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Abstract: SLM (Selective Laser Melting) is a unique additive manufacturing technology which plays
an irreplaceable role in the modern industrial revolution. 3D printers can directly process metal
powder quickly to obtain the necessary parts faster. Shortly, it will be possible to manufacture
products at unparalleled speeds. Advanced manufacturing technology is used to produce durable
and efficient parts with different metals that have good metal structure performance and excellent
metal thermal performance, to lead the way for laser powder printing technology. Traditional creative
ways are usually limited by time, and cannot respond to customers’ needs fast enough; for some
parts with high precision and complexity, conventional manufacturing methods are inadequate.
Contrary to this, SLM technology offers some advantages, such as requiring no molds this decreases
production time and helps to reduce costs. In addition, SLM technology has strong comprehensive
functions, which can reduce assembly time and improve material utilization. Parts with complex
structures, such as cavities and three-dimensional grids, can be made without restricting the shape
of products. Products or parts can be printed quickly without the use of expensive production
equipment. The product quality is better, and the mechanical load performance is comparable to
traditional production technologies (such as forging). This paper introduces in detail the process
parameters that affect SLM technology and how they affect SLM, commonly used metal materials
and non-metallic materials, and summarizes the current research. Finally, the problems faced by SLM
are prospected.

Keywords: 3D printing technology; selective laser melting; processing parameter; alloy; pottery
and porcelain

1. Introduction

SLM was first proposed by the Fraunhofer Institute for Laser Technology in Germany,
which was born in the 1990s, as a kind of 3D printing technology, a kind of technology that
uses powder to melt under the heat of a laser beam, is then cooled, and solidifies to form.
This makes it possible to arrange the crystal structures of various materials, which inspires
higher-density parts that are almost only part designs and have better grade strength
and robustness [1,2]. As a result of the melting of powder raw materials, the products
produced have excellent surface smoothness. It can be used to directly form metal parts
with nearly complete density. SLM technology has overcome the difficulties of complicated
manufacturing processes of metal parts. The processing flow of SLM technology is shown
in Figure 1.

Compared with the traditional metal processing technology, SLM technology can
complete the manufacturing of parts without using molds. Therefore, the SLM process
requires relatively less preparation, and has natural advantages in overall manufacturing
and complex parts manufacturing. Since SLM uses a superimposed process, it also has
some advantages in shortening the printing time. For example, NASA Marshall Space
Flight Center (MSFC) launched the Additive Manufacturing Demonstrator Engine (AMDE)
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project in 2012, and designed an engine prototype that could be formed using SLM tech-
nology. The number of parts of the engine was reduced by 80%, the number of welds
reduced from more than 100 to less than 30, and the development cycle reduced from
7 years to 3 years [3–5]. In the field of civil aerospace, the first flight test of the rocket
attitude control power system cylinder assembly manufactured by Cloud Casting 3D using
SLM technology was successfully completed. Compared with the original manufacturing
technology, SLM formed gas cylinder components without any connecting tubes, reducing
the weight of the product by 34.38%. It showed good impact performance, significantly
reduced the structural dimensions, and greatly improved system reliability [6].

SLM is a technology that uses the principle of high-temperature melting and low-
temperature solid forming of metal, a high-strength laser beam to melt metal powder,
which finally cools and forms. SLM printing usually adds support to parts before printing
preparation. The functions of supports are as follows:

(1) Prevent the part from collapsing due to excessive laser scanning;
(2) Restrain the warping problem caused by the cooling of parts, and at the same time,

the parts can be related to maintaining the stress balance of the molding.
The advantages and disadvantages of the five main metal 3D printing technologies

are compared, as shown in Table 1.

Micromachines 2023, 14, 57 2 of 18 
 

 

Flight Center (MSFC) launched the Additive Manufacturing Demonstrator Engine 
(AMDE) project in 2012, and designed an engine prototype that could be formed using 
SLM technology. The number of parts of the engine was reduced by 80%, the number of 
welds reduced from more than 100 to less than 30, and the development cycle reduced 
from 7 years to 3 years [3–5]. In the field of civil aerospace, the first flight test of the rocket 
attitude control power system cylinder assembly manufactured by Cloud Casting 3D us-
ing SLM technology was successfully completed. Compared with the original manufac-
turing technology, SLM formed gas cylinder components without any connecting tubes, 
reducing the weight of the product by 34.38%. It showed good impact performance, sig-
nificantly reduced the structural dimensions, and greatly improved system reliability [6]. 

SLM is a technology that uses the principle of high-temperature melting and low-
temperature solid forming of metal, a high-strength laser beam to melt metal powder, 
which finally cools and forms. SLM printing usually adds support to parts before printing 
preparation. The functions of supports are as follows: 

(1) Prevent the part from collapsing due to excessive laser scanning; 
(2) Restrain the warping problem caused by the cooling of parts, and at the same 

time, the parts can be related to maintaining the stress balance of the molding. 

