)

∣∣
dv

= µ. (10)
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Based on Equation (9), the F-frequency characteristic function value can be obtained as

Γ(v, Q) = lg F(v, Q) = lg
∣∣FMµ

(
j2π10v, Q

)∣∣−O(v, Q)[v + lg(2π)] = lg mµ. (11)

According to Equations (10) and (11), the order-frequency characteristic function value
is equal to the operation order of the fracmemristor, and the F-frequency characteristic
function value F(v, Q) is equal to the fracmemristance mµ. Thus, it is theoretically proved
that the order- and F-frequency characteristic functions are suitable for the frequency-
domain analysis of the fracmemristor.

3.3. Frequency-Domain Characteristic Analysis of the Half-Order Chain-Type
Fracmemristor Circuit

The fracmemristance is yet to be solved for all implemented scaling fracmemristor cir-
cuits [31–33]. The half-order chain-type fracmemristor circuit is proposed by replacing the
resistor with the memristor in the half-order chain-type fractor circuit [38]. The fracmem-
ristance of the half-order chain-type fracmemristor circuit can be solved analytically to
compare and verify the accuracy of the F-frequency characteristic function.

Further, the frequency-domain characteristics of the half-order chain-type fracmem-
ristor circuit are analyzed. The configuration of the half-order chain-type fracmemristor
circuit is provided; using circuit theory, the operation order and F characteristic value of
circuit in a different frequency range are analyzed. Subsequently, the impedance func-
tion of the half-order chain-type fracmemristor circuit is substituted into the order- and
F-frequency characteristic functions; the operation order and F characteristic value of the
circuit in a different frequency range are calculated theoretically. The theory confirms that
the order- and F-frequency characteristic functions are suitable for the frequency-domain
characteristic analysis of the fracmemristor circuit. Finally, the frequency characteristic
analysis theory of the fracmemristor circuit is verified by investigating the curves of the
order- and F-frequency characteristic functions.

3.3.1. Half-Order Chain-Type Fracmemristor Circuit

The configuration of the half-order chain-type fracmemristor circuit is shown in
Figure 1a. Figure 1b shows its iterating circuit. M(x), C, and k denote the reference memris-
tance, reference capacitance, and total number of subcircuits, respectively. The state variable
x is controlled by the terminal voltage or current. The half-order chain-type fracmemristor
circuit has an ideal approximation property in the effective operating-frequency range.
Z0(s) represents the initial impedance, Z0(s) = M(x).

(a)

(b)

Figure 1. Half-order chain-type fracmemristor circuit: (a) circuit configuration; (b) iterating circuit.
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According to the iterative circuit shown in Figure 1b, the input impedance Z̃k(s) is
described by the iterative algorithm formula

Z̃k(s) =
M(x)

[
1 + sCZ̃k−1(s)

]

1 + sCZ̃k−1(s) + sCM(x)
. (12)

When k→ ∞, the limit impedance calculated from Equation (12) is

Z̃(s) =
1

2sC

(√
1 +

4s
Ω1
− 1

)
. (13)

According to Figure 1b, the input impedance is Zk(s) = Z̃k(s) + 1
2sC , and therefore,

the limit impedance can be obtained as

Z(s) =
1

2sC

√
1 +

4s
Ω1

, (14)

where Ω1 = 1
M(x)C represents the eigen angular frequency.

Assume k→ ∞ for the half-order chain-type fracmemristor circuit. When |s| � Ω1 (the ef-

fective operating-frequency range), 4s
Ω1
� 1. Using Equation (14), Z(s) =

√
M(x)

C s−0.5. Fracmem-

ristance mc
µ(x) =

√
M(x)

C by implementing the operation order of the µ = −0.5 fracmemristor.
The real circuit has a finite value of k. The operation characteristics of the signal fre-

quencies at different values are considered to discuss the frequency-domain characteristics
of the half-order chain-type fracmemristor circuit with a finite value of k.

(1) In the range of the angular frequency [Ω1, Ωk], the half-order chain-type fracmemris-
tor circuit with a finite k realizes the operation characteristic of the half-order fracmemristor.

When Ω1 < |s| < Ωk [38], Z(s) ≈
√

M(x)
C s−0.5, implements the operations order µ = −0.5

and fracmemristance mc
−0.5(x) =

√
M(x)

C . In this scenario, the order-frequency characteris-

tic function O(s) = −0.5 and the F-frequency characteristic function F(s) =
√

M(x)
C .

