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Abstract: Microsystems with capabilities of acoustic signal perception and recognition are widely
used in unattended monitoring applications. In order to realize long-term and large-scale monitor-
ing, microsystems with ultra-low power consumption are always required. Acoustic wake-up is
one of the solutions to effectively reduce the power consumption of microsystems, especially for
monitoring sparse events. This paper presents a review of acoustic wake-up technologies for mi-
crosystems. Acoustic sensing, acoustic recognition, and system working mode switching are the basis
for constructing acoustic wake-up microsystems. First, state-of-the-art MEMS acoustic transducers
suitable for acoustic wake-up microsystems are investigated, including MEMS microphones, MEMS
hydrophones, and MEMS acoustic switches. Acoustic transducers with low power consumption,
high sensitivity, low noise, and small size are attributes needed by the acoustic wake-up microsystem.
Next, acoustic features and acoustic classification algorithms for target and event recognition are
studied and summarized. More acoustic features and more computation are generally required to
achieve better recognition performance while consuming more power. After that, four different
system wake-up architectures are summarized. Acoustic wake-up microsystems with absolutely
zero power consumption in sleep mode can be realized in the architecture of zero-power recognition
and zero-power sleep. Applications of acoustic wake-up microsystems are then elaborated, which
are closely related to scientific research and our daily life. Finally, challenges and future research
directions of acoustic wake-up microsystems are elaborated. With breakthroughs in software and
hardware technologies, acoustic wake-up microsystems can be deployed for ultra-long-term and
ultra-large-scale use in various fields, and play important roles in the Internet of Things.

Keywords: acoustic wake-up; microsystem; acoustic transducer; acoustic recognition; system
architecture

1. Introduction

With the development of the Internet of Things (IoT) and its related technologies, such
as the machine learning (ML) algorithm, MEMS transducer, 5G cellular network, etc., a large
number of IoT terminals are urgently needed [1]. Microsystems, with the ability of sensing,
data processing, transmitting, and executing, are one of the most important terminals of
the IoT. In many unattended scenarios, microsystems are used for long-term, large-scale
surveillance. However, due to the limited power of the microsystem, the use of low-power
electronic components still cannot meet the needs of ultra-long-term surveillance. Energy
harvesting can be applied to extend battery life [2]. However, the efficiency of energy
harvesting is susceptible to the external environment. Also, the energy harvesting module
increases the complexity and size of the microsystem. For many applications in unattended
scenarios, events of concern rarely occur. Continuous detection of such sparse events
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wastes most power of the microsystem [3]. Thus, a wake-up strategy for microsystems is
studied. The wake-up strategy refers to the microsystem continuously detecting the events
of concern while keeping other modules off, which is also known as low-power sleep
mode, and when the events of concern occur, the microsystem turns on all the modules
and switches to a high-power active mode. By adopting the wake-up strategy, most of
the wasted power is conserved, and the power efficiency is significantly improved, which
greatly extends the battery life of the microsystem [4]. Different types of signals are used
for event detection in wake-up microsystems, such as acoustic, mechanical, magnetic,
optical, infrared, RF, et al. [5–10]. Among them, the acoustic signal has the advantages of
strong universality, long monitoring distance, rich data information, and abundant acoustic
sensors. Therefore, the study of acoustic wake-up microsystems has aroused great interest
among researchers.

This review paper presents the technologies for acoustic wake-up microsystems. To
achieve acoustic wake-up, microsystems must have the abilities of acoustic sensing, acoustic
recognition, and system working mode switching. These are also the key technologies for
the acoustic wake-up microsystem. In Section 2, state-of-the-art MEMS acoustic transducers
with low power consumption and high sensitivity, which are suitable for acoustic wake-up
microsystems, are introduced, including MEMS microphones, MEMS hydrophones, and
MEMS acoustic switches. In Section 3, acoustic features capable of event and target recog-
nition are introduced, which are classified into time-domain features, frequency-domain
features, and time-frequency domain features. After that, the classification algorithms
using the acoustic features as input are investigated, which are divided into the linear
classification algorithm and the nonlinear machine learning classification algorithm. In
Section 4, according to the power consumption characteristics of the modules in the acoustic
wake-up microsystem, four different acoustic wake-up architectures of the microsystem are
summarized. In Section 5, applications of the acoustic wake-up microsystem are elaborated,
which involve scientific research and our daily use. In Section 6, challenges and future
research directions of the acoustic wake-up microsystem are proposed. Section 7 concludes
the review.

2. MEMS Acoustic Transducer

MEMS acoustic transducers are the hardware basis for acoustic wake-up of microsys-
tems. Here some state-of-the-art MEMS transducers with low power consumption, high
sensitivity, and small size, which meet the requirements of acoustic wake-up microsystems,
are shown in Table 1.
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Table 1. MEMS acoustic transducers.

Type Principle Main Structure
and Material

Power
Consumption Size Frequency

Range (Hz)
Resonant

Frequency (Hz) Sensitivity SNR Year Ref.

MEMS
microphone

Capacitive Compliant
membrane - 2.6 × 3.2 × 0.865 mm3 20–20,000 24.15 k - 65.6 dB 2009 [11]

Capacitive Corrugated
diaphragm 1.2 mW 2.35 × 1.65 × 1.2 mm3 100–10,000 - 7.9 mV/Pa 55 dB 2011 [12]

Capacitive Planar
interdigitated - Φ600 µm2 1000–20,000 - 0.99 mV/Pa - 2015 [13]

Capacitive Perforated
diaphragm - 0.3 × 0.3 mm2 1–20,000 60 k 2.46 mV/Pa - 2018 [14]

Capacitive Graphene−PMMA
diaphragm - Φ4 × 3.2 mm3 0–10,000 7 k 100 mV/Pa 20 dB 2017 [15]

Capacitive Triple-sampling
ADC 0.936 mW 0.98 mm2 20–20,000 - 38.0 mV/Pa 62.1 dBA 2022 [16]

Capacitive Differential circuits 730 µW 1.13 mm2 - - - 69 dBA 2022 [17]

Piezoelectric ZnO film - 3 × 3 mm2 30–8000 42.875 k 320.1 µV/Pa - 2021 [18]
Piezoelectric ZnO film - 1.5 × 1.5 mm2 48–54,000 99.6 k 130 µV/Pa - 2022 [19]

Piezoelectric Piezoelectric
nanofiber - - 400–1500 - 266 mV/Pa - 2016 [20]

Piezoelectric AlN diagram 0 - - 0.43 k–10 k 600 mV/Pa - 2017 [21]
Piezoelectric PZT spiral 0 3.2 × 2.2 × 1 cm3 - >25.2 12.6 V/Pa - 2018 [22]
Piezoelectric ZnO film - 4 × 11 mm2 240–6500 0.86 k–6.263 k 2.5–202.6 mV/Pa - 2012 [23]