 
Figure 1. Principle of the SLM process [7]. 

The advantages and disadvantages of the five main metal 3D printing technologies 
are compared, as shown in Table 1. 

Table 1. Common metal 3D printing processes. 

Process Merits Demerits 

DMLS 
1. Metal alloy or alloy powder 

2. Unsintered or melted materials can be reused 
3. Printing can achieve high precision 

1. Expensive 
2. The porosity of the print is high 
3. Metal powder is sintered rather 

than melted 

SLM 

1. The density of processed standard metal 
exceeds 99% 

2. Good mechanical properties are equivalent to 
the traditional process 

3. Parts can be used for later welding 

1. Poor resolution  
2. Poor surface roughness, residual 

internal stress 

EBM 

1. Different kinds of metals with fusible high 
melting point 

2. The resulting residual stress is very low 
3. Customizable design, higher processing 

efficiency 
4. It is suitable for the processing of medical 

devices with better biocompatibility 

1. The cost of equipment is 
expensive 

2. It causes environmental 
pollution 

3. Non-conductive materials must 
be used 

    
     

 

 
 

Figure 1. Principle of the SLM process [7].

Table 1. Common metal 3D printing processes.

Process Merits Demerits

DMLS

1. Metal alloy or alloy powder
2. Unsintered or melted materials can

be reused
3. Printing can achieve high precision

1. Expensive
2. The porosity of the print is high
3. Metal powder is sintered rather

than melted

SLM

1. The density of processed standard
metal exceeds 99%

2. Good mechanical properties are
equivalent to the traditional process

3. Parts can be used for later welding

1. Poor resolution
2. Poor surface roughness, residual

internal stress

EBM

1. Different kinds of metals with
fusible high melting point

2. The resulting residual stress is
very low

3. Customizable design, higher
processing efficiency

4. It is suitable for the processing of
medical devices with better

biocompatibility

1. The cost of equipment is expensive
2. It causes environmental pollution
3. Non-conductive materials must

be used
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Table 1. Cont.

Process Merits Demerits

DED 1. Easy access to raw materials
2. Low processing cost

1. Lower resolution accuracy
2. Higher surface roughness

3. The complexity of parts may
be limited

4. Requires post-processing

2. Factors Affecting SLM Manufacturing

For manufacturing components with unique and complex geometric shapes, many
factors must be considered to achieve the purpose of the industrial production of parts.
Next, the related factors such as technology, design, and materials will be reviewed.

2.1. Process Parameters of SLM

The process parameters that affect the performance of SLM products mainly include
the laser parameters, scanning strategy, powder spreading method, and support design,
which have been studied by scholars all over the world. Yadroitsev et al. [8] analyzed the
parameters of the SLM process. They pointed out that the process parameters include laser-
related parameters, such as laser scanning power, scanning speed, pattern filling distance,
scanning strategy, and laser spot size, as well as parameters related to construction, such
as layer thickness, construction direction, and molding. In 2012, Yadroitsev et al. [9]
conducted experiments on the influence of various parameters of 904L stainless steel
monorail structure. Finally, ANOVA statistical methods were used to analyze the data
of this experiment, and it was concluded that laser power and other parameters had
a significant influence on SLM. Zhang et al. [10] studied the effect of laser power and
scanning speed on SLM parts, and the results showed that both of them had an impact on
the performance of the parts, and also on the density of the details.

2.1.1. Laser Parameters

The laser is the core device in the SLM printing system, and it is the key device to
making metal powder melt completely. Therefore, it is vital to choose a laser that is suitable
for the SLM printing system. There are many kinds of lasers. Lasers can be divided
into the solid lasers, gas lasers, liquid lasers, semiconductor lasers, chemical lasers, and
excimer lasers [11]. Generally, the lasers needed for selective laser melting are mainly YAG
lasers, CO2 lasers, fiber lasers, etc. Some scholars have conducted in-depth research on the
influence of laser power on SLM, and found that among all the influencing factors, laser
power has the most important influence on the parts, which is mainly that the energy of
powder raw materials melting all comes from the laser equipment [12,13]. Therefore, Attar
et al. [14] studied the density of commercially pure titanium parts manufactured with SLM
by changing the laser power, and found that the pieces with a relative density higher than
99.5% can be realized by the ideal.

2.1.2. Scanning Strategy

The existing research shows that the scanning strategy, including the length, direction,
and distribution of scanning lines, will affect the temperature gradient when forming parts.
Changing the scanning strategy can effectively reduce the residual stress and improve the
quality of parts.

Currently, the common scanning paths include contour offset scanning, partition scan-
ning, spiral line-filling scanning, scanning line-filling scanning, etc. [15]. The research shows
that particular scanning strategies can reduce the temperature gradient and warpage [16,17].
The leading scanning methods are introduced here.