(2) When the angular frequency has the maximum value, i.e., when it approaches
infinity, the half-order chain-type fracmemristor circuit with finite k realizes the operation
characteristic of the memristor. The capacitance

∣∣∣ 1
sC

∣∣∣ → 0 when |s| → ∞. The half-order
chain-type fracmemristor circuit with finite k is equivalent to k + 1 memristor M(x) in
parallel. Z(s) = M(x)

k+1 , implements the operations order µ = 0 and the memristance

for mc
0(x) = M(x)

k+1 of the zero-order memristor. In this scenario, the order-frequency

characteristic function O(s) = 0, and the F-frequency characteristic function F(s) = M(x)
k+1 .

(3) When the angular frequency is extremely low, i.e., when it approaches zero, the half-
order chain-type fracmemristor circuit with finite k realizes the operation characteristic
of the capacitor. When |s| → 0, the capacitance impedance

∣∣∣ 1
sC

∣∣∣ � M(x). The half-order
chain-type fracmemristor circuit with finite k is equivalent to the capacitor with capacitance
2C. Z(s) = 1

2sC , implements the operations order µ = −1 and the capacitance 2C of
capacitor. In this situation, the order-frequency characteristic function O(s) = −1, and the
F-frequency characteristic function F(s) = 1

2C .
(4) When the angular frequency is higher than Ωk, the half-order chain-type fracmem-

ristor circuit with finite k is realized from the half-order fracmemristor to the memristor with
an increase in angular frequency. When Ωk < |s| < ∞,

√
M(x)

C s−0.5 > Z(s) > M(x)
k+1 , imple-

ments the µ = −0.5 and mc
−0.5(x) =

√
M(x)

C fracmemristor to the µ = 0 and mc
0(x) = M(x)

k+1
memristor change processes. The order-frequency characteristic function O(s) changes
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from −0.5 to 0 and the F-frequency characteristic function F(s) changes from
√

M(x)
C to

M(x)
k+1 with an increase in the angular frequency.

(5) When the angular frequency is less than Ω1, the half-order chain-type fracmemris-
tor circuit with finite k is realized from the half-order fracmemristor to the capacitor with an

increase in the angular frequency. When Ω1 > |s| > 0,
√

M(x)
C s−0.5 < Z(s) < 1

2sC , imple-

ments the µ = −0.5 and mc
−0.5(x) =

√
M(x)

C fracmemristors to the µ = −1 and mc
−1 = 1

2C
capacitor change processes. With a decrease in the angular frequency, the order-frequency
characteristic function O(s) changes from −0.5 to −1 and the F-frequency characteristic

function F(s) changes from
√

M(x)
C to 1

2C .

3.3.2. Theoretical Verification of the Order-Frequency and F-Frequency Characteristics

The absolute value of the limiting impedance when k→ ∞ is as shown in Equation (14).

|Z(s)| =
∣∣∣∣∣

1
2sC

√
1 +

4s
Ω1

∣∣∣∣∣. (15)

Substitute Equation (5) into Equation (15) to obtain

∣∣Z(j2π10v)
∣∣ =

∣∣∣∣∣
1

j4π10vC

√
1 +

j8π10v

Ω1

∣∣∣∣∣. (16)

By setting the frequency index variable v1 = lg Ω1
2π , Ω1 = 2π10v1 . Then,

∣∣Z(j2π10v)
∣∣ =

∣∣∣∣
1

j4π10vC

√
1 + j4 · 10(v−v1)

∣∣∣∣. (17)

The order-frequency characteristic function of the half-order chain-type fracmemristor
circuit is obtained by substituting Equation (17) into Equation (8) as

O(v) =

lg
∣∣∣∣ 1

j4π10vC

√
1 + j4 · 10(v−v1)

∣∣∣∣
dv

. (18)

The F-frequency characteristic function of the half-order chain-type fracmemristor
circuit is obtained by substituting Equation (17) into Equation (9) as

Γ(v) = lg
∣∣∣∣

1
j4π10vC

√
1 + j4 · 10(v−v1)

∣∣∣∣−O(v)[v + lg(2π)]. (19)

The half-order chain-type fracmemristor circuit with k → ∞ is a high-frequency
effective fracmemristor. j4 · 10(v−v1) � 1 when v � v1 (the effective operating-frequency
range). According to Equation (18), the order-frequency characteristics of the half-order
chain-type fracmemristor circuit is

O(v) =

lg
∣∣∣∣ 1

j4π10vC

√
j4 · 10(v−v1)