Piezoelectric AlN cantilevers - 5.5 × 5.5 mm2 - 2.4 k, 4.9 k,
8.0 k, 11.0 k 19.7 mV/Pa - 2016 [24]

Piezoelectric PZT membrane - 1 × 2.5 cm2 - 0.1 k–4 k 103 mV/Pa 92 dB 2021 [25]

MEMS
hydrophone

Piezoelectric AlN film - Φ1.2 × 2.5 cm3 10–8000 - 1 µV/Pa 60 dB 2018 [26]
Piezoelectric AlN film 4.5 mW 1.5 × 0.8 × 2 cm3 10–50,000 1.26 µV/Pa 58.7 dB 2021 [27]

MEMS
acoustic
switch

Resonant Rotational Paddle 0 ≤15 cm3 - 62.7–80 0.005 Pa
(threshold) - 2018 [28]
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2.1. MEMS Microphone

According to the sensing principle, different types of MEMS microphones are manu-
factured, including capacitive, piezoelectric, electret, electromagnetic, piezoresistive, and
optical microphones. Considering the requirements of low power consumption, high sensi-
tivity, and small size, only capacitive and piezoelectric MEMS microphones are presented,
which are also the two most dominant microphone types on the market.

• Capacitive MEMS Microphone

Capacitive MEMS microphones dominate the market with their high signal-noise ratio
(SNR) performance and mature manufacturing process [29]. The main structure of the
capacitive MEMS microphone is a capacitor made up of a rigid backplate and a flexible
diaphragm. A polarization voltage is applied across the capacitor, and acoustic signals are
then captured by the flexible diaphragm.

Compared to conventional microphones, MEMS microphones trade off smaller volume
with higher noise. By the differential configuration of two MEMS microphones, an SNR of
66 dB is achieved, as shown in Figure 1a [11]. In addition to the high SNR characteristic, a
high-sensitivity capacitive CMOS-MEMS microphone is implemented using a standard thin
film stacking process, as shown in Figure 1b [12]. The sensitivity of the microphone is 7.9
mV/Pa at 1 kHz with a power consumption of 1.2 mW and a size of 2.34 × 3.2 × 0.865 mm3.
For capacitive microphones, a back plate is always introduced to form a capacitive structure.
However, the back plate brings a damp effect and acoustic impedance which reduce the
microphone’s sensitivity, as well as increase its size. A capacitive microphone without
a back plate is proposed by replacing the back plate with planar interdigitated sensing
electrodes, as shown in Figure 1c [13]. The sensitive part of the microphone has an area
of Φ600 µm2. To maximize the size advantage of the MEMS microphone, a capacitive
microphone with Z-shape arms supported perforated diaphragm is designed, as shown
in Figure 1d [14]. The sensitive part of the microphone size is about 0.3 × 0.3 mm2, and
the sensitivity reaches 2.46 mV/Pa. Another type of capacitive microphone, called the
electret capacitive microphone (ECM), has a high sensitivity of up to 100 mV/Pa, as
shown in Figure 1e [15]. However, using electret materials increases the difficulty of MEMS
processing and its volume. Based on a triple-sampling delta-sigma ADC, a digital capacitive
MEMS microphone achieves high sensitivity and low noise performance, and its size is
only 0.98 mm2, as shown in Figure 1f [16]. Even though the power consumption is reduced
to 0.936 mW, it’s still too much for ultra-long-life acoustic wake-up microsystems. Recently,
by using differential circuits and internal LDOs, a capacitive microphone with high SNR
of 69 dB, small size of 1.13 mm2, and low power consumption of 730 µW is achieved, as
shown in Figure 1g [17].

• Piezoelectric MEMS Microphone

Piezoelectric MEMS microphones are the second dominant type of MEMS microphone.
Compared with the capacitive MEMS microphone, it is less prone to deterioration even after
long-term use, and it is less susceptible to moisture and dust due to a gap-free structure.
These are essential qualities for ultra-long-life acoustic wake-up microsystems. In addition,
lower power consumption or even zero power consumption can be achieved based on the
high-sensitivity piezoelectric characteristics.



Micromachines 2023, 14, 129 5 of 29

Micromachines 2023, 14, x  4 of 27 
 

 

microphone without a back plate is proposed by replacing the back plate with planar in-
terdigitated sensing electrodes, as shown in Figure 1(c) [13]. The sensitive part of the mi-
crophone has an area of Φ600 μm2. To maximize the size advantage of the MEMS micro-
phone, a capacitive microphone with Z-shape arms supported perforated diaphragm is 
designed, as shown in Figure 1(d) [14]. The sensitive part of the microphone size is about 
0.3 × 0.3 mm2, and the sensitivity reaches 2.46 mV/Pa. Another type of capacitive micro-
phone, called the electret capacitive microphone (ECM), has a high sensitivity of up to 100 
mV/Pa, as shown in Figure 1(e) [15]. However, using electret materials increases the diffi-
culty of MEMS processing and its volume. Based on a triple-sampling delta-sigma ADC, 
a digital capacitive MEMS microphone achieves high sensitivity and low noise perfor-
mance, and its size is only 0.98 mm2, as shown in Figure 1(f) [16]. Even though the power 
consumption is reduced to 0.936 mW, it’s still too much for ultra-long-life acoustic wake-
up microsystems. Recently, by using differential circuits and internal LDOs, a capacitive 
microphone with high SNR of 69 dB, small size of 1.13 mm2, and low power consumption 
of 730 μW is achieved, as shown in Figure 1(g) [17]. 

 
Figure 1. Capacitive MEMS microphones. (a) Two MEMS microphones in a differential configura-
tion from Citakovic et al. [11]. (b) CMOS MEMS microphone from Huang et al. [12]. (c) No-back-
plate SOI MEMS microphone from Lo et al. [13]. (d) Microphone with Z-shape arms from Ganji et 
al. [14]. (e) Electret capacitive microphone from Woo et al. [15]. (f) Microphone based on a triple-
sampling delta-sigma ADC from et Lee al. [16]. (g) Microphone using differential circuits and in-
ternal LDOs from Ceballos et al. [17]. 

 Piezoelectric MEMS Microphone 
Piezoelectric MEMS microphones are the second dominant type of MEMS micro-

phone. Compared with the capacitive MEMS microphone, it is less prone to deterioration 
even after long-term use, and it is less susceptible to moisture and dust due to a gap-free 
structure. These are essential qualities for ultra-long-life acoustic wake-up microsystems. 
In addition, lower power consumption or even zero power consumption can be achieved 
based on the high-sensitivity piezoelectric characteristics. 

