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Abstract: In order to obtain high-quality through-silicon via (TSV) arrays for high voltage applications,
we optimized the fabrication processes of the Si holes, evaluated the dielectric layers, carried out
hole filling by Cu plating, and detected the final structure and electric properties of the TSVs. The
Si through-hole array was fabricated in an 8-inch Si substrate as follows: First, a blind Si hole array
was formed by the Si deep reactive etching (DRIE) technique using the Bosch process, but with the
largest width of the top scallops reduced to 540 nm and the largest notch elimidiameternated by
backside grinding, which also opens the bottom ends of the Si blind holes and forms 500-µm-deep
Si through holes. Then, the sidewalls of the Si holes were further smoothed by a combination of
thermal oxidation and wet etching of the thermal oxide. The insulating capability of the dielectric
layers was evaluated prior to metal filling by using a test kit. The metal filling of the through
holes was carried out by bottom-up Cu electroplating and followed by annealing at 300 ◦C for
1 h to release the electroplating stress and to prevent possible large metal thermal expansion in
subsequent high-temperature processes. The TSV arrays with different hole diameters and spacing
were detected: no visible defects or structure peeling was found by scanning electron microscopy
(SEM) observations, and no detectable interdiffusion between Cu and the dielectric layers was
detected by energy dispersive X-ray (EDX) analyses. Electric tests indicated that the leakage currents
between two adjacent TSVs were as low as 6.80 × 10−10 A when a DC voltage was ramped up from
0 to 350 V, and 2.86 × 10−9 A after a DC voltage was kept at 100 V for 200 s.

Keywords: TSV; DRIE; hole sidewall smoothing; bottom-up electroplating; dielectric performance
evaluation

1. Introduction

With the development of the microfabrication process, the integration of micro-
electromechanical systems (MEMS) and integrated circuit (ICs) devices have been develop-
ing quickly, whereas the feature sizes have recently shrunk recently. However, according to
Moore’s laws, the device feature sizes are approaching their physical limits. To improve
their integrity, multilayer chip stacking techniques are coming into view. Through-silicon
via (TSV) is a practical technology to vertically interconnect multiple chips. Usually, a TSV
substrate is fabricated mainly by etching through holes in a silicon substrate, and by filling
the holes with a conductive material such as Cu, W, and doped polysilicon. In the IC field,
TSVs can be used for complementary metal-oxide semiconductor (CMOS) image sensors,
SiGe power amplifiers, 3D stacked memory devices, and field-programmable gate array
(FPGA) chip integration [1–3]. The application of TSVs in the IC field can reduce the size of
devices, improve signal transmission, and can even address the manufacturing challenges
of large chips. In the MEMS field, there are also advantages of TSVs in vacuum packaging
for inertial sensors including gyroscopes and accelerometers [4], in 3D stacking of sensors
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and driver circuits to enable high performance, as well as miniaturization of devices [5].
TSVs can also reduce substrate bonding difficulties while keeping the bonding strength,
and they can increase the density of electrodes.

Some electrostatically driven MEMS devices require high input voltages. A scratch
drive actuators (SDAs) system is driven by pulsed electrostatic forces generated by the
input pulse voltage up to 80 V [6]. Shuaibu, A.H. et al. proposed a DC switch, on which
a driven voltage of up to 350 V is required [7]. If the normal TSV is applied to such
devices, there will be a risk of breakdown. The two main modes of TSV failure are dielectric
breakdown and electrical migration. A rupture in the barrier layer or the dielectric layer
facilitates the filling metal to diffuse into the silicon substrate. Such a process will diminish
the electrical performance of a TSV.

In some applications, TSVs need to be formed on thick Si substrates (e.g., substrate
thickness ≥ 400 µm) to meet the requirements of high mechanical strength not only for final
usage but also for the fabrication processes. The thicker the Si substrate, however, the more
difficult the TSV fabrication process, from hole formation to dielectric layer deposition to
metal filling.