∣∣∣∣
dv

= −0.5. (20)

According to Equation (19), the F-frequency characteristic of the half-order chain-type
fracmemristor circuit is

Γ(v) = lg F(v) = lg
∣∣∣∣

1
j4π10vC

√
j4 · 10(v−v1)

∣∣∣∣+
v + lg(2π)

2
= lg

√
M(x)

C
, (21)
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that is,

F(v) =

√
M(x)

C
. (22)

Equations (20)–(22) are the results obtained when k → ∞. The actual circuit has a
finite number of k. The operation characteristics of signal frequencies at different values
are elaborated to comprehensively discuss the frequency-domain characteristics of the
half-order chain-type fracmemristor circuit with finite k using the order- and F-frequency
characteristic functions.

(1) When v1 < v < vk [38]. The order-frequency characteristic function O(v) ≈ −0.5

is calculated from Equation (18). The F-frequency characteristic function F(v) ≈
√

M(x)
C is

calculated from Equation (19).
(2) When v → ∞, Z(j2π10v) = M(x)

k+1 . The order-frequency characteristic func-

tion O(v) = 0 and F-frequency characteristic function F(v) = M(x)
k+1 are calculated from

Equations (8) and (9), respectively.
(3) When v → 0, Z(j2π10v) = 1

j4π10vC . The order-frequency characteristic func-

tion O(v) = −1 and F-frequency characteristic function F(v) = 1
2C are calculated from

Equations (8) and (9), respectively.

(4) When vk < v < ∞,
√

M(x)
C (j2π10v)−0.5 > Z(j2π10v) > M(x)

k+1 . With an increase
in frequency, the order-frequency characteristic function O(v) changes from −0.5 to 0,

and the F-frequency characteristic function F(v) changes from
√

M(x)
C to M(x)

k+1 .

(5) When v1 > v > 0,
√

M(x)
C (j2π10v)−0.5 < Z(j2π10v) < 1

j4π10vC . With a decrease
in frequency, the order-frequency characteristic function O(v) changes from −0.5 to −1,

and the F-frequency characteristic function F(v) changes from
√

M(x)
C to 1

2C .
The above analysis results are consistent with the analysis results in Sections 3.3.1;

this indicates that the order- and F-frequency characteristic functions are suitable for the
frequency-domain characteristic analysis of the fracmemristor circuits.

3.3.3. Curve Verification of the Order-Frequency and F-Frequency Characteristic Functions

The memristance M(x) in the half-order chain-type fracmemristor circuit changes
with the state variable x. To once again verify that the order- and F-frequency characteristic
function are suitable for the frequency-domain characteristic analysis of the fracmemris-
tor circuit, the order- and F-frequency characteristic curves of the half-order chain-type
fracmemristor circuit are illustrated when the state variable x has different values.

In the half-order chain-type fracmemristor circuit, the reference memristance varies
with the input signal in the range of minimum and maximum values when considering
k = 1024 and capacitance C = 0.1 µF for the circuit shown in Figure 1a. Assuming that the
operating point is Q(U0, I0), the corresponding state variable x = X0. The impedance func-
tion Zk(j2π10v , Q) is obtained by substituting the parameters into Equation (12). The order-
and F-frequency characteristic curves can be obtained by substituting impedance function
Zk(j2π10v, Q) into Equations (8) and (9). Mmax and Mmin denote the maximum and mini-
mum values of the reference memristance, respectively. Figure 2 shows the order- and F-
frequency characteristic curves for M(X0) = Mmax = 50 kΩ and M(X0) = Mmin = 2 kΩ.
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Figure 2. Frequency domain characteristic curve of the half-order chain-type fracmemristor circuit:
(a) order-frequency characteristic curve; (b) F-frequency characteristic curve.