A piezoelectric microphone with a ZnO film and a micro-tunnel structure is designed, 
and a sensitivity of 320.1 μV/Pa is achieved, as shown in Figure 2(a) [18]. Another ZnO 
piezoelectric microphone achieves high sound pressure level sensing up to 180 dB, which 
is available for aeroacoustics applications, as shown in Figure 2(b) [19], and the sensitivity 
reaches 130 μV/Pa for broadband from 48 Hz to 54000 Hz. Unlike common piezoelectric 
film structures, a high-sensitivity microphone based on piezoelectric nanofibers achieves 
a sensitivity of 255 mV/Pa, as shown in Figure 2(c) [20]. To further increase the sensitivity, 

Figure 1. Capacitive MEMS microphones. (a) Two MEMS microphones in a differential configuration
from Citakovic et al. [11]. (b) CMOS MEMS microphone from Huang et al. [12]. (c) No-back-plate
SOI MEMS microphone from Lo et al. [13]. (d) Microphone with Z-shape arms from Ganji et al. [14].
(e) Electret capacitive microphone from Woo et al. [15]. (f) Microphone based on a triple-sampling
delta-sigma ADC from et Lee al. [16]. (g) Microphone using differential circuits and internal LDOs
from Ceballos et al. [17].

A piezoelectric microphone with a ZnO film and a micro-tunnel structure is designed,
and a sensitivity of 320.1 µV/Pa is achieved, as shown in Figure 2a [18]. Another ZnO
piezoelectric microphone achieves high sound pressure level sensing up to 180 dB, which
is available for aeroacoustics applications, as shown in Figure 2b [19], and the sensitivity
reaches 130 µV/Pa for broadband from 48 Hz to 54,000 Hz. Unlike common piezoelectric
film structures, a high-sensitivity microphone based on piezoelectric nanofibers achieves
a sensitivity of 255 mV/Pa, as shown in Figure 2c [20]. To further increase the sensi-
tivity, piezoelectric MEMS microphones based on resonance are investigated. Based on
resonance, a high sensitivity of 600 mV/Pa is realized. By designing back cavities with
different volumes, the resonant frequency can be adjusted from 430 Hz to 10 kHz, as
shown in Figure 2d [21]. By attaching a large glass vane to a MEMS beam, a piezoelectric
resonant microphone whose sensitivity is as high as 12.6 V/Pa is achieved, as shown
in Figure 2e [22], and the resonant frequency can be as low as 25.2 Hz, which meets the
requirement of many surveillance applications. Based on the volt-level output, active elec-
tronic amplifiers are no longer required, but the size is about 3.2 × 2.2 × 1 cm3. Although
resonant microphones have high sensitivity, their narrow resonance bandwidth hinders
their application. Multi-frequency resonance is desired to broaden the bandwidth. An
array of multiple resonant microphones is designed to widen the frequency band, but
the volume increases proportionally, as shown in Figure 2f [23]. Another piezoelectric
microphone with multi-frequency resonance without constructing an array is proposed,
as shown in Figure 2g [24]. Multi-frequency resonance is achieved by a single structure
with multiple vibrational modes. However, the resonant frequencies are all above 2.4 kHz,
which is not suitable for common target and event detection. Recently, by mimicking the
basilar membrane of the human cochlea, an ultrathin membrane with a tiny asymmetric
trapezoidal shape is constructed to enable multi-resonant frequencies with high sensitivity
and low noise, as shown in Figure 2h [25].
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Figure 2. Piezoelectric MEMS microphones. (a) Microphone with a ZnO film and a micro-tunnel
structure from Prasad et al. [18]. (b) High SPL microphone from Ali et al. [19]. (c) Microphone based
on piezoelectric nanofibers from Lang et al. [20]. (d) 430 Hz to 10 kHz resonant microphone from Reger
et al. [21]. (e) 12.6 V/Pa sensitivity resonant microphone from Pinrod et al. [22]. (f) Multi-resonance
microphone array from Baumgartel et al. [23]. (g) Single structure multi-resonance microphone from
Zhang et al. [24]. (h) multi-resonance flexible microphone from Wang et al. [25].

2.2. MEMS Hydrophone

Some MEMS hydrophones have been reported in recent years, which are used for un-
derwater acoustic sensing. An AlN-based piezoelectric hydrophone is fabricated [30] and
further refined [26], as shown in Figure 3a, whose size of the sensing part is 3.5 × 3.5 mm2,
and overall package size is Φ1.2 × 2.5 cm3. Based on the above hydrophone, a biolog-
ical honeycomb architecture is designed and higher sensitivity and smaller size of the
hydrophone are achieved, as shown in Figure 3b [27].
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2.3. MEMS Acoustic Switch

MEMS switches are devices that switch conductive contacts on and off. The contacts
of MEMS switches are usually distributed on movable cantilever beam structures and
thin film structures. There are different ways to actuate the beam and film structures,
the common ones being electrostatic force, piezoelectric force, electromagnetic force, and
thermal stress. For the acoustic switch, the movable structure is driven by sound pressure.
Due to the weak energy in the sound pressure, acoustic switches are rarely reported. A
zero-power acoustic switch based on resonance is reported, as shown in Figure 4 [28]. By
designing a volume-adjustable cavity structure, the resonance with adjustable frequency
is generated which effectively amplifies the sound energy. Micron-scale vibration of the
cantilever beam is achieved. However, since the contact is weak, the current-carrying
capacity of the switch is only 300 nA, and the switch does not have the ability to remain on.
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3. Acoustic Recognition

The acoustic recognition process for specific targets or events usually includes data
preprocessing, feature extraction, and classification. The data preprocessing is to prepare
data for the subsequent feature extraction and classification algorithms, such as data parti-
tioning, filtering, denoising, normalization, DC component removal, and sound mixing.
These are conventional analog and digital data processing methods which will not be elabo-
rated further in this paper. Focusing on the acoustic wake-up applications for microsystems,
the acoustic features and classification algorithms are discussed in detail.

3.1. Acoustic Features

Acoustic features of different categories are discussed in [31–34]. Since the acoustic
features are fundamental to the implementation of acoustic wake-up, they are discussed
further in this paper. The features are classified into time domain features and frequency
domain features, depending on whether the Fast Fourier transform (FFT) is applied or
not, and time-frequency domain features, which are the synthesis of frequency-domain
distributions at different times.

3.1.1. Time Domain Features

Time domain features are the most commonly used feature type for acoustic recogni-
tion, which can be easily extracted from the acoustic transducers. They are often represented
as a graph with time on the abscissa and magnitude-related parameter on the ordinate. For
microsystems with limited power and computing resources, easy-to-extracted time domain
features are preferred. The commonly used time domain features for acoustic recognition
are listed in Figure 5.
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• Amplitude

The amplitude (A) of the acoustic signal is usually output directly from the analog or
digital acoustic sensor. It represents the magnitude of the sound pressure. The amplitudes
at different moments further constitute the slope (S) and envelope (ENV) features. The
amplitude, slope, and envelope features characterize the magnitude and variation of the
acoustic signal in a simple way.