The through Si holes for TSVs are often realized by the famous Bosch etching process
due to the high fabrication rate and controllable high aspect ratio hole geometry. The
Bosch process is characterized by alternating the etching and passivating steps during
the multiple-cycle structure fabrication, which naturally leaves a periodic scallop on the
sidewall of a hole. The scallops may cause stress concentration, which results in the cracking
of the dielectric and barrier layers deposited on the sidewall [8]. The stress may be enhanced
in a subsequent thermal process, especially when the edges of the scallop are sharp. The
scallops also increase the difficulty of conformal deposition of dielectric/barrier/seed layer
on the hole sidewall due to the shadowing effect, resulting in possible defects such as
voids in the metal filling, junction of the metal and sidewalls, and spalling of Cu in the
chemical-mechanical planarization (CMP) after electroplating [9,10]. It is then desired to
reduce the size of the scallop to a reasonable degree in the TSV application. The geometry
of the hole openings also needs to be optimized since a bad corner shape is prone to
dielectric breakdown due to stress concentration [11]. In the case that through holes of
different diameters are necessary for the same Si substrate, the micro-loading effect [12]
in the DRIE usually results in an etch rate difference between the holes: the smaller the
hole opening, the lower its etch rate and vice versa. However, the problem lies in that in
order to completely open the hole of the smallest opening, the hole of the largest opening
must be over-etched, causing its bottom opening to undesirably expand. MS Gerlt, et al.
managed to etch trenches of various widths within a depth difference of less than 1.5% by
adjusting the ratio between the duration of the passivation process and the etching process
in the DRIE [13]. However, the problem of narrow process windows emerges. “Notching”
is usually a bothersome effect in DRIE, especially in through-hole fabrication due to charge
accumulation on the hole bottom which deflects the arriving ions and causes lateral etching
of the bottom sidewall. The notches may lead to incomplete coverage of sequent liner
oxide and Cu seed [14]. Kim et al. realized “notch-free” DRIE by depositing metal on
the backside of the substrate to release the charges [15]. However, the metal layer on the
backside will cause metal ion contamination in the subsequent high-temperature oxidation
process. Therefore, such a method is not suitable for our TSV formation.

The interlayer stress also needs to be examined in TSVs since the coefficients of thermal
expansion (CTE) and other mechanical parameters of the related materials vary greatly as
shown in Table 1 [16].

How to prevent the metal (e.g., Cu) diffusion into the dielectric layer is another issue
that can affect the insulation performance of TSVs. The energy dispersive X-ray (EDX)
analysis is suitable for detecting the diffusion of Cu ions into the SiO2 dielectric layer [17].
The migration of metal atoms, which can cause void formation at the via interface when an
electric current is applied [18–20], shall be avoided as well.
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This work investigates and optimizes the silicon through-via fabrication process
for high-voltage applications. Then, the dielectric properties were evaluated before and
after electroplating.

Table 1. Material properties at 25 ◦C [21–23].

Material Parameters Si SiO2 Si3N4 Ti Ta Cu

CTE (−40 ◦C to 125 ◦C)
(ppm/◦C) 2.6 0.94 2.8 8–10 6.5 17.7

Young’s modulus (GPa) 130.91 70 ~220 116 186 104.2
Poisson’s ratio 0.28 0.17 0.26 0.34 0.35 0.35

Yield strength (MPa) 120 140 170 70
Ultimate strength (MPa) ~172 220 450 220

2. Methods

In his work, TSVs have been fabricated in 8-inch Si substrates thicker than 400 µm.
The substrates are p-type with a resistivity between 1 and 100 Ω-cm. TSV arrays with
different hole opening sizes and via spacing are arranged on the substrate with the layout
combination shown in Table 2.

Table 2. Layout combination of TSV arrays.