Profile scanning [18,19] mainly generates scanning paths by shifting inward along the
boundary of each slice layer. The scanning strategy used is that the direction of scanning
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lines is not single but constantly changing, and the focus of internal stress is divergent.
Following the heat transfer law, the residual stress can be effectively reduced. Huang [20]
studied the warpage of parts in additive manufacturing through finite element simulation
and experimental verification, and found that the warpage was proportional to the length
of the scanning line. Jin et al. [21] studied the path planning of thin-walled structures in
additive manufacturing, put forward an algorithm of generating wave path, and compared
it with common ways, analyzing the advantages of this scanning path in molding quality
and efficiency. The profile scan is shown in Figure 2.
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Figure 2. Schematic diagram of contour offset scanning.

The partition strategy can effectively reduce residual stress and improve molding
efficiency. Chen et al. [22] studied the influence of scanning strategy on the temperature
field of selective laser melting parts using finite element simulation. Under the zonal
scanning mode, there would be remelting at the edge, and the overall temperature field
distribution would be more uniform, which is beneficial for reducing residual stress. Zhao
Yi et al. [23] studied the scanning methods of arbitrary contour polygons, and proposed a
partition scanning algorithm based on searching extreme vertices. Zhao et al. [24] found
advantages to the partition scanning strategy of the Fermat spiral line, which divides the
scanning area into a group of sub-areas and scans the Fermat spiral line. This strategy
could realize efficient and high-quality layered manufacturing. Ding et al. [25] proposed a
partition scanning algorithm, which geometrically decomposed the area to be scanned into
a group of convex polygons. For each convex polygon, a combination of zigzag scanning
and contour offset scanning was used to determine the best scanning path. The partition is
shown in Figure 3.
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Spiral filling is a scanning line-filling method that follows the law of heat transfer in the
forming process. The scanning line generates a scanning path spirally from the geometric
center of the processing area to the periphery; hence, it is called the spiral filling method.
The scanning path generated by the helix filling algorithm can avoid the problem of a
single scanning direction of the scanning line, weaken the internal residual stress caused
during the process of temperature reduction, and thus improve the physical properties of
machined parts. The schematic diagram of helix-filling scanning is shown in Figure 4.
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Scan line-filling is an algorithm similar to polygon area-filling in computer graph-
ics [26]. The basic idea of this algorithm is to scan a polygon composed of several end-to-end
line segments with horizontal scanning lines, from top to bottom (or from bottom to top),
and each scanning line generates a series of intersections with some edges of the polygon.
These intersections are sorted according to X/Y coordinates, and the sorted points are
paired as two endpoints of the line segment, that is, two endpoints of the scanning line [27].
The range of scanning lines is determined by the maximum and minimum X/Y values
of the vertices of a polygon. When the scanning line is calculated to the maximum or
minimum X/Y value, the scanning line of the whole polygon is finished, and a series of
corresponding point coordinates are obtained.

2.1.3. Powder Spreading Method

SLM 3D printers use a scraper device to evenly spread the metal powder beaten in
the powder bin onto the substrate or the upper layer of the processed plane, so the particle
size of the powder affects the smoothness and thickness of the powder layer [28]. The
uniformity of powder particle size is indispensable for SLM molding [29]. Therefore, the
parameters related to powder, such as particle size distribution, shape regularity, fluidity,
etc., have a significant influence on the molding of parts. Before processing, good planning
and control are necessary.

2.1.4. Support Design

The lightweight design of modern design parts mostly removes the material inside
the part body, but this will result in many empty shells, especially for SLM technology. In
the process of machining, due to the suspended structure inside the part, it is easy to cause
great deformation of the region, thus affecting the forming of the region, and even causing
manufacturing failure of the region. The supporting structure [30] mainly deals with the
fact that detailed production cannot be finished because of excessively lightweight design.
This structure can provide a stable supportive environment for the cantilever structure
inside the elements, prevent the deformation of the elements in a limited way, keep the
internal stress and increase the stability of the elements in the printing process.

Wang [31] put forward a new supporting structure called the “skin frame”. A new
frame structure is used to directly replace redundant parts. Using this structure, the light
weight of the details can reach 70%. Chen [32] proposed a truss-based internal support
structure, which can directly put the microstructure into the printed workpiece as support,
thus completing the design of the mount; it can be optimized now from the inside of the part,
thus establishing the support. Yamanaka [33] proposed a unique support structure. This
method first optimizes the part model to achieve specific quality characteristics, then builds
a truss structure to process the inside of the part iteratively, and finally reaches the amount
that meets the requirements. Hussein et al. [34] studied using SLM-based honeycomb
structures for supporting metal parts. According to the conclusion of their experiment,
two different lattice structures can be obtained (diamond and rotator) to reduce materials
and construction time while meeting structural requirements. However, parts cannot be
manufactured by the SLM process because of the vulnerability of volume densities that are
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too small [35]. Strano et al. [36] studied a hierarchical cell support structure in which more
muscular cells were placed in the protruding part used elsewhere in the metal AM under
the weight with less support. Gan [30] discussed “Y”, “IY”, and pin support structures
based on finite element analysis to study and design the manufacture of thin plates and
cuboids for SLM.