• Power

Power (P) defines the energy in the acoustic signal, which is proportional to the
square of the sound pressure. It is often used in the preliminary judgment of the target
presence [35]. The average power within a time window is computed as

P(N) =
1
N

N

∑
n=1

[x(n)ω[n]]2, (1)

where x(n) is the discrete output of the acoustic sensor, and ω[n] is a window function of
length N. Similar to the amplitude feature, the power slope (PS) and the power envelope
(PENV) consist of the sequent power at different instants, which simply suggest the energy
variation characteristics.

• Zero-Crossing

The zero-crossing rate (ZCR) of an audio frame is the rate of signal sign changes within
a time window. It roughly reflects some spectral characteristics in the time domain, and it
is easy to be extracted without doing FFT [36].

ZCR(N) =
1
2

N

∑
i=2
|sgn[x(n)]− sgn[x(n− 1)]|, (2)

where

sgn[x(n)] =
{

1, x(n) ≥ 0
−1, x(n) < 0

. (3)

Some other zero crossing-based features are also extracted for acoustic recognition,
including zero crossing peak amplitudes (ZCPA) and linear prediction zero crossing ratio
(LP-ZCR) [37].

• Autocorrelation

Autocorrelation (R) represents the degree of similarity between two data series that
one series is a lagged version of the other, which can represent the resonance characteristics
of acoustic signals. For the discrete data, it is given as [38]:

R(τ) =
N

∑
n=1

x(n)x(n− τ), (4)

where τ is the number of lags between the 2 data series.

• Duration

Duration (D) is the number of samples between two successive real zeros or two
successive half-power (also known as 3 dB) points, and it provides information on the
fundamental frequency of a waveform [39].

3.1.2. Frequency Domain Features

Frequency characteristics are important criteria for acoustic recognition, as different
targets and events generate acoustic signals with specific frequency distributions. The
FFT deconstructs the acoustic data represented in the time domain into the acoustic data
represented in the frequency domain, thereby obtaining the frequency distribution of
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the acoustic signal. The frequency domain features are often represented as a graph
with frequency on the abscissa and spectral density-related parameter on the ordinate.
Because of the requirement to use an FFT operation, the computation to obtain frequency-
domain features is heavier than that of time-domain features. Nonetheless, the frequency
domain features perform much better in acoustic recognition as they are not easily affected
by the sound level and the distance of the sound source. Moreover, the differences in
frequency domain features of different targets and events are usually more obvious than
the differences in time domain features. The commonly used frequency domain features
for acoustic recognition are listed in Figure 6.

Micromachines 2023, 14, x  8 of 27 
 

 

   
 

1, 0
sgn

1, 0
x n

x n
x n

       
. (3)

Some other zero crossing-based features are also extracted for acoustic recognition, 
including zero crossing peak amplitudes (ZCPA) and linear prediction zero crossing ratio 
(LP-ZCR) [37]. 
 Autocorrelation 

Autocorrelation (R) represents the degree of similarity between two data series that 
one series is a lagged version of the other, which can represent the resonance characteris-
tics of acoustic signals. For the discrete data, it is given as [38]: 

     
1

N

n
R x n x n 



  , (4)

where τ is the number of lags between the 2 data series. 
 Duration 

Duration (D) is the number of samples between two successive real zeros or two suc-
cessive half-power (also known as 3 dB) points, and it provides information on the fun-
damental frequency of a waveform [39]. 

3.1.2. Frequency Domain Features 
Frequency characteristics are important criteria for acoustic recognition, as different 

targets and events generate acoustic signals with specific frequency distributions. The FFT 
deconstructs the acoustic data represented in the time domain into the acoustic data rep-
resented in the frequency domain, thereby obtaining the frequency distribution of the 
acoustic signal. The frequency domain features are often represented as a graph with fre-
quency on the abscissa and spectral density-related parameter on the ordinate. Because of 
the requirement to use an FFT operation, the computation to obtain frequency-domain 
features is heavier than that of time-domain features. Nonetheless, the frequency domain 
features perform much better in acoustic recognition as they are not easily affected by the 
sound level and the distance of the sound source. Moreover, the differences in frequency 
domain features of different targets and events are usually more obvious than the differ-
ences in time domain features. The commonly used frequency domain features for acous-
tic recognition are listed in Figure 6. 

 
Figure 6. Frequency domain features. Figure 6. Frequency domain features.

• Spectral Power

Spectral power density (SPD) is a commonly-used metric for target and event recogni-
tion, which represents the energy density of different frequency components [40]. Spectral
power (SP) is obtained by integrating SPD along with the frequency. By selecting a specific
frequency range, the sub-spectrum power is obtained. To avoid the influence of sound level
differences and sensor sensitivity differences on target and event recognition, sub-spectrum
power ratio (SPR) is used for acoustic recognition. For discrete data, the sub-spectrum
power ratio is given as:

SPR =

f2

∑
fi= f1

SPD( fi)

∑
f

SPD( f )
, (5)

where f1 and f2 are the lower and upper frequencies of a specific sub-band. Spectral
amplitude density (SAD), which is the square root of the SPD, is also mentioned sometimes.

• Formant Frequency

Formant frequencies (FF) are the frequencies of the power spectral density extrema.
They reflect the main frequency components in the acoustic signal and are useful for
distinguishing between different targets and events.

• Bandwidth

Bandwidth (B) refers to the frequency range in which the spectral density is above the
3 dB point. It partly reflects the purity of the frequencies in the acoustic signal.