Array No. Diameter (µm) Spacing (µm)

1 50 60, 70, 80, 90
2 60 60, 70, 80, 90
3 70 60, 70, 80, 90
4 80 60, 70, 80, 90, 100
5 90 60, 70, 80, 90
6 100 60, 70, 80, 90

The Si through holes were fabricated by DRIE using the Bosch process on a SPTS
Omega C2L Rapier machine. The time of de-passivation etching (E1) is 1 s, and the time
of Si etching (E2) is 8 s. For E2, the source powers were set to 3000 W for the center coil
and 1000 W for the outer coil. The bias power was increased from 470 W to 500 W, whereas
the SF6 gas flow rate was 650 sccm. The de-passivation gas was also SF6 with gas flow
rates of 300 sccm for the center pipeline and 50 sccm for the outer pipeline. We first tried to
obtain the through holes by etching through the substrate directly. However, we found it
difficult to avoid large notches at the bottom openings of the holes by optimizing the DRIE
recipe. Then, we replaced the through-via etching with a combination of blind-via etching
and backside thinning. That is, we first formed blind holes in the substrate with all the
holes deeper than desired; then, we carried out backside mechanical grinding by a grinder
(ACCRETECH, HRG 300) to open the bottom ends of the holes and at the same time to
thin the substrate to the desired thickness. By this method, even if notches have occurred
at the hole bottoms, they can be removed by backside grinding. As a result, “notch free”
through holes can be obtained relatively simply. By using the grinder’s probe to monitor
the thickness of the Si substrate in real-time, we controlled the thickness of the substrate
with an accuracy of no more than 2 µm and maintained the parallelism of the top and
bottom surfaces of the substrate.

Since it is difficult to reduce the sidewall scallops by fine-tuning the DRIE recipe, after
the hole DRIE, we adopted the sidewall smoothing process where thermal oxidation was
performed followed by wet etching of the oxide layer. We adjusted the thickness of the
thermal oxide so that the most protruding parts of the scallops can be completely oxidated
and then removed via the smoothing process.
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We then formed dielectric layers of different materials and different thicknesses on the
surface of the substrate and on the through hole sidewalls. We evaluated their insulating
capability with the test kit shown in Figure 1a. For the insulating capability test, a TiN
film was deposited by physical vapor deposition (PVD) on the dielectric layer and was
patterned on the substrate surface as metal electrodes (also called pads). The leakage
current between the sidewalls of two adjacent holes was measured by applying a DC
voltage to the electrodes shown in Figure 1b. Time-dependent dielectric breakdown (TDDB)
tests were also conducted to confirm the insulating capabilities of the dielectric films. In
order to confirm the sidewall coverage of the TiN film, the leakage current of a silicon
blind with a diameter of 80 µm and a depth of 512 µm was first detected. Afterward, the
insulating capability of a 500 nm thick TEOS-PECVD (PECVD: plasma-enhanced chemical
vapor deposition) silicon oxide and a 500 nm thick thermal silicon oxide were tested. Then,
a 2 µm thick silicon oxide dielectric layer using a high-temperature thermal oxidation
process was applied to achieve superior dielectric performance.
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Figure 1. TSV “pre-plating” leakage current test. (a) schematics of the test kit, (b) microscopy of the
testing probes on the pads of two adjacent TSVs.

In order to achieve void-free metal filling, we adopted the bottom-up Cu electroplating
method, which is widely used in high quality TSV filling [24–27]. An annealing process
was carried out at 350 ◦C for 1 h after Cu plating to release the plating stress and, most
importantly, to avoid possible irreversible Cu deformation in subsequent high-temperature
processes [28]. Before metal filling, a thin, 20 nm thick Ti film was sputtered as the barrier
layer with a sputtered Cu thin film as the seed layer. The bottom-up Cu electroplating was
carried out until Cu pillars protruded completely from the top side of all the holes. Then,
wet etches were conducted to remove the electroplated Cu layer and the Cu seed layer,
as well as the Ti film, on the surfaces of the Si substrate. Through all these processes, we
achieved individual Cu vias filled in the Si through holes.