The process parameters of SLM technology play a qualitative role in the performance of
parts after forming. Through the research of scholars in various countries, SLM technology
is maturing.

2.2. Material Correlation Factors
2.2.1. Absorption of Laser by Materials

In laser heat treatment, metal material is the central processing object, and its laser
absorptivity is particularly important. According to Fresnel’s formula, the electric field of
a light wave on the surface of a metal conductor constantly forms a standing wave node,
and the free electron is forced to vibrate by the electromagnetic field of the light wave to
produce secondary waves. These secondary waves cause strong reflected waves, which
reflect most of the laser light. Especially in the long wavelength band, the photon energy is
low, which can only act on the free electrons in the metal. It is almost totally reflected, with
only a small amount of absorption. However, this small amount of absorption is significant
in laser heat treatment. When the laser irradiates the surface of metal materials, most of
the laser light is initially reflected due to excessive free electrons in the metal, and only
a tiny part of the laser light is absorbed by the metal through the surface. On the other
hand, while most of the laser light is reflected by the free electrons, a small part is absorbed
by the bound electrons, excitons, lattice vibrations, and other oscillators in the metal. The
reflection principle diagram of the material is shown in Figure 5.
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The Fresnel formula is as follows:
Reflection principle:

A′s1
As1

=
n1 cos i1 − n2 cos i2
n1 cos i1 + n2 cos i2

= − sin(i1 − i2)
sin(i1 + i2)

(1)

A′p1

Ap1
=

n2 cos i1 − n1 cos i2
n2 cos i1 + n1 cos i2

= − tg(i1 − i2)
tg(i1 + i2)

(2)



Micromachines 2023, 14, 57 7 of 17

Refraction principle:

As2

As1
=

2n1 cos i1
n1 cos i1 + n2 cos i2

=
2 sin i2 cos i1
sin(i1 + i2)

(3)

Ap2

Ap1
=

2n1 cos i1
n2 cos i1 + n1 cos i2

=
2 sin i2 cos i1

sin(i1 + i2) cos(i1 − i2)
(4)

Jiayao Zhang et al. [37] verified the relationship between powder particle size and
laser absorptivity, and found that they were negatively correlated. As the particle size
increased, fewer powder particles were irradiated, resulting in a more uneven irradiance
and a lower intensity value. Similarly, Zhang D et al. [38] studied the different porosity
and average of the powder layers. However, when the porosity decreased, a large amount
of reflected light reduced the laser absorption rate of metal particles considerably. Still,
this phenomenon will change with a decrease in powder particle size. This is because
the reflection of the laser between spherical powder particles increases, which makes the
absorption rate increase.

2.2.2. Particle Size Distribution of Materials

The product quality of selective laser melting (SLM) is closely related to the powder
particle size distribution. The small void ratio of the bed, mixed with coarse and fine
powders, is beneficial to improve the density of SLM products. However, the fine-grained
powder will lead to poor uniformity of powder distribution in SLM equipment, resulting
in holes in SLM products.

Irrinki et al. [39] found that some parameters of metal powder and the melting process
of metal powder affected SLM parts. At the same time, Attar et al. [40] studied the
influence of particle size of powder on parts made with SLM. Relative densities of the
samples produced by spherical particles were compared with those produced by irregular
particles with a relative density of about 95%. On the contrary, powder characteristics are
external parameters, because they are usually set by the supplying manufacturer or powder
manufacturing supplier. In addition, SLM machine parameters are the same as laser types,
and the maximum laser power and laser wavelength are related to the machine, and are
limited in improving the performance of finished SLM parts. Therefore, it is possible to
improve the performance of SLM products by optimizing process parameters to obtain
completely dense components. Wilkes et al. [41] used research to show that nonmetallic
ceramic parts manufactured by the SLM process would also be affected by the particle size
and shape of the powder. Ng et al. [42] found that the grain size of laser-melted magnesium
had a vast influence on the microstructure of SLM samples; with increased energy density,
the grains in the melting zone would become coarser and coarser.

Du et al. [43], by studying the particle size distribution of 316L powder, found that
an increase in acceptable powder amount (Figure 6) had a great influence on the surface
morphology of SLM parts; the size and area of cracks became more prominent, and the
relative density of the obtained product decreased (Figure 7).
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From the microscopic point of view of materials, the laser absorptivity and particle
size distribution of different materials are different. The main reason is that the types of
raw materials that make up the materials are different. During SLM processing, differences
in laser absorptivity and particle size distribution lead to differences in the processed parts.
Research shows that the higher the laser absorptivity of materials, the finer the particle size
distribution, and the better the SLM processing results.

3. Metal Materials

Although the development of SLM has gradually accelerated and is becoming commer-
cialized, there are still few available metal materials [44,45]. Next, several common metal
materials used in SLM equipment will be introduced, such as aluminum alloy, magnesium
alloy, titanium alloy, and stainless steel.

