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Abstract: The applications of Micro-Electro-Mechanical-System (MEMS) gyros in inertial naviga-
tion system is gradually increasing. However, the random drift of gyro deteriorates the system
performance which restricting the applications of high precision. We propose a bias drift compensa-
tion model based on two-fold Interpolated Complementary Ensemble Local Mean Decomposition
(ICELMD) and autoregressive moving average-Kalman filtering (ARMA-KF). We modify CELMD
into ICELMD, which is less complicated and overcomes the endpoint effect. Further, the ICELMD
is combined with ARMA-KF to separate and simplify the preprocessed signal, resulting improved
denoising performance. In the model, the abnormal noise is removed in preprocess by 2σ criterion
with ICELMD. Then, continuous mean square error (CMSE) and Permutation Entropy (PE) are both
applied to categorize the preprocessed signal into noise, mixed and useful components. After aban-
don the noise components and denoise the mixed components by ARMA-KF, we rebuild the noise
suppression signal of MEMS gyro. Experiments are carried out to validate the proposed algorithm.
The angle random walk of gyro decreases from 2.4156◦/

√
h to 0.0487◦/

√
h, the zero bias instability

lowered from 0.3753◦/h to 0.0509◦/h. Further, the standard deviation and the variance are greatly
reduced, indicating that the proposed method has better suppression effect, stability and adaptability.

Keywords: micro-electro-mechanical-system gyros; interpolated complementary ensemble local
mean decomposition; autogressive moving average; Kalman filtering

1. Introduction

Micro-Electro-Mechanical-System (MEMS) gyro is used as inertial sensor to measure
angular rates in automatic control, wearable devices, industrial, consumer electronics,
inertial guidance systems and other fields. With its advantages in small size, low power
consumption, integration, light weight and mass production, MEMS gyro has been widely
applied [1–3]. Limited by both the principle and mechanical structure, the performance
of MEMS gyro is worse than some kinds of gyros such as fiber optic and laser gyros. It is
easily affected by the imperfection of the structure and environmental factors, which limit
its precision and further applications [4,5]. Therefore, methods of optimizing the structure
and signal denoising are essential to improve the performances of MEMS gyros.There are
about three kinds of methods to improve the performance of MEMS gyro [6] :

• Physical methods:
These methods generally include optimizing the structure and improving the in-
dustrial technology, which are completed in the design and production stages. The
commonly used methods are laser quality adjustment [7] , adding mass block [8] and
circuit compensation;
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• Linear or single models
These are usually signal analyzing or filtering methods, such as modeling of time
series [9], Kalman filtering (KF) (including modified KFs) [10–12] and wavelet thresh-
old filtering [13], etc. In [11], Yi proposed a robust Kalman filtering under model
uncertainly. Qi, W brought out time-varying Kalman Filters for advanced manufactur-
ing [12]. Their work have widened the applications of KF. Limited by the technology
and objective factors, linear or single models have certain bottlenecks.

• Mixed models:
Including several algorithms for signal analyzing and denoising in one model, which
have been widely applied nowadays.