Finally, we obtained the cross-sectional views of TSVs with a diameter of 80 µm and
depth of 500 µm by focused ion beam (FIB) cutting and scanning electron microscopy (SEM)
observations. Energy dispersive X-ray (EDX) analyses were also carried out to confirm
whether or not there was Cu diffusion into the dielectric layers.
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3. Results
3.1. DRIE

First, experiments were carried out to reduce the scallop size. As shown in Figure 2,
blind hole arrays of different hole diameters from 50 µm to 100 µm were formed by DRIE in
an 8-inch silicon wafer 725 µm thick. The overall morphology is slightly reverse-tapering.
The micro-loading effect is obvious: the largest 100-µm-diameter hole has the largest depth
of 563 µm, and the smallest 50-µm-wide hole has the smallest depth of 437 µm, whereas
other holes with diameters in between have the following depths. In Figure 3, the sidewall
of the 80-µm-wide hole shown in Figure 2 is enlarged in order to have a better angle
of observation at the scallops. Figure 3a shows the scallop on the sidewall near the top
opening of the hole. The scallop has a width of 3.41 µm and a depth of 959 nm. Such a large
scallop is difficult to eliminate by a smoothing process. Therefore, the etching process was
optimized. First, the etch time of a single step during the process of etching the top part of
the hole is shortened to 0.9 s for E1 and 6 s for E2 so that the size of the scallop is reduced.
In order to decrease the negative impact from the shortening of etch time, the overall hole
shape, as well as the bottom roughness, the flow rate of the etching gas SF6 was ramped up
from 650 sccm to 850 sccm through the entire hole etching process. Meanwhile, the time of
E1 and E2 were gradually increased to 1.5 s and 10 s, respectively. To reduce lateral etching
from the middle part of the hole, the reaction gas for the etching process of the passivation
layer was changed from SF6 to O2, since O2 has a higher etching selectivity to silicon than
SF6. O2 was used to remove the passivation layer effectively while reducing the damage
to the silicon sidewall as compared to SF6. The gas flow of O2 for E1 was increased from
100 sccm to 125 sccm. The source powers of E2 were also decreased from 3000/1000 W
to 3000/750 W to reduce lateral etching. The bias power was increased to 560 W to avoid
etch stop at the bottom of the hole. We also increased the cycle number to compensate for
the reduced etch rate caused by the replacement of the de-passivation etching gas. By the
above tuning of the DRIE recipe, the largest scallop size was decreased to 2.13 µm in width
and 540 nm in depth, with a depth decrease of 43.7%.
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Figure 3. Scallops on the top sidewalls of holes with an opening of 80 µm: (a) Before optimizing the
DRIE parameters. The largest width and depth of the scallop is 3.41 µm and 959 nm, respectively;
(b) After optimizing the DRIE parameters. The largest width and depth of the scallop becomes
2.13 µm and 540 nm, respectively.

Secondly, the notch problem was studied. As shown in Figure 4, when a through
hole was formed directly by DRIE in a 500 µm thick silicon substrate, a notch as wide as
6.2 µm is observed when the hole diameter is 80 µm. As mentioned earlier, the larger the
hole diameter, the larger the notch size. In the meantime, the sidewall close to the bottom
opening is quite rough. However, in all through holes with diameter from 50 µm to 100 µm,
these problems were not observed when the holes were fabricated by the combination of
blind via etching and backside thinning with a starting substrate 725 µm thick.
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Figure 4. SEM image of the bottom notch of a through hole after DRIE.