3.1. Aluminum Alloy

Compared with many other SLM candidate materials, the treatment of aluminum alloy
is more complicated [46]. This is mainly due to the lightweight nature and high fluidity
of aluminum, which shows a high reflectivity wavelength range for typical SLM lasers,
and has high thermal conductivity [47]. The absorption of aluminum by laser is poor; this
indicates that it is necessary to quickly dissipate the heat of parts after high laser power
processing [48]. Aluminum powder is very sensitive to oxidation [49]. Therefore, when
printing aluminum alloy, attention must be paid to the oxygen content to avoid oxidation
by oxygen in the air, and passivation [50]. Aluminum alloy is also the most widely used.
It can be found in daily life and other fields [51]. The SLM aerospace aluminum alloy
specimen is shown in Figure 8, The performance comparison of common aluminum alloy
materials is shown in Table 2.

Zhao Xiaoming et al. [52] studied the relationship between the structure and properties
of SLM Al Si10Mg aluminum alloy. They found that the grain, internal design, and mechan-
ical properties of SLM AlSi10Mg alloy are superior to those of traditional cast AlSi10Mg
parts. Buchbinder et al. [53] studied the influence of speed and scanning spacing on the
hardness of AlSi10Mg. The research showed that the hardness of AlSi10Mg increased with
an increase in scanning speed, and the best hardness was obtained when the laser scanning
speed was 2500 mm/s. At the same time, the influence of scanning distance on the hardness
of Al Si10Mg parts was determined. The results showed that the hardness of the samples
obtained was independent of the scanning distance range used, and the optimal value was
reached when the scanning distance was 0.15 mm. Currently, the optimal hardness value of
AlSi10Mg parts processed by selective laser melting is twice that of die-cast AlSi10Mg parts.
Rahman Rashet al. [54] used selective laser melting technology to print AlSi12 alloy powder
and obtain circular, triangular, and hexagonal lattice structures. The experimental results
showed that the bending strength of the triangular frame was (175.80 ± 1) MPa, and the
bending strength of the circular and hexagonal lattice powders were (151.35 ± 0.67) MPa
and (143.16 ± 3.85) MPa, respectively. It can be seen that the triangular structure has better
bending resistance than other reinforced members. Karg et al. [55] studied the mechanical
properties of 2219 aluminum alloy formed by selective laser melting. The results showed
that the ultimate tensile strength of high-strength aluminum alloy after heat treatment is
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384 MPa, and the elongation is 23%. Therefore, high-strength aluminum alloy formed by
selective laser melting has good mechanical properties. Zhang [56] and others successfully
prepared an almost entirely dense Al-4.24Cu-1.97Mg-0.56M cubic sample using selective
laser melting technology. Research shows that the selection has good mechanical properties.
Dynin [57] developed an advanced aluminum alloy, Al-10Si-0, 9Cu-0, 7Mg-0, 3Zr-0, 3Ce,
for selective laser melting. The material showed a good speed build level in the SLM
process, which allows for the formation of fine structures with low porosity levels. The
microstructure characteristics of the alloy in the cast and T6 states were studied. The
mechanical properties of Al Si Mg - (Cu) alloys produced by SLM exceeded those of such
alloys produced by casting, which broadens their potential applications in aircraft, me-
chanical engineering, and other industrial fields. Hu et al. [58] systematically studied the
change rule of surface roughness of AlCu5MnCdVA aluminum alloy during SLM, and
drew the following conclusions: during SLM, the top surface roughness experienced a
complex evolution; for single channel samples, the ray first decreased and then increased
with an increase in scanning speed; and for single layer samples, the ray increased with an
increase in scanning speed and shadow spacing. In addition, this value was lower than
that of single-track samples manufactured at the same scanning speed. With an increase
in the number of layers, the surface roughness first increases, then decreases, and finally
tends stabilize. An increase in fluid flow intensity and actual powder thickness affects the
roughness in both directions on the contrary, leading to the evolution of surface roughness.
This evolution shows that the surface quality improves itself during processing, but the
ability of self-improvement is limited. Once the surface quality is too poor and the process
is unstable, it is difficult for the process to improve itself.
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Table 2. Grades and principal properties of aluminum alloy powder materials required for additive
manufacturing.

Material Tensile Strength/Mpa Yield Strength/Mpa Elongation/%

AlSi10Mg 460 ± 20.0 270 ± 10.0 9 ± 2%
AlSi12 409 ± 20.0 211 ± 20.0 5 ± 3%

AlSi7Mg 294 ± 17.0 147 ± 15.0 3%
AlSi9Cu3 415 ± 15.0 236 ± 8.0 5 ± 1%

AlCuMgZr 451 ± 3.6 446 ± 4.3 —

Some scholars studied the oxidation phenomenon of aluminum alloy powder in the
SLM process. In the SLM process of aluminum and its alloys, a large number of an oxide is
combined into parts so that it will form oxide film, as in the traditional way. Due to the
active chemical properties of aluminum, a kind of passivation and reduction in the surface
tension of parts is generated on the surface [59].