Recently, several adaptive signal analyzing methods have been studied and applied
for MEMS gyros [14–19], i.e., Empirical Mode Decomposition (EMD) and Local Mean
Decomposition (LMD). EMD decomposes the signal into components called intrinsic mode
function (IMF), while LMD decomposes the signal into components called product function
(PF). However, the EMD and LMD have the disadvantages of modal aliasing and endpoint
effect. Then, Wu proposed an integrated empirical mode (EEMD) algorithm to better
suppress the modal aliasing by adding white noise [20]. However, the EEMD has the
shortcomings of not completely eliminating white noise and error during the processes of
signal decomposition and reconstruction. Further, Yeh et al. proposed a complementary
integrated empirical mode decomposition (CEEMD) method by adding auxiliary white
noise in the form of positive and negative pairs to eliminate the residual white noise in
the reconstructed signal and reduce the impact of modal aliasing [21]. The principle of
ELMD and CELMD is same as EEMD and CEEMD. In [19], EMD has been applied to
decompose the output signal for the hard-threshold denoising of MEMS gyro. However,
this method does not classify the IMFs, which diminish the role of EMD, and the hard-
threshold cannot filter the signal well. Then, a noise reduction algorithm based on EMD and
wavelet threshold was proposed for MEMS accelerometer in [22]. This method classifies
the IMFs into two parts, and applies wavelet threshold to denoise which behaves better
than hard-threshold. Guo proposed hybrid methods for the noise reduction over MEMS
gyro signal [23], two indexes divide the IMFs into three parts, soft interval thresholding,
soft thresholding, or forward-backward linear prediction were selected to reduce the
noise contained in the mixed IMFs. Compared with EMD, LMD can reflect all useful
characteristics of the original signal, and the decomposition result is more accurate [24].
Li applied LMD and parabolic tracking time-frequency peak filtering (PTTFPF) to reduce
noise [25]. Over all, the EMD or LMD were applied for denoising the signal of MEMS gyro,
resulting in the decomposed components to be classified. The methods mentioned above is
shown in Table 1.

Table 1. Comparison of denoising effects.

Denoising Methods Classification Filtering

EMD-thresholding [19] / Hard-threshold

EMD-wavelet threshold [22] CMSE Wavelet threshold

EMD- thresholding [23] CMSE and l2-norm
Soft interval thresholding, soft

thresholding, or forward-backward
linear prediction

LMD- parabolic tracking time-frequency
peak filtering (PTTFPF) [25] Sample entropy (SE) Frequency peak filtering (PTTFPF)

Proposed method CMSE and PE ARMA-KF

In view of the advantages of CELMD method in signal adaptive decomposition [26,27],
we consider its applications in signal denoising for MEMS gyro. We propose a MEMS gyro
suppression model based on ICELMD and ARMA-KF. To reduce the affect of abnormal
noise that some methods may ignore, we decompose the gyro bias drift signal by ICELMD
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and eliminate abnormal noise components by the 2σ criterion as preprocess. Different
from [22,23], we exploit the continuous mean square error (CMSE) and Permutation En-
tropy (PE) to classify PF into three parts as noise components, mixed components and
useful components which consider both the energy and complexity of PFs. Then, we use
autogressive moving average-Kalman filtering (ARMA-KF) to denoise the mixed compo-
nents which is suitable for gyro signal and easy to implement. Finally, the signal is rebuilt
by abandoning the noise components, combining the useful components and denoised
mixed components. We clearly state and summarize the main novelties of this paper
as follows:

• Proposing a novel signal decomposition method, called Interpolated Complemen-
tary Ensemble Local Mean Decomposition (CELMD), shorted as called Interpolated
CELMD or ICELMD, which cut the required time cost of signal decomposition and
improve the endpoint effect.

• Applying ICELMD to analyze and category the MEMS gyros’ signal, and combine
the autogressive moving average-Kalman filtering (ARMA-KF) to denoise the prepro-
cessed signal.

According to the experiments, compared with the original signal, the methods improve
the standard deviation by about 86.82%, and reduce the allan variance about 90%.

The rest of this paper is organized as follows. Section 2 describes the ICELMD and the
improvements. Section 3 introduces the method of classification and denoising. Section 4
shows the experimental verification. Finally, conclusions are given.

2. Interpolated CELMD
2.1. Interpolated LMD

The LMD is an adaptive way to analyze signal, but it still has many problems limited
its applications. To make better use of LMD, we proposed ILMD, the flow chart of ILMD is
shown in Figure 1. The principle of LMD is in Appendix A.

Figure 1. Flow chart of the proposed Interpolated LMD.