3.2. Sidewall Smoothing

As discussed Section 3.2, the largest depth of scallop is as large as 500 nm despite
the optimization of the DRIE process. Figure 5 shows the hole profiles resulted from
sidewall smoothing. The results are obtained as follows: blind holes of 500 µm depth were
first formed by optimized DRIE, and then a silicon oxide sacrificial layer 2 µm thick was
formed on the hole sidewalls by thermal oxidation at 1100 ◦C. The silicon oxide layer was
completely removed by using buffered oxide etch (BOE) and dilute hydrofluoric acid (DHF)
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etch. BOE was found effective in removing the oxide layer on the sidewall from the top to
the middle of the hole; however, the oxide layer was left on the bottom sidewall almost
intact. On the other hand, DHF, although slow in etch rate, was found effective in removing
the bottom oxide layer. This happened because DHF has better wetting effect than BOE and
was able to enter the bottom of the blind hole easily. As shown in Figure 5, after smoothing,
the hole sidewall got as smooth as needed: only fine traces of the scallop are left in the top
part while there are no longer visible scallops in the middle and bottom parts.
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3.3. “Pre-Plating” Dielectric Property Test

First, as the electrical test electrodes, TiN films were formed by PVD on the substrate
surface. The hole sidewalls and the film coverage was confirmed. Figure 6 shows the result
of TiN film coverage for blind holes of depth > 400 µm. According to a TiN film thickness
of 546 nm on the surface of the substrate, the thickness on the top sidewall is 193 nm,
indicating a coverage rate of 35.3%. The TiN film thickness drops to 92 nm on the middle
sidewall, and drops to 46 nm on the middle bottom sidewall. The TiN film was no longer
visible when the sidewalls were deeper than 415 µm. Based on this, we conducted the
“pre-plating” dielectric property test in blind holes 300 µm in depth, where high-enough
TiN film coverage can be ensured on both the hole sidewalls and bottoms.
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Figure 6. SEM images of TiN thin films deposited by PVD: (a) The film reaches a depth up to of
415 µm in the blind holes 80 µm in diameter, (b) TiN thin-films on the substrate surface (546 nm in
thickness) and on the top sidewall (193 nm in thickness), (c) TiN thin-film on the middle sidewall,
with a thickness of 92 nm, (d) TiN thin-film on middle-bottom sidewall, with a thickness of 46 nm.

3.3.1. Hole Diameter Dependence of the Dielectric Property in Holes with
Sidewalls Unsmoothed

Figure 7 shows the hole diameter dependence of the dielectric property obtained in
300-µm-deep blind holes without sidewall smoothing. On the hole sidewalls, a silicon
oxide film was deposited by using TEOS-PECVD, and then a TiN film was deposited and
patterned as the electrodes. The thicknesses of the oxide and TiN films are both 500 nm
on the substrate surface. As seen in Figure 7, when DC voltage was applied from 0 V to
350 V, the leakage currents increased; the larger the hole diameter, the higher the leakage
current. The dielectric film breakdown occurred at a voltage of about 330 V in the hole with
the largest diameter (100 µm). This diameter dependence may originate from worse oxide
film coverage in larger holes, since larger holes have larger depth (as seen in Figure 2),
which lead to thinner film formation on the bottom sidewalls, especially at the bottom
corners of the blind holes. Another important factor may be the scallop. As stated by Hsin
et al., due to the nature of the Bosch process, the larger the diameter of holes, the larger
the size of sidewall scallop [29]. It is easy to understand that a larger scallop indicates a
worse dielectric film coverage in the scallop valleys due to a stronger shadowing effect.
The abnormally high leakage current in the 80 µm diameter hole, however, may result from
defects in the silicon oxide film caused by uncertain factors.
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3.3.2. Hole Spacing Dependence of Dielectric Properties in Holes with Unsmoothed and
Smoothed Sidewalls