• Spectral Centroid
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The spectral centroid (SC) is a parameter used to characterize spectral position, which
is similar to the mass center of the spectrum. It is calculated as the weighted mean of the
frequencies, as follows [41]:

SC =

N−1
∑

k=0
f (k)SPD( fk)

N−1
∑

k=0
SPD( fk)

. (6)

• Spectral Spread

Spectral spread (SS) is the second central moment of the spectrum, which characterizes
the extent of the spectrum. The equation is given as [36]:

SS =

√√√√√√√√
N−1
∑

k=0
(k− C)2SPD( fk)

N−1
∑

k=0
SPD( fk)

. (7)

• Spectral Flatness

Spectral flatness (SF), also known as the tonality coefficient, quantifies how similar
a sound is to a pure tone. It can be used to identify target signals from white noise-like
signals. The equation is [42]

SF =

N · N

√
N−1
∏

k=0
SPD( fk)

N−1
∑

k=0
SPD( fk)

. (8)

• Cepstral Coefficient

Cepstral coefficients (CCs) are applied for frequency analysis, which involves spectral
envelope features. It can be understood as the spectrum of a spectrum in some way.
It is reasonable to classify cepstral coefficients as frequency domain features since the
FFT operations are performed and they are mainly used for frequency analysis. There
are several cepstral coefficients used in acoustic recognition, which are Mel Frequency
Cepstral Coefficients (MFCCs), Gammatone cepstral coefficients (GTCCs), Homomorphic
Cepstral Coefficients (HCCs), and so on. Among these, MFCCs are the most commonly-used
ones [43]. MFCCs approximate the human auditory system’s response closely, which allows
for a better representation of sound characteristics. The steps to get MFCCs are shown in
Figure 7.
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3.1.3. Time-Frequency Domain Features

The frequency domain features above are derived from short-term acoustic data.
The calculations are based on short-term averages. Thus, the frequency domain features
are considered as time-invariant features, as shown in Figure 8. Time-frequency domain
features are used for time-varying spectral characteristic analysis. Since richer acoustic
information is contained in time-frequency domain features than the time domain features
and frequency domain features, better acoustic recognition performance can be achieved,
but with a higher computing load [44,45].
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• Spectral Correlation

Spectral correlation (SR) reflects the periodicity of time-varying frequency features. It
is calculated in a similar way to the correlation in time domain signals, which is given as:

SR(τ) =
N

∑
k=1

SPDt0( fk)SPDt0−τ( fk), (9)

where SPDt represents the spectral power density at time t.

• Spectral Flux

Spectral flux (SF) is the difference in spectral power between two successive acoustic
frames. It indicated how fast the acoustic signal changes, which is capable of discriminating
different sounds [46].

• Spectrogram

A spectrogram (SG) is a representation of the spectrum varying with time, usually
depicted as an image with the intensity shown by varying the color or the brightness [47].
Image-processing algorithms can then be applied for spectrogram analysis. Similar to
the spectrogram, a cepstrogram (CG) is the representation of cepstral coefficients varying
with time.

3.2. Acoustic Classification Algorithm

Acoustic classification algorithms are executed to distinguish between different targets
and events, which use the aforementioned acoustic features as input. Usually, there is more
than one target or event of concern. When the number of the concerned targets and events
drops to one, the acoustic classification is more often called acoustic detection. In this
paper, according to the different mathematical principles of the classification algorithms,
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the algorithms are divided into linear classification algorithms and nonlinear machine
learning classification algorithms.

3.2.1. Linear Classification Algorithm

For the linear classification algorithms, the principle is to calculate the similarity
between the features extracted from the acoustic signal and the known target features
through linear operations. Next, the category of the target is determined according to the
similarity. Most linear classification algorithms are based on or derived from Euclidean
distance. The extracted acoustic features form a spatial point in Euclidean space, and each
feature corresponds to a coordinate of the spatial point. Thus, n features form a spatial
point in n-dimensional Euclidean space with coordinates (FTR1, FTR2, FTR3 . . . ). The
distances from the spatial point to the other known points in the n-dimensional Euclidean
space can be derived to quantify the similarity.

• Threshold-Based Method

Threshold (TH)-based classification is one of the simplest classification methods. The
category is determined by comparing the extracted features to the known thresholds. For
the single-feature classification, the category of the target is determined by the value of the
feature, i.e., according to the distance to the known thresholds. Similarly, for the n-feature
classification, the category of the target is determined by n distances in n-dimensional
space, as shown in Figure 9. To achieve the TH-based acoustic classification, digital or
analog comparators are always applied.
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• k-Nearest Neighbors Method

The k-nearest neighbors (k-NN) algorithm implements classification based on the
plurality vote by k nearest neighbors [48]. As shown in Figure 10, a set of spatial sample
points with known coordinates and known categories is established first. After that,
calculating the Euclidean distances between the target point and sample points, its k nearest
neighbors are found. Then, these neighbors vote with the same weight of 1/k or with
a specific weight based on a weighting rule. The category of the target point is finally
determined by the voting result. A microprocessor is required to run the k-NN algorithm
for acoustic recognition. Since only linear operations are used, a microprocessor with low
computing power is sufficient to meet computing needs.
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• Nearest Feature Line Method

The nearest feature line (NFL) method is an extension of the k-NN, which improves
the acoustic classification performance especially when the number of sample points is
small [49]. Firstly, a feature line (FL) is defined as a straight line formed by 2 sample points
in the same category. Then the distances between the target point and sample points in the
k-NN method are replaced by the distances between the target point and feature lines in the
NFL method, as shown in Figure 11. Since the number of distances in the NFL method is
usually larger than in the k-NN method, and the calculation of the distance between a point
and a line is more complex than between 2 points, the NFL method is more computationally
intensive than the k-NN method.
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3.2.2. Nonlinear Machine Learning Classification Algorithm

Machine learning algorithms play important role in acoustic recognition. Machine
learning includes supervised learning and unsupervised learning. The supervised learning
is the main method of speech recognition, while some unsupervised machine learning
algorithms are also proposed for acoustic recognition [50]. Unsupervised learning re-
quires larger numbers of training samples and more complex training networks, which
are not suitable for acoustic wake-up microsystems with low power consumption and
low computing power. Until now, only supervised learning has been used for acoustic
recognition applications in microsystems. In machine learning classification algorithms,
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nonlinear models are built by training on feature data instead of building linear models
through mathematical analysis. Several machine learning models have been applied for
acoustic recognition.

• Support Vector Machine

The support vector machine (SVM) is a machine learning model for binary classifica-
tion, which has been widely used in acoustic recognition due to its good robustness and
the appropriate amount of computation [51]. SVM performs classification by mapping
the n-dimensional samples to points in m-dimensional space, and a hyperplane is trained
to divide the data into 2 categories, as shown in Figure 12. Both linear classification and
non-linear classification can be achieved by SVM. To realize the classification of more than
2 types, multiple one-versus-one or one-versus-rest SVM models need to be performed.
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• Neural Network

Neural network (NN) algorithms perform very well for acoustic-based classifica-
tion [52,53]. The NN classification algorithms perform non-linear computing based on a
collection of connected artificial neurons, as shown in Figure 13. The connections and the
strength of the connections are adjusted during the training process. After model training,
the acoustic features extracted from the acoustic signal are used as model input, and the
category of the acoustic signal will be output from the model.
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• Gaussian Mixture Model