The LMD is more complex than EMD. In terms of the process steps, LMD is a triple
iterative process, including the sliding average , the generation of each PF component,
and the decomposition . The LMD involves a sliding average process, in which the local
mean and the envelope estimation curves of the signal need to repeat the sliding average
operation. Therefore the generation of each PF component undergoes several iterations. To
solve this problem, we apply the linear interpolation into LMD , which is as follows:
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1. Perform linear interpolation on the maximum and minimum points of the signal x(t)
to obtain the corresponding upper and lower envelopes as A(t) and B(t).

2. Calculate the local mean curve m11(t) and the envelope estimation function a11(t)
according to the upper and lower envelopes:{

m11(t) =
A(t)+B(t)

2
a11(t) =

|A(t)−B(t)|
2

(1)

The above steps of 1. and 2. replace the step 1. of LMD in Appendix A; therefore, the
improved LMD has only two iterations, which significantly improves the decomposition
efficiency. The linear interpolation can retain more local signal than the sliding average. We
call this as Interpolated LMD (ILMD).

Meanwhile, there are three types of components in the PFs of the preprocessed signal.
The noise components are discarded, the mixed components are filtered, and the useful
components are retained. For LMD, the time spent by different orders of PF is not much
different, so cutting the number of PFs can also greatly reduce the complexity of decompo-
sition. In summary, when there are multiple PFs, the time required for the procedure can
be reduced by decreasing the number of PFs. For specific implementation, the gyro data
can be decomposed and classified to obtain a suitable empirical value. The empirical value
of PF number used for the gyro in our experiment is 11, which means, after the signal is
decomposed, there are 10 PFs and 1 residual signal.

We know from the decomposition steps of LMD that it is necessary to obtain the
position of the extreme value points of the signal and operate on the local extreme value.
However, for the processed finite-length signal, the extreme points at both ends are not well
defined while fluctuating frequently, resulting in small distances and close distributions
between the extreme points. The LMD method directly considers endpoints as extreme
points, which is not consistent with the actual trend of the MEMS gyro signal; this inaccurate
boundary judgment can cause distortion. As the iteration proceeds, the distorted extreme
point will affect the internal data of the signal, and finally cause the decomposition result to
be distorted, which is the endpoint effect. To alleviate the effect of endpoint, it is necessary
to accurately confirm the extreme point condition at the signal endpoint. We applied a
boundary processing method to solve this problem. Taking the left boundary as an example,
the first maximum value of the left boundary is Lmax, the first minimum is Lmin, and the
left endpoint value is L. The method applied in step 1. of LMD in Appendix A to find the
right endpoint. The specific method is as follows:

1. If the first maximum value of the left boundary appears earlier than the minimum
value, and the left endpoint value L is greater than the first minimum value, then the
left maximum value is Lmax, and the left minimum value is Lmin, otherwise the left
maximum value is Lmax, and the left minimum value is L.

2. If the first maximum value of the left boundary appears later than the minimum
value, and the left endpoint value L is greater than the first maximum value, then
the left maximum value is L, and the left minimum value is Lmin , otherwise the left
maximum value is Lmax, and the left minimum value is Lmin.

2.2. Interpolated CELMD

According to the aforementioned methods, the ILMD is less complicated and more ac-
curate than LMD, but its performance still needs to be improved. Combining the ILMD and
the complementary white noise, we obtain the proposed interpolated CELMD (ICELMD).
The modification is achieved by using white noise with zero-mean characteristics. By
adding Gaussian white noise to the original signal, then the decomposed signal with white
noise by ILMD is obtained. Repeating the aforementioned ILMD several times, adds differ-
ent white noise to the original signal and calculates the average of all the decomposed PF
components to obtain the final decomposition result. However, when the white noise is
not large enough, it may lead to a bad decomposed result. More white noise means more
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time to calculate over a smaller signal to noise ratio (SNR). To make better use of the white,
complementary white noise are added to the original signal as auxiliary noise to eliminate
the residual noise. Meanwhile, the calculation time and SNR can be reduced. The flow
chart of original signal into PFs by ICELMD is shown in Figure 2. Observing from Figure 2,
m pairs of complementary Gaussian white noise are added into the original signal. Then,
perform ILMD on every noise-containing signal xi(t), and obtain 2m PF groups. Combine
all 2m i-order PF(i,k) of PF groups, divided by the number of groups 2m to obtain the real
i-order PFi.