According to the characteristic curve of the order-frequency shown in Figure 2a,
the half-order chain-type fracmemristor circuit can indeed achieve the operation of order
µ = −0.5. When memristance M(X0) = Mmin, the effective operating-frequency range
for realizing the operation order µ = −0.5 is [v1, vk]. When memristance M(X0) = Mmax,
the effective operating-frequency range for realizing the operation order is [ṽ1, ṽk].
The effective operating-frequency range for the operation order µ = −0.5 is changed
with the memristance M(X0), and the frequency range of the overlap [v1, ṽk] represents
the effective operating-frequency range of the half-order chain-type fracmemristor circuit.
When v → 0 and v → ∞, the order-frequency characteristic functions O(v) = −1 and
O(v) = 0, respectively. When M(X0) = Mmin and vk < v < ∞, the order-frequency char-
acteristic function O(v) changes from −0.5 to 0 with an increase in the frequency. When
M(X0) = Mmin and v1 > v > 0, the order-frequency characteristic function O(v) changes
from −0.5 to −1 with a decrease in frequency. When M(X0) = Mmax and ṽk < v < ∞,
the order-frequency characteristic function O(v) changes from−0.5 to 0 with an increase in
frequency. When M(X0) = Mmax and ṽ1 > v > 0, the order-frequency characteristic func-
tion O(v) changes from −0.5 to −1 with a decrease in frequency. The characteristic curve
of order-frequency shown in Figure 2a is consistent with the analysis results presented in
Sections 3.3.1 and 3.3.2.
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According to the F-frequency characteristic curve shown in Figure 2b, the half-order

chain-type fracmemristor circuit realization of the fracmemristance mc
−0.5(X0) =

√
M(X0)

C
is the same as the effective operating-frequency range of operation order µ = −0.5. When
v → 0, the F-frequency characteristic function F(v) = 1

2C . When M(X0) = Mmin and

vk < v < ∞, the F-frequency characteristic function F(v) changes from
√

Mmin
C to Mmin

k+1
with an increase in frequency. When M(X0) = Mmin and v1 > v > 0, the F-frequency

characteristic function F(v) changes from
√

Mmin
C to 1

2C with a decrease in frequency. When
M(X0) = Mmax and ṽk < v < ∞, the F-frequency characteristic function F(v) changes

from
√

Mmax
C to Mmax

k+1 with an increase in frequency. When M(X0) = Mmax and ṽ1 > v > 0,

the F-frequency characteristic function F(v) changes from
√

Mmax
C to 1

2C with a decrease
in frequency. The characteristic curve of the F-frequency shown in Figure 2b is consistent
with the analysis results presented in Sections 3.3.1 and 3.3.2.

4. Frequency-Domain Characteristic Analysis of Scaling Fracmemristor Circuit

The implemented scaling fracmemristor employs lattice scaling [31], ladder scaling [32],
and chain scaling [33]. In this section, the frequency-domain characteristic analysis of the
recently implemented chain-scaling fracmemristor circuit is considered as an example.

The irregular iterative scaling equation is difficult to solve analytically [31–33,37,38].
The operation order of the scaling fracmemristor circuit is approximated, and the solution
of the fracmemristance is yet to be solved. In this section, the frequency-domain char-
acteristics of the scaling fracmemristor circuit are analyzed, and the operation order and
fracmemristance of the scaling fracmemristor circuit are investigated in the frequency do-
main. The fracmemristance of the small-signal fracmemristor equivalent circuit is solved in
the frequency domain.

First, the configuration and iteration scaling equation of the impedance function of
the chain-scaling fracmemristor circuit are presented. Subsequently, the frequency-domain
characteristic curves of the reference memristance of the chain-scaling fracmemristor cir-
cuit in the maximum and minimum values in the changing range are obtained based
on the small-signal impedance function using the order- and F-frequency characteristic
functions. Finally, the frequency-domain characteristic curve is analyzed to obtain the effec-
tive operating-frequency range of the chain-scaling fracmemristor circuit; the relationship
between the fracmemristance and state variable is obtained by fitting.

4.1. Chain-Scaling Fracmemristor Circuit

The configuration of the chain-scaling fracmemristor circuit is shown in Figure 3a;
and Figure 3b shows the iterating circuit. In these figures, k denotes the total number of sub-
circuits, C denotes the reference capacitance, and M(x) denotes the reference memristance.
Further, α and β denote the reference memristance and reference capacitance progression
ratio, respectively; α and β are positive real numbers, and 0 < α, β < 1. The chain-scaling
fracmemristor circuit is a circuit obtained after the parameter-scaling expansion of the
half-order chain-fracmemristor circuit as shown in Figure 1.

According to the iterative circuit shown in Figure 3b, the input impedance Z̃k(s)
is described by the iterative algorithm formula [33,46]

Z̃k(s) =
M(x)

[
1 + sCαZ̃k−1(αβs)

]

1 + sCαZ̃k−1(αβs) + sCM(x)
. (23)

The impedance function Z̃k(s) shown in Equation (23) belongs to the irregular iterative-
scaling equation shown in Equation (3). It is a challenging theoretical problem to ob-
tain the operational order and the fracmemristance from the irregular iterative-scaling
equation [31–33,37,38]. The operational order approximation of the chain-scaling fracmem-
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ristor circuit is provided in Equation (4). The fracmemristor circuit of arbitrary fractional
operation order can be obtained by adjusting the values of α and β.