The Gaussian mixture model (GMM) classifies data into different categories based on
probability distributions. GMM performs well for acoustic recognition, such as speaker
recognition [54]. Firstly, GMM is trained by samples as are the other machine learning
algorithms. The target signal is then applied to the GMM to obtain the probabilities of
belonging to different categories. Finally, the category of the target signal is determined by
the category with the greatest probability, as shown in Figure 14.
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• Hidden Markov Model-Based

The hidden Markov model (HMM) has been used for speech and speaker recogni-
tion [55,56]. The time-frequency domain features are usually applied to the HMM as the
observable process, and a sequence of hidden Markov processes is constructed. Further
acoustic classification is achieved by feeding the sequence into a machine-learning classi-
fication algorithm described above, as shown in Figure 15. By applying an HMM-based
classification algorithm, the time-frequency features with richer information are used in the
classification, thereby improving the classification performance.
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Generally, the nonlinear machine learning classification algorithms have higher clas-
sification accuracy than the linear classification algorithms, while their computation is
heavier, as shown in Table 2. For example, the classification accuracy of the threshold
method and k-NN method is greatly affected by the extracted features and the chosen
samples. Establishing effective sample sets and optimized classification criteria is a tedious
process. Although the machine learning classification algorithms do not require strict
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mathematical analysis and have higher accuracy, their heavy computation is sometimes
fatal for microsystems with small size, low power, and long life [57].

Table 2. Acoustic classification algorithm.

Type Classifier Computation Accuracy

Linear classification
Threshold-based 8 8

k-NN 89 89
NFL 88 88

Nonlinear machine
learning classification

SVM 888 888
NN 8888 8888

GMM 8889 8889
HMM-based 88889 88889

* 8 and 9 indicate the amount of computation and the level of accuracy, and more stars indicate greater
computation and higher accuracy;9 represent half8.

For both linear classification algorithms and nonlinear machine learning classification
algorithms, the choice of input features needs to be carefully considered. Thus, signal recon-
struction algorithms, such as basis pursuit (BP) [58], matching pursuit (MP) [59], and orthogonal
matching pursuit (OMP) [60] are often applied to optimize acoustic feature selections.

4. System Wake-Up Architecture

Two fundamental modules are required for acoustic wake-up microsystems, which are
the wake-up module and the back-end function module. The wake-up module is respon-
sible for acoustic sensing and recognition, and waking up the back-end function module
when a specific target appears or a specific event occurs. The back-end function module
remains in a low-power or even zero-power sleep mode before waking up, and it performs
the main functions of the microsystem after waking up, such as data processing, actuator
controlling, and data transceiving. Acoustic wake-up microsystems require ultra-low sleep
power consumption and a small size, which results in limited sensing and data processing
performance. Although there are many high-performance MEMS acoustic transducers
and high-precision classification algorithms applied to the target and event sensing and
recognition, not many are able to be implemented in acoustic wake-up microsystems. In
this section, system wake-up architectures of the acoustic microsystem are introduced,
as shown in Table 3. The system wake-up architectures are divided into four categories
according to whether the wake-up module or the back-end function module consumes
power in sleep mode. The power consumption caused by the current leakage of electronic
devices, batteries, etc., is treated as zero power consumption. Some acoustic wake-up chips,
which have not been used but are capable of the construction of an entire microsystem, are
also reported.
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Table 3. Acoustic wake-up microsystems.

System
Architecture

Acoustic Recognition
Target Size

Sleep Power Consumption
Accuracy False

Alarm
Year Ref.

Feature Classifier Wake-Up
Module

Back-End
Module Total

Architecture 1

Spectral correlation Threshold
and GMM

Truck, wheeled
vehicle, tracked

vehicle
Φ50 × 130 mm3 - - 13.8 mW 92.6% <5% 2019 [61]

Amplitude envelope Threshold Voice-band - 8.25 µW 44.55 µW 52.8 µW - - 2020 [62]
Sub-spectrum

amplitude NN Speech/non-speech 4.5 × 3.9 mm2 66 nW 76 nW 142 nW >90% - 2019 [63]

Spectrum amplitude,
average power SVM Generator, truck, car 2.15 × 1.6 mm2 - - 12 nW >95% - 2017 [64]

Spectrogram ML Submarine, ship, rain,
surface ice - 26.89 µW 35.11 µW 62 µW 95.89% - 2019 [65]

Autocorrelation Threshold Wheeled vehicle,
tracked vehicle 3 × 1.5 mm2 305.5 µW - - - - 2004 * [66]

Amplitude, slope Threshold Heart rate, epilepsy,
keyword - 75 nW - - - - 2021 * [67]

Envelope Threshold Ultrasonic signal 14.5 mm2 8 nW - - - - 2019 * [68]
Sub-spectrum energy Threshold Generator, truck 3.2 × 2.2 × 1 cm3 6 nW - - 100% 1/h 2018 * [22]

Power, MFCCs GMM, NN Keyword spotting 2 × 2 mm2 10.6 µW - - >94% - 2020 * [69]

Architecture 2 Sub-spectrum energy Threshold Generator, truck - <1 nW - - 100% 0 2018 * [28]

Architecture 3 Sub-spectrum energy Threshold Ultrasonic signal - 420 µW 0 420 µW - - 2016 * [70]

Architecture 4 Sub-spectrum energy Threshold Fixed frequency
ultrasound - 0 <10 nW <10 nW - - 2022 [71]

* An acoustic wake-up chip, not a complete acoustic wake-up microsystem.
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4.1. Architecture 1: Low-Power Recognition and Low-Power Sleep