Figure 2. Flow chart of Interpolate CELMD.

3. Proposed Denoising Method with Classification

The overall structure of proposed method is shown in Figure 3, which is divided into
two parts: preprocess and denoise. In the preprocess part, the original signal is decomposed
by ICELMD, then 2σ criterion is applied to remove abnormal noise in PFs. In the denoise
part, the preprocessed signal is decomposed by ICELMD, then CMSE and PE are exploited
to classify the PFs into three parts, noise, mixed and useful components. Abandoning the
noise components, denoising mixed components, keeping the useful components, then we
obtain the denoised signal.

Figure 3. Overall process of the proposed ICELMD-ARMA model.
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3.1. Preprocessing

Before classifying the PF components, it is necessary to preprocess the gyro signal.
Eliminating the abnormal noise in the output of gyro is the aim of the preprocess. Due to
the changes of the external environment or the influence of vibration and shock, abnormal
noise with large amplitude is generated, resulting the distortion of output signal. The
frequency of the abnormal noise signal is generally different from random drift noise and
real signal. Therefore, after ICELMD, the abnormal noise is generally decomposed into
several PF components to be identified and analyzed. By preprocessing, the influence of
abnormal noise is reduced. Specifically, applying the 2σ criterion of the limited error, the
abnormal noise components could be identified. Assume the original signal be Y(t), set the
standard deviation as σ, find the max vaule (peak) of each PF component as Ai. According
to the 2σ criterion, remove the components with peak large than 2σ. Recombining the rest
PF components, we obtain the recovered X(t).

3.2. Denoising with Classification
3.2.1. Classification

After preprocessing, the PF components are classified before being denoised. First, X(t)
is decomposed into PF components of a fixed number L by ICELMD. Then the components
are classified into the components of noise, mixed, and useful signals. The classification
needs the parameters of M1 and M2. The components order n ≤ M1 are the noise compo-
nents, the order M1 < n ≤ M2 are the mixed components, and the order n > M2 are the
useful components. During classification, the parameter of M1 is obtained by calculating
the CMSE of each component, and the specific steps are as follows [22]:

1. Incrementally select the PFs for reconstruction

zk =
L

∑
i=k

PFi(t) + residual(t) k = 1, 2 · · · L (2)

2. Calculate the Euclidean distance between adjacent reconstructed signals

CMSE(zk, zk+1) = 1/N
N

∑
i=1

(zk+1(ti)− zk(ti))
2 k = 1, 2 · · · L− 1 (3)

3. M1 = argmin[CMSE(zk,zk+1)] 1 ≤ k ≤ L− 3
The range of k is limited to prevent M1 from being too large

The CMSE represents the energy of the current PF component. Generally speaking,
the energy in the signal is mainly concentrated in the useful signal, while the energy of
the noise is very small due to its disorder and randomness. Compared with other types of
components, the noise component has the smallest energy, so the minimum CMSE must
appear in the last noise PF component, and find the order of PF with the minimum CMSE
value as M1. The components of order 1 to M1 are noise components.

The parameter M2 is used to distinguish the mixed components from the useful
components by PE. Here, PE examines the PF components and assigns a non-negative
number to each sequence, with large values correspond to more complexity or irregularity,
which is calculated as follows:

1. Reconfiguration in Phase Space for PFs
A set of time series X of length N is reconstructed in phase space to obtain the matrix
Y as 

x(1) x(1 + t) · · · x(1 + (m− 1)t)
x(2) x(2 + t) · · · x(2 + (m− 1)t)
x(j) x(j + t) · · · x(j + (m− 1)t)

...
...