(a)

(b)

Figure 3. Chain-scaling fracmemristor circuit: (a) circuit configuration; (b) iterating circuit.

4.2. Frequency-Domain Characteristic Analysis of Chain-Scaling Fracmemristor Circuit

The scaling factor σ = αβ = 0.5, k = 25, and the reference capacitance C = 0.1 µF by
considering the operation order µ = −0.2 chain-scaling fracmemristor circuit as an example.
According to Equation (4), the progressive ratio of the reference memristance α = 0.8706
and that of the reference capacitance β = 0.5743. In the operating point Q(U0, I0), the state
variable x = X0, and the small-signal impedance function is Z(s, Q)|M(X0)

. By substituting
Z(s, Q)|M(X0)

into Equations (8) and (9), the order- and F-frequency characteristic curves of
the chain-scaling fracmemristor circuit are obtained as shown in Figure 4. Figure 4 shows
that M(X0) = Mmin = 2 kΩ and M(X0) = Mmax = 50 kΩ.

According to the order-frequency characteristic curve shown in Figure 4a, the chain-
scaling fracmemristor circuit can indeed achieve the operation of order µ = −0.2. The effective
operating-frequency range to realize the operation order µ = −0.2 is [v1, vk] and [ṽ1, ṽk]
when memristance M(X0) = Mmin and M(X0) = Mmax, respectively. The effective
operating-frequency range of the operation order µ = −0.2 is changed with the mem-
ristance M(X0); the frequency range of the overlap [v1, ṽk] is the effective operating-
frequency range of the chain-scaling fracmemristor circuit.

The F-frequency characteristic curve shown in Figure 4b indicates that the effective
operating-frequency range of the operation order µ = −0.2 is the same as the effective
operating-frequency range of the fracmemristance. When memristance M(X0) = Mmin,
the effective operating-frequency range to realize the fracmemristance is [v1, vk]. When
memristance M(X0) = Mmax, the effective operating-frequency range to realize the
fracmemristance is [ṽ1, ṽk]. There is no analytical or approximate solution for the fracmem-
ristance of the chain-scaling fracmemristor circuit. Within the corresponding effective
operating-frequency range of the operating point Q(U0, I0), the average value of the F-
frequency characteristic curve function is solved and used as its corresponding fracmem-
ristance. When memristance M(X0) from Mmin changes to Mmax, the change curve of its
fracmemristance is as shown in Figure 5.
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Figure 4. Frequency-domain characteristic curves of the chain-scaling fracmemristor circuit: (a) order-
frequency characteristic curves; (b) F-frequency characteristic curves.
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Figure 5. Fitting results of fracmemristance for the chain-scaling fracmemristor circuit.

The relationship curve between the memristance M(X0) and F-frequency characteristic
curve value shown in Figure 5 is fitted by the least squares method. The resulting relation is

Γ(M) = −0.0031M2 + 0.1078M1 + 1.7613. (24)
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Figure 5 also shows the fitted curve; the standard deviation between the error of the fit-
ted curve and data is 0.0453. The formula shown in Equation (24) is called the state dynamic
route [14]. Equation (24) indicates that the fracmemristance of the scaling fracmemristor
circuit can be solved using the frequency-domain characteristic-analysis method.

5. Application of the Frequency-Domain Characteristic-Analysis Principle to
Memristors, Memcapacitors, and Meminductors

When the operation orders of the fracmemristor are 0, −1, and +1, it is a memristor,
memcapacitor, and meminductor, respectively. The fracmemristor is used as the frequency-
domain characteristic-analysis principle of mem-elements to prove its frequency-domain
characteristic-analysis principle.

Assuming that the operating point of the memristor is Q(U0, I0), the corresponding
state variable x = X0 and R(s) = r in Equations (1) and (2). Let the small-signal impedance
function be represented by Z(s, Q) = FM0(s, Q)|R(s)=r. According to Equation (8),
the order-frequency characteristic function value can then be obtained as

O(v, Q) =
lg|FM0(j2π10v, Q)|

dv
= 0. (25)

According to Equation (9), the F-frequency characteristic function value can be
obtained as

Γ(v, Q) = lg F(v, Q) = lg
∣∣FM0

(
j2π10v, Q

)∣∣−O(v)[v + lg(2π)] = lg r. (26)

According to Equations (25) and (26), the order-frequency characteristic function value
is equal to the operation order of the memristor; the F-frequency characteristic function
value F(v, Q) is equal to the memristance. Thus, it is proved theoretically that the order-
and F-frequency characteristic functions are suitable for the frequency-domain analysis of
the memristor.