In the low-power recognition and low-power sleep architecture, aka Architecture 1 in
this paper, when the microsystem is in sleep mode, the wake-up module consumes power
for acoustic sensing and recognition, while the back-end function module also consumes
power waiting for the wake-up signal, usually a voltage signal of high or low, from the
wake-up module, as shown in Figure 16. In the back-end function module, there must
be a chip capable of switching between high-power active mode and low-power sleep
mode. This architecture is the most used and most mature wake-up architecture in various
electronic devices, and also in microsystems.
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An acoustic wake-up microsystem in this architecture is reported, which achieves
target detecting, classifying, and tracking in the real wild area, as shown in Figure 17a [61].
The microsystem consumes 13.8 mW in sleep mode and has a long-term continuous
monitoring capability of about 33 days. The whole weight including the battery is 145 g
and the volume is 1056 cm3, which is a bit bulky for the microsystem. A simple acoustic
wake-up microsystem with µW-level power consumption is then reported, which is made
up of a MEMS microphone and a readout circuit, as shown in Figure 17b [62]. When an
acoustic event within the specific voice band occurs, the system wakes up and begins to
output the acoustic data sensed by the microphone. Then, a mixer-based circuit and a
low-power NN algorithm are applied to a microsystem to achieve acoustic recognition with
nW-level power consumption, as shown in Figure 17c [63]. Both speech and non-speech
detections are realized, with a power consumption of 142 nW. When a target event is
detected, the system is activated to a high-performance mode. Among all the acoustic
wake-up microsystems with Architecture 1, a 12 nW microsystem is the one with the lowest
power consumption, as shown in Figure 17d [64]. By optimizing the power consumption
of algorithm-circuit and electronic components, the microsystem realizes acoustic event
identification with 12 nW consumption. In addition to the applications on land, there is
also a report for the underwater application. An acoustic wake-up microsystem containing
a hydrophone for underwater deployment is achieved, as shown in Figure 17e [65]. A
machine-learning algorithm runs on an onboard microcontroller, and different acoustic
signals are classified with an accuracy of up to 95.89%.
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Some low-power acoustic wake-up microchips without back-end function modules
are reported, too. A 305.5 µW wake-up chip, 300 µW for the MEMS microphone and 5.5 µW
for the signal classification circuit, is reported for acoustic recognition of the tracked vehicle
and wheeled vehicle, as shown in Figure 17f [66]. A distance of more than 500 m has been
achieved for heavy tracked vehicle recognition. A 75 nW wake-up chip is reported to
detect heart rate, epilepsy, and keyword, which can be further applied to acoustic wake-up
microsystems for practical use, as shown in Figure 17g [67]. A wake-up chip for ultrasonic
signal detection is reported with a smaller size of 14.5 mm2, as shown in Figure 17h [68].
Its power consumption reduces to 8 nW, which is comparable to the leakage power of
current batteries. By applying a zero-power MEMS microphone, a wake-up chip with
power consumption as low as 6 nW is achieved, which is shown in Figure 17i [22]. By
adjusting the resonant frequency of the zero-power microphone, the acoustic signal with a
specified frequency is successfully detected, including the signal from the generator and
the truck. However, it only detects one target in one setting. The resonant frequency of
the microphone needs to be tuned by tunning weight. The acoustic wake-up chips above
classify the target all by the threshold-based method, which is the simplest classification
algorithm with low accuracy. A wake-up chip for keyword spotting and speaker verification
using GMM and NN classification algorithms is reported, while the power consumption is
up to 10 µW, as shown in Figure 17j [69].

4.2. Architecture 2: Zero-Power Recognition and Low-Power Sleep

In the zero-power recognition and low-power sleep architecture, aka Architecture 2,
the wake-up module performs acoustic sensing and recognition with zero power consump-
tion, while the back-end function module remains the same as in Architecture 1, as shown
in Figure 18. Zero-power sensing and data processing technologies, such as high-sensitivity
piezoelectric transducers, passive amplifiers, passive filters, and passive classifiers, are
required. When the target acoustic signal appears, the wake-up module recognizes it and
then generates a wake-up signal for the back-end function module.

A zero-power wake-up chip made up of the acoustic switch in [28] has been used for
generator and truck detection as shown in Figure 19. Three acoustic resonant switches
with different resonant frequencies are used as passive filters for target detection and noise
cancellation. The power consumption caused by the current leakage in the chip is less than
1 nW.
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4.3. Architecture 3: Low-Power Recognition and Zero-Power Sleep

In the low-power recognition and zero-power sleep architecture, aka Architecture 3,
the wake-up module performs acoustic sensing and recognition with power consumption,
which is similar to the wake-up module in Architecture 1. However, there is a switch in the
module, which is used for controlling the current flowing through the back-end functional
module, as shown in Figure 20. In addition, a chip with the function of switching working
modes in the back-end function module is no longer needed. In sleep mode, the back-end
function module is powered off instead of in a low-power sleep state. This switch-included
wake-up module is much more universal and can easily be used to reform the wake-up
function of various electronic systems. Nonetheless, the switch increases the size and power
consumption of the wake-up module.

A wake-up chip containing a switch is able to turn off the backend function module
completely instead of keeping it in a low-power sleep mode, as shown in Figure 21 [70]. It
should be noted that the wake-up chip in Figure 21 is different from the definition in this
paper. Instead, the entire module in Figure 21 is regarded as the wake-up chip since it only
achieves functions of acoustic sensing, recognizing, and wake-up. The power consumption
of the chip is 420 µW, and the size is of centimeter-level. Optimizations of the chip are
required for its further application in acoustic wake-up microsystems.
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4.4. Architecture 4: Zero-Power Recognition and Zero-Power Sleep

In the zero-power recognition and zero-power sleep architecture, aka Architecture
4, the microsystem consumes absolutely zero power in sleep mode. A wake-up module
with zero-power sensing, recognition, and circuit switching is the key to this architecture,
as shown in Figure 22. Acoustic sensing, signal processing, and switch actuation are all
powered by the energy in the acoustic signal.
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A zero-power acoustic wake-up receiver, made up of an ultrasonic microphone array
and a MEMS electrostatic switch is shown in Figure 23 [72]. When receiving target ultrasonic
data, the zero-power piezoelectric microphone array generates a voltage to drive the biased
MEMS electrostatic switch. Thus, zero-power consumption for ultrasonic data reception
is achieved. Due to the low current-carrying capacity of the MEMS electrostatic switch
in the receiver, the receiver can only generate a wake-up signal but not directly turn on a
backend function module. Thus, the output voltage from the receiver is further induced
into a CMOS load switch [71]. When the target signal appears, the CMOS load switch is
driven on, and the backend function module, which is an implanted medical device, is
powered on and wakes up.
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5. Applications

Acoustic wake-up microsystems have the characteristics of low power consumption,
small size, and long battery life, which lead to large-scale and long-term acoustic monitoring.
The wake-up technology significantly improves energy efficiency and battery life, especially
for the detection of rare events [3]. In this paper, the applications the acoustic wake-up
microsystems can be used are summarized. Some of the applications have been already
implemented, while others are expected to be implemented in the future.

5.1. Perimeter Surveillance

For vast border areas, wilderness areas, scattered warehouses, etc., detecting intru-
sions, although rarely happening, is very important for security reasons. Targets such as
human beings, vehicles, and wildlife, are of constant concern for both civilian and mili-
tary use [39,66,73–76]. Traditional high-power monitoring methods, such as live cameras,
require a power grid for power supply which is impractical for many applications. The
presence and movement of specific targets are always accompanied by sounds with specific
acoustic features. Thus, targets can be detected and recognized by applying an acoustic
wake-up microsystem. When multiple microsystems are applied to form a sensing network,
moving target localization and tracking can also be achieved by analyzing the amplitude
differences, time of arrival (TOA), and time difference of arrival (TDOA) of the acoustic
signals [77–79].