...
...

x(K) x(K + t) · · · x(K + (m− 1)t)





Micromachines 2023, 14, 109 7 of 18

where m is the embedded dimension, t is the delay time, and K = N − (m − 1)t.
Each row in the matrix Y is a reconstructed component, and there are altogether K
reconstructed components.

2. Rearrange the altogether reconstructed component
Arrange each reconstructed component in ascending order to obtain the column index
of each element position in the vector to form a set of symbolic sequences.

S(l) = j1, j2, · · · , jm, l = 1, 2, · · · , k k ≤ m! jn = x(j + (in − 1)t) (4)

The m-dimensional phase space maps different sequences of symbols with a total
of m!

3. Calculate the probability
Calculate the number of each symbol sequence divided by the total number of different
symbol sequences as the probability of that symbol sequence

P1, P2, · · · , Pk (5)

4. Calculate PE and normalization

Hpe = −
k

∑
j=1

Pjln(Pj) (6)

0 ≤ Hpe = Hpe/ln(m!) ≤ 1 (7)

3.2.2. Filtering

After confirming M1 and M2, it is necessary to filter the mixed components before
reconstruction to improve the performance of MEMS gyro. First, the PF orders of M1 to
M2 are reconstructed, denoted as G(t), G(t) is properly modeled and filtered. Calculate
the autocorrelation and partial autocorrelation functions of the sequence, and choose the
proper model of time series according to the Table 2.

Table 2. Time Series Model .

Model Name Autocorrelation Function Partial Autocorrelation Function

AR(p) trailing p-step censoring
MA(q) q-step censoring trailing

ARMA(p,q) trailing trailing

After the model is confirmed, use the criteria of Akaike and Bayesian to determine the
order of the time series model. The parameters of each order are calculated according to
the least squares estimation. Taking the second-fourth-order ARMA model as an example,
the model (signal) could be expressed as:

Gt = β1Gt−1 + β2Gt−2 + εt + α1εt−1 + α2εt−2 = χGt−1 + δεt (8)

KF is an effective method to denoise the time series; the state and observation equations
are as follows: {

Xk = Φk−1Xk−1 + Γk−1Wk−1
Zk = HkXk + Vk

(9)

where the Xk is the state of the system; Zk is the observations; Φk−1 and Γk−1 is the system
state-transition matrix; Hk is the measurement matrix; Wk−1 is the system noise; Vk is the
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measurement noise. Wk−1 and Vk are mutually independent white noise sequences. The
statistical characteristics are as follows [10] :

Wk ∼ (0, Qk) Vk ∼ (0, Rk)

E[Wk] = E[Vk] = 0 E[WkVT
j ] = 0

E[VkVT
j ] = Rkδkj E[WkWT

j ] = Qkδkj (10)

where Rk is the covariance matrix of measurement noise; Qk is the covariance matrix of
process noise ; δkj is the Kronecker delta function. The estimate of the observation X̂k at
time k can be solved by the following:

Error covariance extrapolation:

P−k = Φk−1P+
k−1ΦT

k−1 + Qk−1 (11)

Kalman gain matrix

Kk = P−k HT
k (HkP−k HT

k + Rk)
−1 (12)

State estimate extrapolation

x̂−k = Φk−1 x̂+k−1 (13)

State estimate observational update

x̂+k = x̂−k + Kk(Zk − Hk x̂−k−1) (14)

Error covariance update
P+

k = (I − Kk Hk)P−k (15)

Pk denotes the covariance of the estimation error; k means the time step k; the “+”
superscript denotes that the estimate is a posteriori; while the “−” superscript denotes
that the estimate is a priori. The “ x̂ ” denotes the estimate of “x”. x′(t) denotes the final
denoised signal. The Rk and Qk could be determined in the ARMA model. Based on the
ARMA model, KF is performed to mixed components. After KF, the denoise signal is
assumed to be G′(t), then the zero bias suppression signal is rebuilt as:

x′(t) =
L

∑
M2+1

PFi(t) + G′(t) + residual(t) (16)