The low density, high strength, sufficient hardenability, good corrosion resistance,
and excellent weldability of aluminum alloy make it suitable for a series of manufac-
turing industries, such as for automobiles, national defense, and aerospace equipment
manufacturing [60,61].
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3.2. Magnesium Alloy

Magnesium alloys are mainly used to develop lightweight structures because of their
low densities. In addition, due to their biocompatibility, they offer the potential to be used
as bioabsorbable materials for biodegradable bone substitute implants.

To achieve this goal, the DFG German Research Foundation, a research project funded
by Deutsche Bank in 2012, used skull replacement with SLM technology to manufacture
biodegradable implants for people. Its leading alloy implant is a biodegradable magnesium
alloy scaffold, which is pre-activated with human cells of patients to support bone growth
on implants before implantation. Due to the biocompatibility of magnesium metal in the
human body, when the magnesium stent is implanted in the human body, the stent will
gradually become compatible with the human body over time; at the same time, the injured
bone tissue will also close.

In 2010, Ng et al. [62] studied selective laser melting magnesium to produce bone
substitute scaffolding. Using the micro SLM system built by Hong Kong Polytechnic
University, the experimental study was carried out in a protective gas environment. For
the first test, coarse particles of 75–150 nm and fine spherical particles of 5–45 nm were
produced, and satisfactory results were obtained.

Krause et al. [63] conducted experiments on magnesium alloys. Their research showed
that aluminum alloys with a calcium content of 8 ‰ had good human compatibility. Further
research showed that the initial mechanical strength of magnesium alloys is insufficient
when magnesium alloy stents are implanted into human bone joints. When low mechanical
stability is necessary, it is appropriate to use these stents as the material of implants mixed
with implants. WZ21 magnesium alloy contains biocompatible alloy, while rare earth
elements show good biocompatibility, degrade slowly and homogenously in miniature
abdominal cavities, and were shown to have stable mechanical integrity in the femur
of experimental pigs and rats [64,65]. WE43 alloy is a superb alloy for manufacturing
biodegradable stents. Therefore, this material is often used as a magnesium alloy implant
to treat patients. Yuan et al. [66,67] used additive manufacturing technology to optimize the
structure of MgNdZnZr magnesium alloy, and designed and prepared three magnesium
scaffolds with the same porosity and average pore size using SLM technology. It was found
that the SLM magnesium alloy stent presented a fully connected structure, appropriate
compression performance, and moderate degradation behavior, indicating that the stent
printed by SLM has good clinical application prospects.

Magnesium alloy biodegradable implants will be applied in the future of bone sutures.
In recent years, because of its good bearing capacity, magnesium alloys have been the

preferred material for biodegradable polymers. SLM technology alloys of magnesium can
be used to manufacture single biodegradable implants with complex shapes. Generally
speaking, magnesium and its alloys are quite mature in SLM applications.

3.3. Titanium Alloy

Compared with other materials that can be used for SLM printing, titanium alloy is
the ideal printing material because of its cleanness and high utilization rate in processing,
and titanium can be used to print parts with complex shapes on the SLM platform.

Titanium alloy is widely used in biomedical implants [68], among which Ti-45Nb is
the primary material of implants, mainly due to its low Young’s modulus (~62Gpa) and
high cooling rate. In addition, Ti-45Nb has excellent elasticity, good corrosion resistance,
and good chemical resistance, mainly due to the passivation layer formed on the surface of
titanium components [69].

Huang et al. [70] used SLM technology to conduct heat treatment research on TA15
titanium alloy style. The research shows that the microstructure of TA15 titanium alloy
style after heat treatment is a typical basket structure, and the toughness of parts can be
improved through heat treatment. Finally, with an increase in heat treatment time, the
dimple size of the fracture increases. The failure mode changes from brittle fracture to semi
ductile fracture, and finally to complete ductile fracture.
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These results show that SLM technology is different from other manufacturing meth-
ods, and can make full use of the potential of solid titanium. In addition, porous titanium
structure with the necessary characteristics can still be manufactured using SLM while re-
taining its biomechanical properties [71]. However, the reliability of biomedical application
parts of titanium alloy produced by SLM, especially its powder materials, its corrosion
behavior, and the influence of fatigue properties, still needs further study. SLM parts of
titanium alloy are shown in Figure 9.

Micromachines 2023, 14, 57 11 of 18 
 

 

Magnesium alloy biodegradable implants will be applied in the future of bone su-
tures. 

In recent years, because of its good bearing capacity, magnesium alloys have been 
the preferred material for biodegradable polymers. SLM technology alloys of magnesium 
can be used to manufacture single biodegradable implants with complex shapes. Gener-
ally speaking, magnesium and its alloys are quite mature in SLM applications. 