5.2. Structure Health Monitoring

Structural health monitoring of important infrastructures, such as bridges, dams,
tunnels, and transmission towers, is related to our safety. Timely detection of abnormalities
and failures of their structure is urgently desired to avoid heavy losses. When cracks appear
in a structure, its acoustic signature changes. Thus, structure health monitoring can be
done by acoustic recognition [80]. Most structure health monitoring requires active acoustic
emission with high power consumption [81], which is not suitable for the acoustic wake-up
microsystem. Fortunately, passive acoustic emissions may be utilized for structure health
monitoring without power consumption, such as the sounds produced by the cars on the
bridges, and by the running water through the dams and tunnels. By deploying acoustic
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wake-up microsystems on these infrastructures, low-power-consumption, long-term, and
real-time monitoring of structural abnormalities can be achieved, which will guarantee the
safety of people and property.

5.3. Human Health Monitoring

Human health has always been the most important issue in our daily lives. Medical
diagnoses by wearable acoustic monitoring devices have been investigated, including heart
and lung sound recognition, and wheeze detection [82–84]. In the foreseeable future, more
acoustic microsystems will be applied to the continuous monitoring of abnormal health
signals to ensure early detection and treatment. With the acoustic wake-up technology,
ultra-long-term monitoring without charging or battery replacement can be realized, which
greatly improves the convenience of the use of wearable health monitoring devices.

5.4. Agriculture Application

Agriculture is the practice of plant and livestock cultivation. It has been the foundation
of our lives since ancient times. The application of modern technologies in agriculture can
effectively increase the production of crops and livestock, releasing farmers and herdsmen
from heavy work. Weather conditions [85,86], insects [87,88], birds [89], and livestock
behaviors [90], which are closely related to agricultural production, can be detected by
acoustic signals. Acoustic wake-up microsystems are worthy of application in these instances,
especially for rare exceptions, such as severe weather conditions, invasive alien species, and
unknown avian influenza infections, which occur rarely but impact significantly.

5.5. Biodiversity Research

Biodiversity research is important for ecological stability and life science research.
Finding different creatures, especially rare ones, in the vast wilderness or the deep sea
is sometimes difficult. Bioacoustics signals can be used for biodiversity studies both
on land and underwater [91–96]. A vast, low-power, long-life monitoring network can
be built by the acoustic wake-up microsystem to achieve biodiversity research. Only
useful acoustic signals are detected and processed, which greatly reduces the amount of
useless information.

5.6. Smart City

Urban life is full of various acoustic signals, which makes the ears so important to us.
Acoustic wake-up microsystems are like the ears of a smart city that are used for monitoring
various events and targets. Acoustic signals are already investigated for indoor moving
target detection [97,98], traffic control [99], speaker recognition [100], and providing human
interfaces to IoT ends [101]. With the increasing number of acoustic microsystems, a wider
and more powerful IoT will greatly facilitate our daily lives.

6. Challenges and Future Research Directions

The core purpose of the acoustic wake-up microsystem is to significantly extend the
battery life for sparse acoustic event detection, by means of saving wasted power, improving
power efficiency, and reducing power consumption. But it also brings some disadvantages.
Under the condition of strictly limiting the sleep power consumption of the microsystem,
its acoustic recognition ability is reduced, including limited identifiable sound categories,
limited recognition sensitivity, and limited recognition accuracy. Until now, the number
of acoustic wake-up microsystems is still small, especially systems with Architecture 2,
Architecture 3, or Architecture 4. Microsystem technology is a system technology including
hardware and software. To better promote the development of the acoustic wake-up
microsystem, it is necessary to conduct research on both software and hardware, which is
aimed at lower sleep power consumption and higher recognition capabilities.
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6.1. Software

Software in a microsystem must be efficient and designed for specific applications. Due
to the limited power supply and long life requirement of the acoustic wake-up microsystem,
the software is always optimized to reduce computation and improve efficiency, including
data input, output, and calculation processes. For the acoustic wake-up microsystem,
the acoustic classification algorithm is the core of the software. Algorithms with higher
classification accuracy and lower computation amount are desired. Thus, research on
acoustic feature selection and extraction, and feature-based classification algorithm needs to
be further studied according to the microsystem’s application scenarios and requirements.

6.2. Hardware

For the hardware, nanowatt and zero-power components are required for the acoustic
wake-up microsystem. For acoustic sensing, the technology of MEMS acoustic transducers
needs to be studied to improve their uses, including the MEMS microphone, MEMS
hydrophone, and MEMS acoustic switch, and to improve their performance, including
higher sensitivity, lower power or even zero power consumption, lower noise and smaller
size. A high sensitivity piezoelectric microphone can lower the power consumption, and the
voltage output from the microphone may directly drive a MEMS switch or a CMOS switch
without using an active amplifier. For acoustic signal processing, nanowatt processors
are needed to implement machine learning algorithms and other classification algorithms.
Other low-power or even zero-power signal processing components in the system circuit
are also required, such as the amplifier, analog-to-digital (ADC) converter, solid-state relay,
clock, etc. The current leakage in the circuit components is non-negligible in ultra-long-
life wake-up microsystem applications. To implement acoustic wake-up microsystems
of Architecture 3 and Architecture 4, a switch with little current leakage is essential. The
CMOS switch with ultra-low current leakage, MEMS electrostatic switch with low trigger
threshold, and zero-power acoustic switch with wider bandwidth can be tested as solutions.
Especially for Architecture 4, there is an urgent need for a zero-power acoustic switch that
can respond to multiple frequency bands and remain on without consuming power.

7. Conclusions

Acoustic sensing, acoustic recognition, and system working modes switching are the
basic functions and core technologies of acoustic wake-up microsystems. In this paper,
low-power and high-sensitivity MEMS acoustic transducers, linear and nonlinear acoustic
recognition algorithms, and state-of-the-art acoustic wake-up microsystems with different
wake-up architectures are presented. For long-life acoustic wake-up microsystems, low-
power or even zero-power MEMS acoustic transducers are required. With the development
of MEMS acoustic transducers, more and more MEMS microphones, MEMS hydrophones,
and MEMS acoustic switches with low power consumption, high sensitivity, low noise, and
small size, are reported. By applying them to microsystems, acoustic wake-up with higher
accuracy and lower power consumption can be achieved. As for acoustic recognition,
specific acoustic features need to be extracted and applied to classification algorithms. The
selection of acoustic features and classification algorithms needs to be considered according
to the power consumption, transducer performance, and microprocessor performance of the
microsystem. Combining state-of-the-art acoustic recognition algorithms with the acoustic
signal sensing and processing modules enables system wake-up architectures of ultra-lower
power consumption, or even absolutely zero power consumption. With the advancement
of software and hardware technology, numerous acoustic wake-up microsystems with
smaller sizes, higher energy efficiency, longer battery life, and higher intelligence will be
developed and applied in various fields of IoT.
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