4. Experiment

Two types of signals are denoised to verify the effectiveness of proposed method. The
equipment used in the experiment is shown in Figure 4, which includes:

1. Temperature-controlled oven is used to control temperature and provide a turntable.
2. PC, with labview program is exploited to collect gyro angular velocity.
3. Temperature-controlled single-axis rate turntable, capable of controlling the single-

axis turntable in the oven, with optional position mode, rate mode, etc.
4. Controllable power supply for MEMS gyro.
5. Evaluation circuits, package and transmit multiple gyro output signals together.
6. MEMS gyros, measuring angular velocity.
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Figure 4. Experiment equipment.

The controller of single-axis rate turntable is near the PC, and the turntable is in the
temperature-controlled oven. The MEMS gyros are mounted on a turntable by a fixed table.
The Evaluation circuits connecting the MEMS gyros to PC. In the experiment, we use the
temperature oven to control the temperature, the turntable to control the input velocity.
To evaluate the suppression effect of the proposed denoising method , CEEMD and LMD
are compared during experiment of data processing. Use different methods to decompose,
then, applying the same method of ARMA-KF to denoise.

4.1. Denoising Processing

The processing steps are listed as:

• Put the gyro in the temperature-controlled oven, keep the temperature at 25 ◦C for
two hours to ensure the stability of the gyro.

• Keep angular velocity input as zero for two hours and the sampling rate as 1 Hz as
static state test of MEMS gyro;

• After 2 h, stop collecting data, obtain the raw data of MEMS gyro.

The raw data are collected as the output of the gyro shown in Figure 5. After collecting
data, i.e., the raw data are acquired during the static state. The ICELMD is performed over
the original signal to obtain the decomposed PF and residual signals. Then, we calculate
the variance of these components and original signal. By the 2σ criterion, the components
with excessive variance are eliminated. Then, the preprocessed signal is decomposed by
ICELMD, whose result is shown in Figure 6. After decomposition, 10 PF components and
a residual signal are obtained, where the first and the last PFs correspond to the original
signal and the residual signal, respectively. The CMSE and PE of each component are shown
in Figure 7. It can be observed that the CMSE gradually decreases with the increasing of
the PF order at the beginning, and the CMSE value of the 5th-order component is greater
than that of the 3rd-order component. Therefore, we conduce that the first three orders
are dominated by noise components, which means that the first parameter M1 is 3. It can
be observed that PE of order 10 is less than that of order 9, so the second parameter M1 is
9. Then, we call the last PF and residual signal as useful components. From the result of
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classification, we need to denoising the signal as Equation (16). Remove noise components,
use ARMA to model PF components from order 4 to 9, denoise these components by KF,
and remain a useful component.

Figure 5. Original signal.

Figure 6. (b−k) are 10 PFs obtained by ICELMD, (a) is original signal and (l) is the residual signal.
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Figure 7. PF classification based on CMSE and PE.

Figure 8 shows the denoising result; for the static state, probably the abnormal noise
with excessive variance do not exist, so the preprocessed signal is the same as the original
signal. However, it may exist in some low accuracy MEMS gyro; to show the full decom-
position effect, we also use the gyro angular velocity data acquired by MPU6050 in zero
input state, whose denoising result is shown in Figure 9. It can be observed from both
Figures 8 and 9 that our methods have significant improvement on the signal optimization
and noise reducing.

Figure 8. Denoising result of ICELMD (without abnormal signal).
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Figure 9. Denoising result of ICELMD (MPU6050 with abnormal signal).

To better show the denoise effect of the proposed model, we make more experiments
with several gyros and MPU6050, the denoised results are shown below. Figure 10 shows
different denoising results of ICELMD, Figure 11 shows the Allan variance of different
denoising results of ICELMD. Observing that, we can see that our model has performed
well in repeated experiments.