Figure 8 shows the hole spacing dependence of dielectric properties in holes with
unsmoothed and smoothed sidewalls. For both the sidewall unsmoothed and smoothed
holes, the Si blind holes have a diameter of 80 µm, whereas the hole spacing varies from
60 µm to 80 µm to 100 µm. The PECVD silicon oxide film and the TiN film both have
a thickness of 500 nm on the substrate surface, as shown in Section 3.3.1. The dielectric
films in the holes with unsmoothed sidewalls indicate larger leakage currents than those
in holes with smoothed sidewalls. In holes with unsmoothed sidewalls and a spacing of
80 µm, the dielectric films show a breakdown at 300 V. The above results indicate again
that the sidewall scallop is an important cause of dielectric breakdown, while the sidewall
smoothing process has significantly improved the insulating performance of the TSVs. The
hole spacing, however, did not show definite effect on the dielectric properties when its
size varied from 60 µm to 100 µm.
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3.3.3. Dielectric Properties of TEOS-PECVD and Thermal Silicon Oxide Films

Figure 9 shows the comparison of the dielectric properties for TEOS-PECVD and
thermal silicon oxide films, both having a film thickness of 500 nm on the substrate surface.
The Si blind holes 80 µm in diameter with various hole spacing (60 µm, 80 µm, and 100 µm)
have their sidewalls smoothed. Obviously, the dielectric property of the thermal silicon
oxide films is superior to that of TEOS-PECVD films. The TEOS-PECVD silicon oxide film
shows a breakdown near 310 V in holes with a spacing of 80 µm, whereas all the thermal
silicon oxide films still maintain a low leakage current even when the DC voltage is raised
to 350 V.
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80 µm, and 100 µm), where the hole sidewalls were smoothed.

3.4. Metal Filling

Based on the experimental results described in Section 3.3, through hole arrays were
fabricated with a combination of optimized DRIE and backside thinning, followed by
a smoothing process and a 2-µm-thick thermal silicon oxide formation. The resulting
substrates have a thickness of 500 µm, and the holes have diameters ranging from 50 µm
to 100 µm. The spacing of the through holes ranges from 60 µm to 100 µm. Figure 10 is a
photograph of TSV arrays after Cu electroplating in an 8-inch Si substrate 500 µm thick.
After Cu plating, an annealing process was conducted at 300 ◦C for 1 h in an oven under a
nitrogen atmosphere. Figure 11 shows the measured temperature curve and the O2 ratio in
the atmosphere during the annealing process. After annealing, wet etch was carried out to
remove the metal layers on the substrate surfaces.

Figure 12 shows the cross-sectional view of the TSVs after annealing together with
EDX analysis results. The TSVs have a diameter of 80 µm and a thickness of 500 µm.
From the polished cross sections, no void or defects were observed. According to the EDX
analyses, no diffusion of Cu into the dielectric layer has occurred.

Dielectric property tests also provide satisfactory results. When the probes for electric
detection were placed directly on the protruded Cu heads of two adjacent TSVs (80 µm
in diameter, 90 µm in spacing), the leakage current is as small as 6.80 × 10−10 A at a DC
voltage of 350 V. In the TDDB test, the leakage current between adjacent TSVs (80 µm in
diameter, 90 µm in spacing) is approximately 2.86 × 10−9 A after a DC voltage of 100 V
being continuously applied for 200 s. No breakdown phenomenon happened during the
voltage increase and the TDDB tests.
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4. Conclusions

Fabrication processes for TSV arrays aimed at applications at high voltage were
studied systematically. TSVs in need have been obtained in 8-inch silicon substrates with a
maximum thickness 500 µm, whereas the hole diameters vary from 50 µm to 100 µm, and
the hole spacing varies from 60 µm to 100 µm. An important factor was found to worsen
the dielectric property of the TSVs during hole DRIE. By optimizing the DRIE recipe and
then performing a smoothing process combined with thermal oxidation and wet etching
of the oxide layer, the scallops were almost eliminated. The notch structures, which often
occurred at the bottom opening of through holes by DRIE, were completely avoided by
forming the through holes together with a combination of blind hole DRIE and backside
grinding processes. As for the dielectric material, the thermal silicon oxide is found superior
to the TEOS oxide. Defect-free metal filling was achieved by adopting the bottom-up Cu
electroplating method. The fine structures, as well as their high dielectric performance of
the obtained TSVs, indicate the usefulness of the developed TSV fabrication process.
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