3.3. Titanium Alloy 
Compared with other materials that can be used for SLM printing, titanium alloy is 

the ideal printing material because of its cleanness and high utilization rate in processing, 
and titanium can be used to print parts with complex shapes on the SLM platform. 

Titanium alloy is widely used in biomedical implants [69], among which Ti-45Nb is 
the primary material of implants, mainly due to its low Young’s modulus (~62Gpa) and 
high cooling rate. In addition, Ti-45Nb has excellent elasticity, good corrosion resistance, 
and good chemical resistance, mainly due to the passivation layer formed on the surface 
of titanium components [70]. 

Huang et al. [71] used SLM technology to conduct heat treatment research on TA15 
titanium alloy style. The research shows that the microstructure of TA15 titanium alloy 
style after heat treatment is a typical basket structure, and the toughness of parts can be 
improved through heat treatment. Finally, with an increase in heat treatment time, the 
dimple size of the fracture increases. The failure mode changes from brittle fracture to 
semi ductile fracture, and finally to complete ductile fracture. 

These results show that SLM technology is different from other manufacturing meth-
ods, and can make full use of the potential of solid titanium. In addition, porous titanium 
structure with the necessary characteristics can still be manufactured using SLM while 
retaining its biomechanical properties [72]. However, the reliability of biomedical appli-
cation parts of titanium alloy produced by SLM, especially its powder materials, its cor-
rosion behavior, and the influence of fatigue properties, still needs further study. SLM 
parts of titanium alloy are shown in Figure 9. 

  
(A) General view with supports (B) A closer view of the texturized surface 

Figure 9. Titanium alloy hip implants produced by SLM [72]. 

3.4. Stainless Steel 
316L stainless steel, also known as titanium steel, is characterized by solid point cor-

rosion resistance, excellent high-temperature strength, and non-magnetism. It is widely 
used in pipelines, the food industry, in marine and biomedical equipment, fuel cells, and 
other fields [73–75]. In recent years, 316L stainless steel has gradually become the raw 
material of SLM 3D printing technology, and has been studied by many scholars [76]. SLM 
bridge model of 316L stainless steel is shown in Figure 10. 

Figure 9. Titanium alloy hip implants produced by SLM [71].

3.4. Stainless Steel

316L stainless steel, also known as titanium steel, is characterized by solid point
corrosion resistance, excellent high-temperature strength, and non-magnetism. It is widely
used in pipelines, the food industry, in marine and biomedical equipment, fuel cells, and
other fields [72–74]. In recent years, 316L stainless steel has gradually become the raw
material of SLM 3D printing technology, and has been studied by many scholars [75]. SLM
bridge model of 316L stainless steel is shown in Figure 10.
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Kruth et al. [76] conducted many novel types of research on the SLM manufacturing
of stainless steel. Soon after, Kruth [77] proved that changes in process parameters play a
vital role in SLM for forming parts. Since then, many scholars have researched this area
and reached similar conclusions [78–80]. However, the study showed that it is difficult
to achieve the entire density state because there is a relatively fixed porosity in the metal
powder. On the other hand, lack of a particular mechanical pressure will also make the
total density unable to reach its highest [81]. Casati et al. [82] reported that a reduction
in tensile strength would make the elongation break, attributing very different power of
SLM 316L stainless steel, mainly because of partially melted powder particles in their
microstructure. To solve this problem, laser remelting is the method applied; that is, before
spraying the next layer, the powder layer is scanned twice. Yasa et al. [83] proved that
the density of stainless steel parts could be improved, and the surface roughness could
be reduced by the secondary scanning method, thus improving the fatigue characteristics.
Riemer et al. [84] found that 316L stainless steel printed with SLM technology showed
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anisotropy in notched high-cycle fatigue behavior and fatigue crack. The research of Zhou
Yuecheng et al. [85] on 316L stainless steel showed that SLM is suitable for manufacturing
small- and medium-sized parts, and that the mechanical properties of SLM products show
obvious anisotropy and inhomogeneity due to epitaxial growth crystals, micro defects,
weld pool boundaries, and residual stresses in the microstructure.

The research on 316L stainless steel by scholars from all over the world using SLM
technology shows that due to certain porosity between stainless steel powders, the density
state of stainless steel cannot be guaranteed, which can cause internal defects in the parts
printed with 316L stainless steel, affecting the overall service life of the parts, and even
leading to parts being scrapped. At the same time, scholars are also using methods to
constantly improve the SLM process of stainless steel; the research on stainless steel is
also maturing.

To sum up, the SLM process has shown strong developments in the printing of
various metal materials. Although the material and application performance of parts still
requires further exploration and verification, and the manufacturing process still needs to be
improved, SLM metal printing technology has shown great application prospects in various
fields: in the medical field, for patient specific implants and other high-value medical device
components; in the field of automobile manufacturing, high-speed prototype design and
customized components, or low volume, high-value applications; in the field of aerospace,
conduits and other components. SLM metal printing is an exciting technology with many
potential applications. With continued growth in uses and the maturity of technology, the
process and materials are becoming cheaper. We should see SLM metal printing becoming
increasingly common.