Figure 10. Denoising results of ICELMD, (a,b) are collected by different gyros, and (c,d) are collected
by MPU6050.
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Figure 11. Allan variance of different denoising results of ICELMD, (a,b) are collected by different
gyros, and (c,d) are collected by MPU6050.

4.2. Comparisons

Figure 12 shows the denoising results of ICELMD, LMD and CEEMD, which are
obvious and effective. The denoising gap between CEEMD and LMD is subtle. However,
the denoising effect of ICELMD is greater than that of CEEMD and LMD. Because the
random drift in signal of MEMS gyro has the characteristics of slow time-varying and non-
smooth, the Allan variance is applied to verify the performance of different methods. Allan
variance of three methods are shown in Figure 13. Among which, the ICELMD is much
better than the others, and the parameters of Allan variance of different methods are shown
in Table 3. Observing from Table 3 that compared with the original signal, the angle random
walk decreased about 97.98%, and other parameters also perform well. Compared with
LMD and CEEMD, the angle random walk decreased from 0.1585◦/

√
h and 0.6262◦/

√
h

to 0.0487◦/
√

h, and the zero bias instability lowered from 0.1642◦/h and 0.3147◦/h to
0.0509◦/h. Moreover, compared with [25,28], the standard deviation suppression ratio
improves from 57.87%, 67.22% to 86.82%, and the variance suppression ratio increases from
82.25%, 89.26% to 98.29%, respectively.

Table 3. Comparison of denoising effects.

Denoising Methods
Angle Random Walk

(N) (◦/
√

h)
Zero Bias Instability

(B) (◦/h)
Standard Deviation
Suppression Ratio

Variance Suppression
Ratio

Original signal 2.4156 0.3753 - -
ILMD-PTTFPF [25] - - 57.87% 82.25%

RNN-UKF [28] - - 67.22% 89.26%
LMD 0.1585 0.1642 - -

CEEMD 0.6262 0.3147 - -
ICELMD and
ARMA−KF 0.0487 0.0509 86.82% 98.29%
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Figure 12. Denoising effects of different methods.

Figure 13. Allan variance of different denoising methods.

5. Conclusions

A novel bias drift suppression method is proposed based on two-fold ICELMD and
ARMA-KF. First, ICELMD is applied to process the original signal, with abnormal noise
removed by 2σ criterion. Then, ICELMD is applied to decompose the preprocessed signal,
and the preprocessed signal is classified into noise, mixed and useful components by CMSE
and PE over second ICELMD. After classification, the mixed components are modeled by
ARMA, and denoised by KF. Experiments and comparisons reveal that the method has
great performance on denoising, the angle random walk decreases about 97.98%, the zero
bias instability decreases about 86.43%, the standard deviation decreases about 86.62%,
and the variance decreases about 98.29% .However, the angle random walk of the signal
denoised by LMD method decreases about 93.43%, and the zero bias instability decreases
about 56.24%. The standard deviation of signal denoised by RNN-UKF is optimized by
67.22%, and the variance suppression is about 89.26%. From the results above, we find the
combined ICELMD and ARMA-KF method has better denoising ability compared with
LMD and CEEMD. Further, the method performs better than [25,28] on standard deviation
and variance suppression.
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6. Discussion

The LMD is first proposed to decompose the signal of electroencephalogram (EEG) and
retrieve the specific features [24]. Then, there are many works applying LMD to analyze the
signals of EEG or EMG as features extraction and tools of data analysis [29–31]. However,
the performances of using pure LMD to denoise the signal of MEMS gyro is not magnificent.
To our best knowledge, this is the first time that the Interoperated CELMD is proposed
and applied twice in our paper. First, ICELMD is exploited in the preprocess to reduce
the abnormal noise of MEMS gyro. Then, the ICELMD is applied again to classify and
denoised together with ARMA-KF to ensure the super noise-suppressed effects. LMD is an
adaptive way to analyze the signal, which is very suitable for non-stationary and non-linear
signal processing. Therefore, the method could be extended to the sensors which detect
random and non-stationary signals. However, the proposed model is effective for MEMS
gyros, whose performances for other sensors may not as good as those for MEMS gyros. To
achieve better performances, the proposed model needs, accordingly, modifications. The
modifications include the choice of the specific classification and filtering methods for the
sampled signals. Future works include developing novel denoising methods replacing
ARMA-KF, which can indicate the mixed components more accurate and improve the
performance. In addition, we may apply algorithms of Artificial Intelligence (AI) to train
the model and realize real-time denoising.
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Abbreviations