Assuming that the operating point of the memcapacitor is Q(U0, I0), the corresponding
state variable x = X0 and R(s) = r in Equations (1) and (2). Let the small-signal impedance
function be represented by Z(s, Q) = FM−1(s, Q)|R(s)=r. According to Equation (8),
the order-frequency characteristic function value can then be obtained as

O(v, Q) =
lg|FM−1(j2π10v, Q)|

dv
= −1. (27)

According to Equation (9), the F-frequency characteristic function value can
be obtained as

Γ(v, Q) = lg F(v, Q) = lg
∣∣FM−1

(
j2π10v, Q

)∣∣−O(v)[v + lg(2π)] = lg(r/c). (28)

According to Equations (27) and (28), the order-frequency characteristic function value
is equal to the operation order of the memristor; the F-frequency characteristic function
value F(v, Q) is equal to the inverse of the memcapacitance. Thus, it is theoretically proved
that the order- and F-frequency characteristic functions are suitable for the frequency-
domain analysis of the memcapacitor.

Assuming that the operating point of the meminductor is Q(U0, I0), the corresponding
state variable x = X0 and R(s) = r in Equations (1) and (2). Let the small-signal impedance
function be represented by Z(s, Q) = FM+1(s, Q)|R(s)=r. According to Equation (8),
the order-frequency characteristic function value can be obtained as

O(v, Q) =
lg|FM+1(j2π10v, Q)|

dv
= 1, (29)
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According to Equation (9), the F-frequency characteristic function value can be
obtained as

Γ(v, Q) = lg F(v, Q) = lg
∣∣FM+1

(
j2π10v, Q

)∣∣−O(v)[v + lg(2π)] = lg(lr). (30)

According to Equations (29) and (30), the order-frequency characteristic function value
is equal to the operation order of the meminductor; further, the F-frequency characteristic
function value F(v, Q) is equal to the meminductance. Thus, it is proved theoretically that
the order- and F-frequency characteristic functions are suitable for the frequency-domain
analysis of the meminductor.

6. Conclusions

The frequency-domain characteristic-analysis principle of the fracmemristor was ob-
tained using the order- and F-frequency characteristic functions. The principle of the
frequency-domain characteristic analysis was verified by the small-signal impedance func-
tion of the ideal fracmemristor. The correctness of the frequency-domain characteristic-
analysis principle was also verified by the proposed half-order chain-type fracmemristor
circuit from the perspective of circuit configuration, theory, and function curve. The results
of this study indicated that the principle of the frequency-domain characteristic analysis
of the fracmemristor can successfully calculate the fracmemristance of the chain-scaling
fracmemristor circuit.

The implementation process for the frequency domain characteristic analysis of
fractional memristor circuit can be summarized as follows: (a) Obtain the small-signal
impedance function of the fracmemristor circuit at operating point Q(U0, I0); (b) The
specific order- and F-frequency characteristic function are obtained according to the small-
signal impedance function; (c) The theoretical settlement results of order- and F-frequency
characteristic function can be obtained by substituting parameters, or the curve of order-
and F-frequency characteristic function can be drawn; (d) Further analysis was conducted
based on the results.

The limitation of this study is that the principle of frequency-domain characteristic
analysis, which is based on small-signal analysis, is only applicable to theoretical analysis
in most cases. To test the frequency-domain characteristics, the test signal needs to be a
small signal. Small signals cannot affect the state variable x or ignore the effect on the state
variable x [47].

The principle of the frequency-domain characteristic analysis employed in this study
can be applied to the frequency-domain characteristic analysis of mem-elements, such as
the memristor, memcapacitor, and meminductor. The small-signal equivalent circuit of
the scaling fracmemristor circuit is the scaling fractor circuit. According to the frequency-
domain characteristics analysis principle of the fractor circuit [38,39], the relative error,
approximation accuracy, approximation bandwidth, approximation bandwidth exponent,
K-diagram, F-index, and approximation benefit of the order- and F-frequency characteristics
of the scaling fracmemristor circuit can also be obtained.
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