4. Nonmetallic Materials

As an inorganic and nonmetallic material, ceramics are widely used in modern indus-
tries such as automobiles, aerospace, national defense, and machining. This mainly depends
on the low thermal conductivity and high wear resistance of ceramic materials [86–89].
Due to the biocompatibility of ceramics, ceramics have also been studied in the medical
field, among which ceramic teeth are the most widely used, in addition to uses in other
prostheses, stents, etc. Several ceramic parts printed by SLM technology are shown in
Figure 11.
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Zirconia is an excellent ceramic material, mainly due to its high mechanical properties,
compression resistance, tensile resistance, and excellent corrosion resistance [91]. Due to
its corrosion resistance and excellent physical properties, zirconia can be used in the field
of full-mouth porcelain teeth in medicine [92]. Zheng et al. [93] researched and found
that when SLM was used to treat ceramic paste for printing, cooling cracks occurred in
the curing process of parts due to thermal expansion and cold contraction. Shishkovsky
et al. [94] found similar results when studying the SLM of yttria-stabilized zirconia powder
with aluminum or aluminum oxide in different oxygen and argon gas streams. Thirdly,
due to the existence of macropores larger than 100 µm and the appearance of cracks, the
mechanical strength decreases. In addition, it was reported that adding a small amount
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of zirconia made with SLM to high-temperature nickel alloys can enhance the mechanical
properties of nickel alloys [95].

Silicon carbide particles are a common reinforcing material, often used in aerospace
and military equipment because of their high strength, high hardness, high temperature
resistance, and other advantages. At the same time, they are cheap and easy to use [96].
It was found that in the SLM forming process, under good process parameters, a good
metallurgical combination can occur between 10% SiC particles and Al Si10Mg to generate
a new phase Al4SiC4, with a refined grain size and improved composite properties. Further
research shows that the strength of 10% SiC reinforced AlSi10Mg composite specimens
formed with SLM is greatly improved compared with the conventional casting process;
the materials can achieve high density and strength under the appropriate combination of
process parameters [97,98].

The best combination of the metal matrix of reinforced ceramic matrix composites
and more complex and stronger ceramic reinforcement materials improves wear resistance,
strength, and high-temperature mechanical properties [99].

In situ ceramic composites show more advantages. Compared with pre-added com-
posites, the wettability between ceramic and metal is better, mainly because the molecular
distribution of compounds is relatively uniform [100].

However, there are new challenges for ceramics in SLM:
1. It is necessary to develop a laser source that is capable of releasing wavelengths that

can be absorbed by ceramics.
2. Ceramic parts will produce more pores due to their high viscosity.
3. Ceramic parts will crack at high temperatures, so stress research is needed.

5. Conclusions

In this paper, the research progress of selective laser melting technology was reviewed.
The influences of SLM process parameters on forming defects and mechanical properties
were summarized in detail. The properties of magnesium, aluminum, titanium alloy,
and stainless steel made with SLM were also summarized. Currently, the mechanical
properties of SLM manufacturing alloys are obviously superior to those of casting alloys.
Due to the characteristics of SLM additive, it has great advantages in preparing large and
complex components. Therefore, SLM manufacturing of components has great engineering
application potential. According to current research and development trends at home and
abroad, future SLM research needs to focus on the following aspects:

(1) The existing equipment has low feed speed, unstable work environments, and lim-
ited processing size. Therefore, the stability of equipment processing should be improved,
feed speed and processing size should be increased, work efficiency should be improved,
and parts with uniform organization and good performance should be manufactured.

(2) The comprehensive properties of powders require improvement, such as powder
particle size, laser melting mechanism, thermophysical properties, etc., and a suitable
production process must be found to solve the defects of spheroidizing effect, warping
deformation, and cracking of machined parts.

(3) Complete industrial chains for engineering application should be developed. Break
through the shackles of traditional manufacturing technology, and form an entire industrial
chain, such as a design mode, production mode, detection means, processing, assembly,
etc., in order to meet the ever-developing demands of new manufacturing technologies.

SLM technology can process dense parts with complex shapes, good surface rough-
ness, and high dimensional accuracy; thus, SLM can be used to process high-temperature
alloys, and other factors. The processing technology is simple, which provides faster meth-
ods for product design and production. SLM technology can also be applied to rapidly
manufacture conceptual prototypes, manufacturing molds, functional parts, etc. [101,102].
Therefore, SLM technology is a significant development direction of additive manufacturing
technology. Currently, China needs to continue its efforts in SLM technology, to improve
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equipment, improve the comprehensive performance of powders, and form complete
industrial chains to meet the needs of new manufacturing technologies.
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