The following abbreviations are used in this manuscript:
MEMS Micro-Electro-Mechanical-System
ICELMD Interpolated Complementary Ensemble Local Mean Decomposition
CEEMD Complementary integrated empirical mode decomposition
ARMA Autoregressive moving average
KF Kalman filtering
CMSE Continuous mean square error
PE Permutation Entropy
PF Product function
IMF Intrinsic mode function
RNN Recurrent Neural Network

Appendix A. LMD

LMD is an adaptive signal decomposition method suitable for analyzing non-stationary
random signals generated by nonlinear systems, which is proposed by Smith et al. in
2005 [24]. It essentially adaptively separates a nonlinear, non-stationary signal into items
with decreasing frequencies according to the envelope characteristics. LMD overcomes the
disadvantage of wavelet analysis to determine the wavelet bases for specific signals, which
is lacking unified bases for different signals. The components obtained by LMD are called
PFs, which are determined by multiplying the envelopes of the pure frequency modulation
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(FM) function. The envelope function reflects the instantaneous amplitude of the PF, and
the frequency of the pure FM function is the instantaneous frequency of the PF. The LMD
decomposes the original signal into PFs of different frequencies, a remainder as

x(t) =
N

∑
i=1

PF(t)i + residual(t) =
N

∑
i=1

ai(t) · si(t) + residual(t) (A1)

The basic principle of LMD is as follows:

1. We modify Figure A1 to show the points of local means and envelope estimation
points as follows. The signal can be expressed as:

x = (1− cos(2 ∗ pi ∗ 0.01 ∗ t)). ∗ sin(2 ∗ pi ∗ 0.15 ∗ t); (A2)

As shown in Figure A1, n1 − n9 are the local extreme points, local mean points mi and
envelope estimation points are calculated by Equations (A3) and (A4), respectively

Figure A1. points of local means (mi) and envelope estimation point (ai).

mi =
ni + ni+1

2
(A3)

ai =
|ni − ni+1|

2
(A4)

Perform the moving average on both the local mean mi and the envelope estima-
tion points ai, resulting in the corresponding local mean curve m11(t) and envelope
estimation a11(t).

2. Calculate the difference between the original signal x(t) and the local mean m11(t),
and represent it as h11(t):

h11(t) = x(t)−m11(t) (A5)

3. Demodulate h11(t) by dividing the local mean curve to obtain s11(t):

s11(t) =
h11(t)
a11(t)

(A6)
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4. Calculate the envelope of s11(t) as a12. If a12(t) 6= 1, then take s12(t) as the original
signal, and repeat n times the operations of 1−3 until the envelope of a1(n+1)(t) = 1,
then the obtained s1n(t) is a pure FM signal.

h12(t) = s11(t)−m12(t)
...

h1n(t) = s1(n−1)(t)−m1n(t)
(A7)

among these, 
s12(t) = h12(t)/a12(t)

...
s1n(t) = h1(n)(t)/a1n(t)

(A8)

5. The envelope signal a1(t) is obtained by multiplying all the local envelope functions iteratively.

a1(t) = a11(t)a12(t) · · · a1n(t) (A9)

6. Thus, the first PF component is obtained as:

PF1(t) = a1(t)s1n(t) (A10)

7. Subtract PF1 from the original signal to obtain the rest signal, repeat the steps from
1–6 until the residual signal is a monotonic signal. Denote the residual signal as
residual(t), and the decomposition ends.
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